Signature-based Filtering Techniques
for Structural Joins of XML Data

Huan Huo Guoren Wang Chuan Yang RuiZhou
Northeastern University, Shenyang 110004, China

Abstract Path expression is used to describe XML query and plays
an important role in XML query languages like XPath [2]
Queries on XML documents typically combine selections gnd xQuery [3]. The key technique for expediting path
on element contents, and, via path expressions, the struCexpression processing is evaluating query operations like
tural relationships between tagged elements. Efficient sup-«(parent-child relationship) and “//”(ancestor-descendant
port for structural joins is thus the key to efficient imple- rg|ationship). One simple mechanism for path expression
mentation of XML queries. With a stack to keep ancestor-eyalyation is traversing the XML data tree. However, the
descendant structural relationships, stack-tree join algo- performance varies a lot with the size of XML document
rithm enhances the performance of structural joins by [10]. It is quite possible to traverse the whole XML data

reducing deducible unnecessary comparisons. Howeveriee with only a few results. Consequently, Structural join
stack-tree join cannot prevent “unwanted” comparisons be- |gorithm [4] is proposed.

tween elements that do no participate in the join. To solve
Recently, many research works [4—8] focus on structural

. join algorithms to evaluate “/” and “//” operations. Given a
vantage of encoding schemes proposed for XML and occu—J g P

. . . . path expressiondf/d”, firstly two sets of candidate nodes of
pies a little space. Then we present an pointer-based signa- _ _
aandd are created separatelyad.istandD-List, and then

all “a-d’ pairs matching “//"are output from the two lists, in

which every element is encoded &tdrtPos,EndPJgair.

this problem, we propose a signature filter, which takes ad-

ture filter to skip the “unwanted ” elements. In order to fur-
ther improve the filtering efficiency, we finally propose an
optimized pointer-based filter with the conjunction of two
signatures. Performance study shows that our signature-
based filters have excellent filtering performance and sig-
nificantly improve the performance of structural joins. Stack-tree join algorithm uses a stack to keep deducible

structural relationships and reduces the comparisons that

can be deduced with the help of stack. For example, given
1 Introduction two path expressionsaf/b” and “b//c”, stack-tree join al-

Stack-tree join, as a widely used structural join algorithm,
is given in [4].

gorithm gets the results ofaf/c” without extra compari-
XML [1]is emerging as ade factostandard for infor- son, since the stack at all times has a sequence of ancestor
mation representation and data exchange on the web. Inhodes, and each node in stack is a descendant of the node
can be represented as a tree-structural model with datébelow it. Therefore, deducible comparisons are implied by
contents and their structural relationships. Evaluating thethe sequence of elements in stack and need not attending
primitive structural relationships, parent-child and ancestor- stack-tree join algorithm. We name such comparisons as
descendant, is thus the key for XML query processing. deducible comparisons.

However, stack-tree join cannot avoid the comparisons and “ancestor-descendant” relationships. In this section,
that produce no join results, which we name as “unwanted” we begin with presenting XML encoding approaches, then
comparisons. So far several approaches have been proposexverview the related work of structural join algorithms and
with index on how to avoid these unwanted comparisons, finally introduce signature filter.
such as B+-tree [7] and XR-tree [8]. These enhanced struc-
tural join algorithms gain better performance on CPU time. 2-1 XML Encoding Representation
But the 1/0 cost of complex indices becomes another prob-

. . . XML database is typically modelled as a tree. By map-
lem. Hence signature filter [13, 14], which uses a sequence yp_ y y map
hepmg an element (or string value) on the tree toratuple
. .. code, XML encoding approaches [5, 6] can directly rep-
unwanted elements as early as possible, shows promising N gapp []. y rep
resent the positions of elements and string values so as to

of bits identifying the elements or element sets to shed t

performance with the merits of little space cost and reduc-

. . clearly reflect the relationship between data.
ing most of the unwanted comparisons.

In a widely accepted encoding approach [6], the posi-

In this paper, we firstly develop a simple signature filter, . .
L . tion of an element is represented as a 4-tupleqd, Start-
which is generated for every candidate element set, accord-

, Pos, EndPos, Levelwhere (i)Docldis the identifier of the
ing to the range of element cod8tértPos, EndPgds As

. :) document, which can be omitted if one single document in-
a shortcut of element list, signature filter enhances the ef-

- . _ i volved (in this paper, only single document is considered
ficiency of structural joins by comparing element signature

.) . . andDocld is thus omitted.Operations are similar in multi-
and signature filter to test “//"(“/") relationship beforehand

. , , document); (ii)StartPosis the number given in a pre-order
so as to avoid unwanted comparisons in the stack. How-)) .
L) i : traversal of the tree anHndPosis the number given in a
ever, considering signature filter still scans all the elements

_ . _ _ i . post-order traversal of the tree, adthrtPosandEndPosare
in the input lists, we then build a pointer-based signature]]
the same when the node is a leaf; (iii) drmelelis the nest-

filter, which makes comparison between two signature fil- .))]
. o , . ing depth of the element (or string value) helping to identify
ters and adds a pointer to every “1” bit in the filters to skip i)))]

) “parent-child” relationship. Figure 1 gives an example of
unnecessary element accesses to the lists. In order to fur-

. I -) XML data tree with GtartPos, EndPQgepresentation.
ther improve the filtering efficiency, we finally propose an

optimized pointer-based filter with the conjunction of two

signatures. Based on these three types of filters, we design

d (36,49

a(37,38) d (39 47)

a(44,46)

corresponding structural join algorithms.

The rest of this paper is organized as follows. Section
2 presents background and some important definitions such
as structural joins and signature filter. Section 3 describes

d(10,11)

the basic idea of signature filter and its structural join algo-)
))) .] Figure 1. Sample XML data tree
rithm. Section 4 gives a detailed statement of our pointer-
based signature filter, as well as corresponding structural
join algorithm, and its optimization. Section 5 shows exper-

imental results. Our conclusions are contained in Section 6.

Taking StartPosandEndPosas a range of element node,
we can see that the ranges of two arbitrary element codes
are either inclusive or exclusive. And, we can get the
ascendant-descendant relationship between nodes by test-
2 Background and Related Work ing if the ranges of element nodes are inclusive.

Nodeais the ascendant afif and only if a.Start Pos <

Structural join algorithm takes advantage of XML en- d.StartPos andd.EndPos < a.EndPos. If a.Level +
coding representation to efficiently match “parent-child” 1 = d.Level, thenais the parent ofl.

2.2 Structural Joins

Conceptually, structural join algorithm is used to find
all structural relationships. Take//d” for example, sup-
posing the candidate element nodesucdind d are in the
set of A-List and D-List respectively, we have to find all
the “a//d” pairs matching ancestor-descendant relation-
ship, which means to evaluate the structural joins between

A:{a;(100), a,(200), a5(300)}
signature of elements in set A
a 010 000 100 110
a) 100 010 010 100
a3 \/ 010100011 000

A-Filter 110 110 111 110

D:{d;(100), d5(400), d5(500)}

signature of elements in set D(Sy;)

filtering

ancestor lisA-Listand descendant lif-List. As described d, 010 000 100 110 pass

in Section 2.1, all pairs ofd-d” satisfying a.StartPos < d 011 000 100 100 can not pass

d.StartPos andd.EndPos < a.EndPos are the results. ds 110100 100000 false pass
A-Filter 110 110 111 110

Stack-tree join [4] is one of the widely accepted struc-
tural join algorithms. The input listd-List and D-List in
stack-tree are sorted IStartPosattribute andA-Listis man-
aged by a stack assuring only one traversal on Bethist
andD-List. As described in Section 1, the deducible com-

Figure 2. Signature filter in ODMS

parisons can be skipped by stack. However, all the elements . . . -
.) i) signatures of the elements in detare listed in Figure 2.
in A-List and D-List are compared and possibly some of

If A-Filter v Sy; # A-Filter, objectd; is filtered out; if
them produce no results. Therefore, unwanted element ac- i .)
o o A-Filter v S4; = A-Filter, objectd; passes the filter. For ex-
cesses reduce the efficiency of stack-tree join.

ample, as forly, it can take the join operation and produce
the join results sincé-Filter v S;; = A-Filter; as for ob-
jectds, it is filtered out becausa-Filter \V Sy, # A-Filter;

In database systems, filtering [11,12] is a key technique as for objectis, it passes the filter like, but the joins with
to improve the performance of join algorithms by avoiding ds Produce no results, which is named false pass.
unwanted elements evaluation. The basic idea is to generate The filtering performance can be evaluated by filtered-
a filter when scanning the elements in one set, and then filteout rate and false pass rate. Filtered-out rate is the proba-
out the useless elements in another set. bility that an object which produces no results is filtered out
Signature filter [9] is applied for hash join algorithms in While false pass rate is the probability that a passed object

object-oriented database systems. A signature is generateffiled to produce any results.

2.3 Signature Filter

by hash function as follows: hash the join attribute when an
object is accessed and return a bit vector composed of “0"3 Signature-Based Filter for Structural Join
or “1”, which is the signature of the object; and then add up
all the signatures of the objects in the set by to get the In this section, we propose a range-based signature filter
signature of the set. We call the signature of the set is theaccording to an XML encoding scheme and present a novel
signature filter of the join operation.

As shown in Figure 2, all the objects;(, as, a3) get the
signatures by hash function aidFilter (i.e. 110 110 111

structural join algorithm based on it.

3.1 Range-based Signature Filter
110) is the filter of the join generated by superimposing all
the signatures of objects iA. When scanning seb, we
evaluate the signature of objett by the same hash func-
tion on the join attribute, and name the signatdrg. All

There have been a lot of ways to form a signature fil-
ter such as hashing. Considering that structural join algo-
rithm falls back on XML encoding representation, we take

advantage of XML encoding technique and put forward a
range-based signature filter.

Definition 1 Divide the code range of an XML document
into m consecutive equal-length intervals, each of which is
represented by a bit of a vector. If an element code range
intersects with the interval or intervals, we set the corre-
sponding bit or bits of the vector to “1” and name it as the
range signaturef the element and the length of the signa-
ture ism. Range-based signature filisrdefined as the sum

(“ v") of all the element signatures.

Full Region L1020 30 40 50 60 70 80 90 100 110 120
Ealé P Pay b a3'a4l
A-List — i i
A-Filer oi1|1|0|0|1|1|1i0i0i1i1|
Bit Number | 1 23 4 5 6 708 9 10 1112

Figure 3. Range-based Signature Filter

filter; the corresponding bits fai, andds are “0”, sOA-
Filter v.Sy; # A-Filter and elementd, andds are filtered
out; and the corresponding bits fdy is “01”, so A-Filter
VSq4 # A-Filter and element, is filtered out.

DList —_— —d4

a4 4

A-Filter o|1i1]0]0i1|1|1|0io|1|1|

Bit Number | 1

2 3 4 5 6 7 8 9 10 11 12

Figure 4. Filtering the descendant elements

Filtering The Ancestor Elements Filtering the ances-
tor elements is similar to filtering the descendant elements.
We useD-Filter (0101 1000 0110) to filter the elements in
A-List, and if D-Filter A a; = 0, a; is filtered out while
if D-Filter Aa; # 0, a; passes the filter. In other words,
the descendants af may exist inD-List only if one of the
corresponding bits af; in D-Filter is “1”.

As shown in Figure 5, the corresponding bits fqris

Figure 3 shows the construction of range-based signa- 10", SOD-Filter AS.; # 0 and elemeni, passes the filter;

ture filter. SetA-Listcomprises four element$u, (12, 22),
a2(55,75), a3(105,108), a4(115,119)}, each of which is

the corresponding bits faf, are all “0”, soD-Filter AS,2 =
0 and element: is filtered out. Obviouslya; passes the

represented by a line to describe the range of the elementilter anday is filtered out.

(StartPos,EndPgs And the range of the whole document
(1, 120) is divided into12 segments, each of which is repre-
sented by one bit. Element (12, 22) intersects with inter-
vals[11,20] and[21, 30], so the2nd and the3rd bits of the
signature are set tal"; elementaz (55, 75) intersects with
intervals[51, 60], [61, 70] and[71,80], so the6th, the 7th
and the8th bits are set to 1”; likewise, the11th and the
12th bits are set to 1" according toaz anda,. So we get
the signature filteA-Filter of A-List(i.e. 0110 0111 0011).

Filtering The Descendant Elements Given A-Filter
(0110 0111 0011), when scanning sdd-List, we get ele-
mentd; and its signature&y;. If A-Filter vSy; # A-Filter,
d; is filtered out; ifA-Filter v.S;; = A-Filter, d; passes the
filter. In other words, the ancestorsd)fmay exist inA-List
only if the corresponding bits af; in A-Filter are “1”, sod;
passes the filter.

As shown in Figure 4, the corresponding bit f@r is
“1", so A-Filter vS;; = A-Filter and element; passes the

al a2

—
i <

a3 a4

AList

D-Filter 0|1|0\|1|1|,0|0|0\|0|1|1|0I|

Bit Number| 1

2 3 4 5 6 7 8 9 10 11 12

Figure 5. Filtering the ancestor elements

3.2 Structural Join Algorithm with Range-based
Signature Filter

In stack-tree join algorithm,A-List and D-List are
scanned once respectively [4]. In our approach, the filter
scansA-List and D-List and returns to stack-tree join op-
eration the elements that cannot be filtered out. Thus the
structural join algorithm with signature filter only scans the
two input lists once as well.

Here we firstly present two basic filtering algorithms:
Algorithm 1, FilterDescendantElement() and Algorithm 2,

FilterAncestorElement(). The basic idea of the formeris to a;. This is similar to stack-tree algorithm but the differ-
filter a; and the following elements by-filter when scan- ence lies in that the algorithm can filter out some ancestors
ning A-List, until bumping into an elemenmt; which cannot ~ and descendants which have no contributions for the join,
be filtered and then return. Similarly, the latter filtérsand as shown in step and stepl 1.

the following elements b-filter when scanningp-List.

Algorithm 1 FilterDescendantElement() Algorithm 3 Structural Join Algorithm based on Signature

Input: Signature filterA-Filter of A-List CurrentD in D-List; Filter _ :
Input: ordered ancestor ligt-List, ordered descendant liStList;

Output: the next element ifD-List which may produce join re- e
sults: Description:

1: CurrentA « the first element oA-List

2: CurrentD <« the first element oD-List;

3: while (1A-List.end()&& ! D-List.end()) do

4: if (CurrrentA.StartPos > stack[top].EndPos) &&
(CurrentD.StartPos > stack[top]. EndPos)) then

Description:
1. d-signature + signature foilCurrentD;
2: while ! D-List.end() do
3. if A-Filter V d-signature = A-Filter then

4 return CurrentD; tack 0
. 5: Stack.pop(),
5. endif) bop
. else if (CurrentA.StartPos < CurrentD.StartPos)
6: CurrentD «— D-List.next();
. then
7: end while

{stack.pushQurrentA);
CurrentA «— Filter Ancestor Element(CurrentA);}

Algorithm 2 FilterAncestorElement() 9 else .
Input: Signature filteD-Filter of D-List; CurrentA in A-List; 10: {output all pairs ¢ € stack,CurrentD);
Output: the next element i-List which may produce join re- 111 CurrentD «— Filter Descendant Element(CurrentD);}
sults: 12: endif
Description: 13: end while
1. a-signature < signature foilCurrentA;
2: while | A-List.end() do
3 if D-Filter A a-signature # 0 then 4 Pointer-Based Signature Filter for Struc-
4 return CurrentA; i
& endif tural Join
6: CurrentA «— A-List.next();
7: end while

Although range-based signature filter reduces some el-

Algorithm 3 presents the entire structural join algorithm ements attending stack-tree join, it still has to scan every

with signature filter. Given two ordered input lis#sList
andD-List, the algorithm set§'urrentA and CurrentD
as the first elements in two lists. Then it scans the two input

element in two input lists. The range-based filtering prin-
ciple replaces the comparisons between element codes with
that between signature filter and the element signatures. In

lists respectively to perform the join operation till the end. fact, it does not reduce the access to input elements.

To ensure only one traversal for each input list, the algo- In this section, we propose a pointer-based signature fil-
rithm managed\-List by a stack. If the elements from ter, in which we add a pointer to every bit with™, and

to a; are the ancestors @f the algorithm pushes the ele- then build an enhanced filtering algorithm, which reduces

ments into the stack before performing join operation with the access to the input elements by replacing the compari-
d. In this way, the next element dfcan be compared with son between signature filter and the element signatures with

elements ofa in the stack without scanning-List from that between two signature filters.

4.1 Pointer-based Signature Filter filters. If theith bit of A-Filter and that ofD-Filter are all
“1" (A-Filter[:] A D-Filter[i]= 1), there are probably join

Range-based signature filter is a simple identification of o5 its produced by the elements pointed by the correspond-
the candidate elements, but it cannot locate the correspond|~ng pointers of them. And the structural join algorithm be-
ing element after comparing two signature filters. To solve gins from the elements pointed by the two pointers till all
the problem, we propose pointer-based signature filter. he elements who set theh bits of A-Filter and D-Filter

have been scanned. If thig: bits of A-Filter and D-Filter
g are not all ‘1”(A-Filter[i] A D-Filter[i] # 1), the join algo-
rithm moves to the next bits &-Filter andD-Filter.

Now we describe the filtering process of pointer-based
signature filter (see Figure 6). That bits of A-Filter and
D-Filter are all ‘0", it moves to the next bits; thend bits
are all “1”, it performs structural join of{a,} and {d; };
scanning through th&rd ~ Tth bits, it performs structural
Figure 6 shows the construction of pointer-based signa-joins of {as,as} and {d4} since the8th bits are all 1”;

ture filter : a; sets thend and the3rd bits of A-Filter to “1” similarly, it performs structural join ofa,} and{ds} scan-
and the pointers of the two bits point4g; a, sets thesth, ning through the)th ~ 10th bits.

the 7th and the8th bits of A-Filter to “1” and the pointers

of the three bits point tas; a3 sets thesth bit of A-Filter 4.2 Structural Join with Pointer-based Signature

Definition 2 Pointer-based signature filter is made of a bit
vector and a pointer array. On the basis of range-base
signature filter, a pointer is added to every bit of™in
the filter pointing to the elements who set the hit.” If
more than one element sets the hit fepeatedly, the cor-
responding pointer of the bit points to the element with the
minimal StartPosode.

to “1” but the pointer of the bit points ta, notas, because Filter
the StartPoof as is less than that ofs; a4 sets thel1¢h bit

of A-Filter to “1” and the pointer of it points ta.. Structural join algorithm with range-based signature fil-

ter in Section 3.2 operates when gettingAamcestoror a

A-List _al L} a4 Descendanglement every time. While structural join algo-
a2
/‘ A\ T\ T rithm with pointer-based signature filter operates by check-
akiter Jo [t [{olo] il il ifofo]1]o] ing if the Descendanglements “offside” after it outputs the
"""""""""""""""""""""""""""""""" > results every time.
Bit Number | 1 2 3 4 5 6 7 8 9 10 12
T e ———— > Definition 3 SupposindstartPoof d; belongs to the inter-
D-Fiter fo [1 o[t [rflofolt[olt]1]o] . ‘ . .)
val that is represented by thgh bit in the signature, if
, l v) l l & v/ StartPoof the next element;, ; outruns the range, we call
o a B - @ d;41 is offside
i+1
Figure 6. Pointer-based signature filter Since the algorithm outputs the results in the order of in-

put descendant elements, we can promise integrity of the

Similarly, the2nd, 4th, 5th, 8th, 10th and11th bits of join results by checking if there is any offside of descen-
D-Filter are “1” and the corresponding pointers pointiio dant elements (not ancestor elements). In structural join al-
ds, ds, dg, ds, ds. Among them¢, andds set thedth bit of gorithm, we useFlag to identify whetherd; ; is offside.
D-Filter with “1” but the pointer of thelth bit points tod, WhenFlag is “true”, the elements, which pass the signa-
because th&tartPosof ds less than that ods. ture filter, have finished the structural join operation. Before

Different from comparing the signature filter with ele- going on with the structural joins, we turn to compare the
ment signatures in range-based filtering principle, pointer- following bit pairs of two signature filters and then give the
based signature filtering principle compares two signature passing elements to stack-tree join operation.

Algorithm 4 gives the structural join algorithm with Structural join algorithm with pointer-based signature
pointer-based signature filter, which only provides the el- filter efficiently reduces the unwanted accesses to the ele-
ements that might produce join results to the algorithm. At ments. However, the pointers occupy lots of memory space
the beginning, the algorithm scans two signature filters andif the number of bits with “1” is larger. So we first con-
sets theF'lag “true”. In steps21 and22, if the next descen- juncts (logical AND) the two signature filters to reduce the

dant elementd;, 1) is offside, thenF'lag is set “true”. Fil- number of bits with “1” as possible. Then we compact the
tering is performed whe#'lag is “true”, as shown in steps pointer vector by discarding all bits of “0".

5 ~ 12: it scans the signature filter un#l-Filter[i]A D- Figure 7 gives the compacted one of the signature filter
Filter[i]= 1, then returns the element pointed by the pointer described in Figure 6. In Figure 6, tRad, 8th,10th bits
corresponding to th&h bit (A-Pointef:] andD-Pointel]). are all “1”,which means that there are probably join results

between the elements pointed by the corresponding point-
ers, so we only keep the pointers of them and delete others.
Then we only need to operate on the elements pointed by

Algorithm 4 Structural Join Algorithm based on Pointer-

based Signature Filter

— : these3 pairs of pointers. When compacting process has fin-
Input: ordered ancestor ligt-List, ordered descendant lBtList;

ished scanning the signature filters, the filtering process is

Description: o
1: CurrentA « the first element ofA-List; also finished.
2: CurrentD « the first element ob-List; al 2 ot
3: Flag = true; A-List a3
4: while (lA-List.end()&& ! D-List.end()) do '
5. if (Flag) then Adflter] 1
6 { Bit Number 2 8 11
7: while (A — Filter[i]A D — Filter[i]! = 1) do D-Filter | 1
9: end while D-List a FOEEE by -
10: CurrentA « the element pointed by A-Pointe}]
11: CurrentD « the element pointed by D-Pointéj[

Figure 7. Compacting Pointer-based signa-
12: Flag = false;}

ture filter

13: else if (CurrrentA.StartPos > stack[top]. EndPos)

&& (CurrentD.StartPos > stack[top].EndPos))

then The structural join algorithm with compacted signature
14: stack.pop(); filter is similar to Algorithm 4. The only difference is that
15: else if (CurrentA.StartPos < CurrentD.StartPos) the filtering operation has to be performed before structural

then join operation. The details are left and not discussed here.
16: {stack.pushQurrentA);
17: CurrentA — A-List.next();} .
18 else 5 Performance Evaluation
19: {output all pairs ¢ € stack,CurrentD);
20: CurrentD «— D-List.next(); In this section, we present the performance evaluation
21 if (CurrentD offside)then of various structural join algorithms with different lengths
22: Flag = true;} of signatures, different queries and different sizes of doc-
23: end if uments on the same platform. We consider the following
24: endif algorithms: stack-tree algorithm(STJ), structural join algo-
25: end while

rithm with range-based signature filter(S-Filter), structural

join algorithm with pointer-based signature filter(PS-Filter) improve the performance in common cases, and in some ex-
and structural join algorithm with compacted pointer-based treme cases with only a few elements producing join results,

signature filter(CPS-Filter). the algorithm with filter shows great superiority.
All experiments are run on a PC with6GHz CPU,
512M memory anB0G hard disk. The operating system is B519Ms-Filcelrs-riltedces-Filcer

WindowsXP. And we use Berkeley DB [15] to store XML
index, programming with Microsoft Visual C++ 6.0.

We adopt DBLP [16] data set with five sizes (20M, 40M,)
60M, 80M and 100M). Firstly we parse these documents

and represent every position of element in code. Then we
parse the documents again to get the candidate element set Figure 8. Elapsed Time for Qi to Q4

for each element. We generate signatures with different

sizes (128 bits, 256 bits, 512 bits, 1024 bits, 2048 bits) for 5.2 Filtered-out Rate and False Pass Rate

each element set. At last we design four query expressions,

Q1 (inproceedings//cite) Q-(article//url), Qs(article//ee) The filtering performance of signature filter can be eval-
and Q. (inproceedings//number), to examine the impact of uated by filtered-out rate and false pass rate (see Definition
different document sizes and different signature lengths onl in Section2.3). Figure 9 shows the filtered-out rates and
performance. The features of these queries are described d@lse pass rates a; with different signature lengths on
follows: only a few ancestor elements 6f can produce 100M test document. We can see that the filtered-out rates
join results while the majority of the descendant elements Of S-FilterandPS-Filterbecome higher when the signature
can produce join results; only a few descendant elements ofengths become longer while the false pass rates decrease,
Q- can produce join results while the majority of the an- because the longer the length of signature, the more precise
cestor elements can produce join resufls;represents the the range of element set presented by signature filter (the
usual cases, whose join results are output from moderatd@nge represented by each bit is more narrow).

numbers of both ancestor and descendant eleméntss With different signature lengths, the filtered-out rate of
a particular case that only a few elements of ancestor and™S-Filteris higher than that o8-Filter while the false pass
descendant can produce join results. rate is lower than that @-Filter, so the performance &fS-
Filter is better than that o8-Filter. Since we use 100M
5.1 Performance vs Different Queries document, the code range is very large and the precision of

the signature filter is not good. So the false pass rate is a

Figure 8 shows the execution time of the four queries. In little bit higher. However, with a smaller document, we can

this experiment we adopt 100M DBLP data set and 1024- .
get a lower false pass rate. What is more, false pass rate can

bit signature. We can see fro@; and @, that S-Filter be deceased by increasing the signature length. But we did

greatly enhances the performance when filtering ancestornot use longer signature filter for the sake of saving space.

elements because it reduces the stack operation in STJ algo-

rithm; while it does not as good when filtering descendant 5.3 performance vs Different Signature Length
elements because they need signature generating instead of

stack operation. Therefore the performanceSeffilter is Figure 10 illustrates different elapsed time4o€ueries
affected by the character of quer2S-Filter shows good with different signature filter lengths. F&p,,Q3 andQy,
performance an@PS-Filterperforms a bit better thaRS- the filtering capability of signature filter improves with the

Filter. And characters of queries have no influence on theseincrease of signature length. There are more filtered-out
two methods. Fo€); and@,, the algorithms with filter can elements while the false passing elements become less. So

0
* 60 —
° -
o 50 w
s ‘,/,//’/”/—//
£ 40
3 -
g 39 //"//
8 3
5 =
0 20
o /
10
0
128 256 512 1024 2048
Signature Length
(a) Filtered-out Rate
—&—False Pass Rate of S-Filter
—8—False Pass Rate of PS-Filter
80
-2 | ———
e T “~v~\§~\\‘
g S

Percent

Signature Length

(b) False Pass Rate

Figure 9. Filtered-out rate and false pass rate
with different signature filter lengths

ture of the filtered element®S-Filteralgorithm reduces the
accesses to unwanted elements and performs b&tfes-
Filter has better performance th&%-Filter.

6 Conclusions

In this paper, we propose three signature-based algo-
rithms for XML structural joins. Range-based signature fil-
ter accelerates the joins by reducing push and pop opera-
tions of unwanted elements. What is needed is only a small
memory to store signature filter. Pointer-based signature fil-
ter adds an array of pointers, with which it can skip un-
wanted elements and locate the potential elements directly.
With a little extra memory, we achieve much greater join
efficiency. The optimized one further curtails memory cost
and expedites it a little.

Acknowledgments This research was partially supported
by the National Natural Science Foundation of China
(Grant No. 60273079 and 60473074) and Specialized Re-

the elements that take part in join operation are reduced andsearch Fund for the Doctoral Program of Higher Education

the elapsed time are shortened. Bat few elements can be
filtered out. So the filtering capability cannot be improved
by increasing the length of filter.

5.4 Performance vs Different Document Size

Figure 11 illustrates different elapsed time4o€ueries
with different document sizes. The time complexity of STJ
algorithm isO(n), in whichn is the number of elements in
input list. With the document size growing, we can see that

the elapsed time of STJ algorithm shows linear increase pro-

portionately. Sinces-Filter, PS-Filter and CPS-Filterare

based on STJ algorithm, the elapsed time also increases lin-

early. While the three filtering algorithms reduce the num-
ber of input elements, thus cut the curve slope of STJ algo-
rithm. And the filtered-out rates &fS-FilterandCPS-Filter
are much higher because their curve slopes are the lowest.
The experiment results show thaitFilter,PS-Filter and
CPS-Filterenhance the performance of structural join al-
gorithm effectively. S-Filter algorithm needs to scan the
input list once and cost some time on computing the signa-

(SRFDP).

References

[1] T Bray, J Paoli, C M Sperberg-McQueen et
al. Extensible markup language (XML) 1.0(Second

Edition) W3C recommendation. World Wide Web
Consortium, Tech Rep: RECxmI-20001006, 2000.
http://www.w3.org/TR/ 2000/REC-XML-20001006.

[2] D Chamberlin, D Florescu, J Robie et al. XQuery
1.0: An XML query language W3C working draft.
World Wide Web Consortium, Tech Rep: WD-xquery-

20010607, 2001.

[3] J Clark, S DeRose. XML path language (XPath) ver-
sion 1.0 W3C recommendation. World Wide Web Con-
sortium, Tech Rep: REC-xpath-19991116, 1999.

[4] D Srivastava, S Al-Khalifa, H V Jagadish, N Koudas, J
M Patel, W Yuging. Structural joins: A primitive for ef-
ficient XML query pattern matching. In: Proc. of ICDE,

2002.

Elapsed Time (ms)

Elapsed Time (ms)

—B—ps-Filter

2000
1500
1000

500

128 256 512 1024 2048

(a) Elapsed time of Q1

Elapsed Time (ms)

—¢—S-Filter —8—PS-Filter

—A—CPS-Filter

1600
e ————— %

1400
=

1200 g e

1000

®
)
S

128 256 512 1024 2048

(b) Elapsed time of Q2

s)

Elapsed Time (m:

—e—s-Filter

—&—CPS-Filter

—8—Pps-Filter

=

800

700

600 3<§§?:§\\\

500 —

400

300

128 256 512 1024 2048

(c) Elapsed time of Q3

——s5-Filter —8—PS-Filter

—&— CPS-Filter

500
400
300

200
100

ke - S

128 256 512 1024 2048

(d) Elapsed time of Q4

Figure 10. Elapsed Time of @; ~ Q4 with different signature filter lengths

—o—STJ —8—S-Filter

—&—PS-Filter —*—CPS-Filter

20M 40M 60M 80M 100M

(a)Elapsed time of Q1

s-Filter

(b)Elapsed time of Q2

Elapsed Time (ms)

1000
800
600
400
200

——STJ —8—5-Filter

—&—PS-Filter —%— CPS-Filter

20M 40M 60M 80M 100M

(c)Elapsed time of Q3

Elapsed Time (ms)

1500

1000

500

0

—o—STJ —8—S-Filter

—#&—PS-Filter ——CPS-Filter

/
— .

20M 40M 60M 80M 100M

(d)Elapsed time of Q4

Figure 11. Elapsed Time of @, ~ @4 with different document sizes

[11] D DeWitt, J Naughton. An evaluation of non-equijoin
algorithms. In: Proc. of VLDB, 1991.

[5] Q Li, B Moon. Indexing and querying XML data for
regular path expressions. In: Proc. of VLDB, 2001.

[6] C Zhang, J F Naughton, D J DeWitt, Q Luo, G M

Lohman. On supporting containment queries in rela-

[12] G Graefe. Query evaluation techniques for large
databases. ACM Computing Surveys, 1993, 25(2):73-
tional database management systems. In: Proc. of SIG- 170,

MOD, 2001.))))
[13] Y Ishikawa, H Kitagawa, N Ohbo. Evaluation of sig-

nature files as set access facilities in OODBSs. In: Proc.
of SIGMOD, 1993.

S Chien, Z Vagena, D Zhang, V Tsotras, C Zaniolo.
Efficient structural joins on indexed XML documents.
In: Proc. of VLDB, 2002.

[7]

[14] W Lee, D L Lee. Signature file methods for index-

[8] H Jiang, H Lu, W Wang, B C Ooi. XR-Tree: Index- ing object-oriented database systems. In: Proc. of ICIC,
ing XML data for efficient structural joins. In: Proc. of 1992.
VLDB, 2003.
. _ [15] Sleepycat Software. Berkeley DB.
[9] G. Yu, G. Wang, K. Kaneko, A. Makinouchi. Apply- http://www.sleepycat.com/download/db/index.shtml.

ing Signature Filtering Technique to Join Algorithms.

DEXA Workshop. pp.928-932. XML.

[16] DBLP Bibliography in

trier.de/xml/dblp.xml.

http://dblp.uni-

[10] B Sun, J Lv, G Wang, G Yu, B Zhou. Efficient Evalu-
ation of XML Path Queries with Automata. In: Proc. of
WAIM, 2003.

10

