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Abstract

Queries on XML documents typically combine selections

on element contents, and, via path expressions, the struc-

tural relationships between tagged elements. Efficient sup-

port for structural joins is thus the key to efficient imple-

mentation of XML queries. With a stack to keep ancestor-

descendant structural relationships, stack-tree join algo-

rithm enhances the performance of structural joins by

reducing deducible unnecessary comparisons. However,

stack-tree join cannot prevent “unwanted” comparisons be-

tween elements that do no participate in the join. To solve

this problem, we propose a signature filter, which takes ad-

vantage of encoding schemes proposed for XML and occu-

pies a little space. Then we present an pointer-based signa-

ture filter to skip the “unwanted ” elements. In order to fur-

ther improve the filtering efficiency, we finally propose an

optimized pointer-based filter with the conjunction of two

signatures. Performance study shows that our signature-

based filters have excellent filtering performance and sig-

nificantly improve the performance of structural joins.

1 Introduction

XML [1]is emerging as ade factostandard for infor-

mation representation and data exchange on the web. It

can be represented as a tree-structural model with data

contents and their structural relationships. Evaluating the

primitive structural relationships, parent-child and ancestor-

descendant, is thus the key for XML query processing.

Path expression is used to describe XML query and plays

an important role in XML query languages like XPath [2]

and XQuery [3]. The key technique for expediting path

expression processing is evaluating query operations like

“/”( parent-child relationship) and “//”( ancestor-descendant

relationship). One simple mechanism for path expression

evaluation is traversing the XML data tree. However, the

performance varies a lot with the size of XML document

[10]. It is quite possible to traverse the whole XML data

tree with only a few results. Consequently, Structural join

algorithm [4] is proposed.

Recently, many research works [4–8] focus on structural

join algorithms to evaluate “/” and “//” operations. Given a

path expression “a//d”, firstly two sets of candidate nodes of

a andd are created separately asA-ListandD-List, and then

all “a-d” pairs matching “//”are output from the two lists, in

which every element is encoded as (StartPos,EndPos) pair.

Stack-tree join, as a widely used structural join algorithm,

is given in [4].

Stack-tree join algorithm uses a stack to keep deducible

structural relationships and reduces the comparisons that

can be deduced with the help of stack. For example, given

two path expressions “a//b” and “b//c”, stack-tree join al-

gorithm gets the results of “a//c” without extra compari-

son, since the stack at all times has a sequence of ancestor

nodes, and each node in stack is a descendant of the node

below it. Therefore, deducible comparisons are implied by

the sequence of elements in stack and need not attending

stack-tree join algorithm. We name such comparisons as

deducible comparisons.

1



However, stack-tree join cannot avoid the comparisons

that produce no join results, which we name as “unwanted”

comparisons. So far several approaches have been proposed

with index on how to avoid these unwanted comparisons,

such as B+-tree [7] and XR-tree [8]. These enhanced struc-

tural join algorithms gain better performance on CPU time.

But the I/O cost of complex indices becomes another prob-

lem. Hence signature filter [13, 14], which uses a sequence

of bits identifying the elements or element sets to shed the

unwanted elements as early as possible, shows promising

performance with the merits of little space cost and reduc-

ing most of the unwanted comparisons.

In this paper, we firstly develop a simple signature filter,

which is generated for every candidate element set, accord-

ing to the range of element code (StartPos, EndPos). As

a shortcut of element list, signature filter enhances the ef-

ficiency of structural joins by comparing element signature

and signature filter to test “//”(“/”) relationship beforehand

so as to avoid unwanted comparisons in the stack. How-

ever, considering signature filter still scans all the elements

in the input lists, we then build a pointer-based signature

filter, which makes comparison between two signature fil-

ters and adds a pointer to every “1” bit in the filters to skip

unnecessary element accesses to the lists. In order to fur-

ther improve the filtering efficiency, we finally propose an

optimized pointer-based filter with the conjunction of two

signatures. Based on these three types of filters, we design

corresponding structural join algorithms.

The rest of this paper is organized as follows. Section

2 presents background and some important definitions such

as structural joins and signature filter. Section 3 describes

the basic idea of signature filter and its structural join algo-

rithm. Section 4 gives a detailed statement of our pointer-

based signature filter, as well as corresponding structural

join algorithm, and its optimization. Section 5 shows exper-

imental results. Our conclusions are contained in Section 6.

2 Background and Related Work

Structural join algorithm takes advantage of XML en-

coding representation to efficiently match “parent-child”

and “ancestor-descendant” relationships. In this section,

we begin with presenting XML encoding approaches, then

overview the related work of structural join algorithms and

finally introduce signature filter.

2.1 XML Encoding Representation

XML database is typically modelled as a tree. By map-

ping an element (or string value) on the tree to ann-tuple

code, XML encoding approaches [5, 6] can directly rep-

resent the positions of elements and string values so as to

clearly reflect the relationship between data.

In a widely accepted encoding approach [6], the posi-

tion of an element is represented as a 4-tuple (DocId, Start-

Pos, EndPos, Level), where (i)DocId is the identifier of the

document, which can be omitted if one single document in-

volved (in this paper, only single document is considered

andDocId is thus omitted.Operations are similar in multi-

document); (ii)StartPosis the number given in a pre-order

traversal of the tree andEndPosis the number given in a

post-order traversal of the tree, andStartPosandEndPosare

the same when the node is a leaf; (iii) andLevelis the nest-

ing depth of the element (or string value) helping to identify

“parent-child” relationship. Figure 1 gives an example of

XML data tree with (StartPos, EndPos) representation.
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Figure 1. Sample XML data tree

TakingStartPosandEndPosas a range of element node,

we can see that the ranges of two arbitrary element codes

are either inclusive or exclusive. And, we can get the

ascendant-descendant relationship between nodes by test-

ing if the ranges of element nodes are inclusive.

Nodea is the ascendant ofd if and only ifa.StartPos <

d.StartPos andd.EndPos < a.EndPos. If a.Level +

1 = d.Level, thena is the parent ofd.
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2.2 Structural Joins

Conceptually, structural join algorithm is used to find

all structural relationships. Take “a//d” for example, sup-

posing the candidate element nodes ofa andd are in the

set of A-List and D-List respectively, we have to find all

the “a//d” pairs matching ancestor-descendant relation-

ship, which means to evaluate the structural joins between

ancestor listA-Listand descendant listD-List. As described

in Section 2.1, all pairs of “a-d” satisfyinga.StartPos <

d.StartPos andd.EndPos < a.EndPos are the results.

Stack-tree join [4] is one of the widely accepted struc-

tural join algorithms. The input listsA-List andD-List in

stack-tree are sorted byStartPosattribute andA-List is man-

aged by a stack assuring only one traversal on bothA-List

andD-List. As described in Section 1, the deducible com-

parisons can be skipped by stack. However, all the elements

in A-List and D-List are compared and possibly some of

them produce no results. Therefore, unwanted element ac-

cesses reduce the efficiency of stack-tree join.

2.3 Signature Filter

In database systems, filtering [11, 12] is a key technique

to improve the performance of join algorithms by avoiding

unwanted elements evaluation. The basic idea is to generate

a filter when scanning the elements in one set, and then filter

out the useless elements in another set.

Signature filter [9] is applied for hash join algorithms in

object-oriented database systems. A signature is generated

by hash function as follows: hash the join attribute when an

object is accessed and return a bit vector composed of “0”

or “1”, which is the signature of the object; and then add up

all the signatures of the objects in the set by “∨” to get the

signature of the set. We call the signature of the set is the

signature filter of the join operation.

As shown in Figure 2, all the objects (a1, a2, a3) get the

signatures by hash function andA-Filter (i.e. 110 110 111

110) is the filter of the join generated by superimposing all

the signatures of objects inA. When scanning setD, we

evaluate the signature of objectdi by the same hash func-

tion on the join attribute, and name the signatureSdi. All
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Figure 2. Signature filter in ODMS

signatures of the elements in setD are listed in Figure 2.

If A-Filter ∨ Sdi 6= A-Filter, objectdi is filtered out; if

A-Filter ∨ Sdi = A-Filter, objectdi passes the filter. For ex-

ample, as ford1, it can take the join operation and produce

the join results sinceA-Filter ∨ Sd1 = A-Filter; as for ob-

ject d2, it is filtered out becauseA-Filter ∨ Sd2 6= A-Filter;

as for objectd3, it passes the filter liked1 but the joins with

d3 produce no results, which is named false pass.

The filtering performance can be evaluated by filtered-

out rate and false pass rate. Filtered-out rate is the proba-

bility that an object which produces no results is filtered out

while false pass rate is the probability that a passed object

failed to produce any results.

3 Signature-Based Filter for Structural Join

In this section, we propose a range-based signature filter

according to an XML encoding scheme and present a novel

structural join algorithm based on it.

3.1 Range-based Signature Filter

There have been a lot of ways to form a signature fil-

ter such as hashing. Considering that structural join algo-

rithm falls back on XML encoding representation, we take
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advantage of XML encoding technique and put forward a

range-based signature filter.

Definition 1 Divide the code range of an XML document

into m consecutive equal-length intervals, each of which is

represented by a bit of a vector. If an element code range

intersects with the interval or intervals, we set the corre-

sponding bit or bits of the vector to “1” and name it as the

range signatureof the element and the length of the signa-

ture ism. Range-based signature filteris defined as the sum

(“ ∨”) of all the element signatures.
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Figure 3. Range-based Signature Filter

Figure 3 shows the construction of range-based signa-

ture filter. SetA-Listcomprises four elements:{a1(12, 22),

a2(55, 75), a3(105, 108), a4(115, 119)}, each of which is

represented by a line to describe the range of the element

(StartPos,EndPos). And the range of the whole document

(1, 120) is divided into12 segments, each of which is repre-

sented by one bit. Elementa1(12, 22) intersects with inter-

vals [11, 20] and[21, 30], so the2nd and the3rd bits of the

signature are set to “1”; elementa2(55, 75) intersects with

intervals[51, 60], [61, 70] and [71, 80], so the6th, the7th

and the8th bits are set to “1”; likewise, the11th and the

12th bits are set to “1” according toa3 anda4. So we get

the signature filterA-Filter of A-List (i.e. 0110 0111 0011).

Filtering The Descendant Elements. Given A-Filter

(0110 0111 0011), when scanning setD-List, we get ele-

mentdi and its signatureSdi. If A-Filter ∨Sdi 6= A-Filter,

di is filtered out; ifA-Filter ∨Sdi = A-Filter, di passes the

filter. In other words, the ancestors ofdi may exist inA-List

only if the corresponding bits ofdi in A-Filter are “1”, sodi

passes the filter.

As shown in Figure 4, the corresponding bit ford1 is

“1”, so A-Filter ∨Sd1 = A-Filter and elementd1 passes the

filter; the corresponding bits ford2 andd3 are “0”, soA-

Filter ∨Sdi 6= A-Filter and elementsd2 andd3 are filtered

out; and the corresponding bits ford4 is “01”, so A-Filter

∨Sd4 6= A-Filter and elementd4 is filtered out.
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Figure 4. Filtering the descendant elements

Filtering The Ancestor Elements. Filtering the ances-

tor elements is similar to filtering the descendant elements.

We useD-Filter (0101 1000 0110) to filter the elements in

A-List, and if D-Filter ∧ ai = 0, ai is filtered out while

if D-Filter ∧ai 6= 0, ai passes the filter. In other words,

the descendants ofai may exist inD-List only if one of the

corresponding bits ofai in D-Filter is “1”.

As shown in Figure 5, the corresponding bits fora1 is

“10”, soD-Filter ∧Sa1 6= 0 and elementa1 passes the filter;

the corresponding bits fora2 are all “0”, soD-Filter ∧Sa2 =

0 and elementa2 is filtered out. Obviously,a3 passes the

filter anda4 is filtered out.
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Figure 5. Filtering the ancestor elements

3.2 Structural Join Algorithm with Range-based
Signature Filter

In stack-tree join algorithm,A-List and D-List are

scanned once respectively [4]. In our approach, the filter

scansA-List and D-List and returns to stack-tree join op-

eration the elements that cannot be filtered out. Thus the

structural join algorithm with signature filter only scans the

two input lists once as well.

Here we firstly present two basic filtering algorithms:

Algorithm 1, FilterDescendantElement() and Algorithm 2,
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FilterAncestorElement(). The basic idea of the former is to

filter ai and the following elements byD-filter when scan-

ningA-List, until bumping into an elementai which cannot

be filtered and then return. Similarly, the latter filtersdi and

the following elements byA-filter when scanningD-List.

Algorithm 1 FilterDescendantElement()
Input: Signature filterA-Filter of A-List; CurrentD in D-List;

Output: the next element inD-List which may produce join re-

sults;

Description:

1: d-signature ← signature forCurrentD;

2: while !D-List.end() do

3: if A-Filter ∨ d-signature = A-Filter then

4: return CurrentD;

5: end if

6: CurrentD ← D-List.next();

7: end while

Algorithm 2 FilterAncestorElement()
Input: Signature filterD-Filter of D-List; CurrentA in A-List;

Output: the next element inA-List which may produce join re-

sults;

Description:

1: a-signature ← signature forCurrentA;

2: while !A-List.end() do

3: if D-Filter ∧ a-signature 6= 0 then

4: return CurrentA;

5: end if

6: CurrentA ← A-List.next();

7: end while

Algorithm 3 presents the entire structural join algorithm

with signature filter. Given two ordered input listsA-List

andD-List, the algorithm setsCurrentA andCurrentD

as the first elements in two lists. Then it scans the two input

lists respectively to perform the join operation till the end.

To ensure only one traversal for each input list, the algo-

rithm managesA-List by a stack. If the elements fromai

to aj are the ancestors ofd, the algorithm pushes the ele-

ments into the stack before performing join operation with

d. In this way, the next element ofd can be compared with

elements ofa in the stack without scanningA-List from

ai. This is similar to stack-tree algorithm but the differ-

ence lies in that the algorithm can filter out some ancestors

and descendants which have no contributions for the join,

as shown in step8 and step11.

Algorithm 3 Structural Join Algorithm based on Signature

Filter
Input: ordered ancestor listA-List; ordered descendant listD-List;

Description:

1: CurrentA ← the first element ofA-List;

2: CurrentD ← the first element ofD-List;

3: while (!A-List.end()&& !D-List.end()) do

4: if ((CurrrentA.StartPos > stack[top].EndPos) &&

(CurrentD.StartPos > stack[top].EndPos)) then

5: stack.pop();

6: else if (CurrentA.StartPos < CurrentD.StartPos)

then

7: {stack.push(CurrentA);

8: CurrentA ← FilterAncestorElement(CurrentA);}
9: else

10: {output all pairs (a ∈ stack,CurrentD);

11: CurrentD ← FilterDescendantElement(CurrentD);}
12: end if

13: end while

4 Pointer-Based Signature Filter for Struc-

tural Join

Although range-based signature filter reduces some el-

ements attending stack-tree join, it still has to scan every

element in two input lists. The range-based filtering prin-

ciple replaces the comparisons between element codes with

that between signature filter and the element signatures. In

fact, it does not reduce the access to input elements.

In this section, we propose a pointer-based signature fil-

ter, in which we add a pointer to every bit with “1”, and

then build an enhanced filtering algorithm, which reduces

the access to the input elements by replacing the compari-

son between signature filter and the element signatures with

that between two signature filters.

5



4.1 Pointer-based Signature Filter

Range-based signature filter is a simple identification of

the candidate elements, but it cannot locate the correspond-

ing element after comparing two signature filters. To solve

the problem, we propose pointer-based signature filter.

Definition 2 Pointer-based signature filter is made of a bit

vector and a pointer array. On the basis of range-based

signature filter, a pointer is added to every bit of “1” in

the filter pointing to the elements who set the bit “1”. If

more than one element sets the bit “1” repeatedly, the cor-

responding pointer of the bit points to the element with the

minimalStartPoscode.

Figure 6 shows the construction of pointer-based signa-

ture filter :a1 sets the2nd and the3rd bits ofA-Filter to “1”

and the pointers of the two bits point toa1; a2 sets the6th,

the7th and the8th bits of A-Filter to “1” and the pointers

of the three bits point toa2; a3 sets the8th bit of A-Filter

to “1” but the pointer of the bit points toa2 nota3, because

theStartPosof a2 is less than that ofa3; a4 sets the11th bit

of A-Filter to “1” and the pointer of it points toa4.
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Figure 6. Pointer-based signature filter

Similarly, the2nd, 4th, 5th, 8th, 10th and11th bits of

D-Filter are “1” and the corresponding pointers point tod1,

d2, d3, d4, d5, d5. Among them,d2 andd3 set the4th bit of

D-Filter with “1” but the pointer of the4th bit points tod2

because theStartPosof d2 less than that ofd3.

Different from comparing the signature filter with ele-

ment signatures in range-based filtering principle, pointer-

based signature filtering principle compares two signature

filters. If the ith bit of A-Filter and that ofD-Filter are all

“1” (A-Filter[i] ∧ D-Filter[i]= 1), there are probably join

results produced by the elements pointed by the correspond-

ing pointers of them. And the structural join algorithm be-

gins from the elements pointed by the two pointers till all

the elements who set theith bits of A-Filter andD-Filter

have been scanned. If theith bits of A-Filter andD-Filter

are not all “1”(A-Filter[i] ∧ D-Filter[i] 6= 1), the join algo-

rithm moves to the next bits ofA-Filter andD-Filter.

Now we describe the filtering process of pointer-based

signature filter (see Figure 6). The1st bits of A-Filter and

D-Filter are all “0”, it moves to the next bits; the2nd bits

are all “1”, it performs structural join of{a1} and {d1};
scanning through the3rd ∼ 7th bits, it performs structural

joins of {a2, a3} and{d4} since the8th bits are all “1”;

similarly, it performs structural join of{a4} and{d5} scan-

ning through the9th ∼ 10th bits.

4.2 Structural Join with Pointer-based Signature
Filter

Structural join algorithm with range-based signature fil-

ter in Section 3.2 operates when getting anAncestoror a

Descendantelement every time. While structural join algo-

rithm with pointer-based signature filter operates by check-

ing if theDescendantelements “offside” after it outputs the

results every time.

Definition 3 SupposingStartPosof di belongs to the inter-

val that is represented by thejth bit in the signature, if

StartPosof the next elementdi+1 outruns the range, we call

di+1 is offside.

Since the algorithm outputs the results in the order of in-

put descendant elements, we can promise integrity of the

join results by checking if there is any offside of descen-

dant elements (not ancestor elements). In structural join al-

gorithm, we useFlag to identify whetherdi+1 is offside.

WhenFlag is “true”, the elements, which pass the signa-

ture filter, have finished the structural join operation. Before

going on with the structural joins, we turn to compare the

following bit pairs of two signature filters and then give the

passing elements to stack-tree join operation.
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Algorithm 4 gives the structural join algorithm with

pointer-based signature filter, which only provides the el-

ements that might produce join results to the algorithm. At

the beginning, the algorithm scans two signature filters and

sets theFlag “true”. In steps21 and22, if the next descen-

dant element (di+1) is offside, thenFlag is set “true”. Fil-

tering is performed whenFlag is “true”, as shown in steps

5 ∼ 12: it scans the signature filter untilA-Filter[i]∧ D-

Filter[i]= 1, then returns the element pointed by the pointer

corresponding to theith bit (A-Pointer[i] andD-Pointer[i]).

Algorithm 4 Structural Join Algorithm based on Pointer-

based Signature Filter
Input: ordered ancestor listA-List; ordered descendant listD-List;

Description:

1: CurrentA ← the first element ofA-List;

2: CurrentD ← the first element ofD-List;

3: Flag = true;

4: while (!A-List.end()&& !D-List.end()) do

5: if (Flag) then

6: {
7: while (A− Filter[i]∧D − Filter[i]! = 1) do

8: i = i + 1;

9: end while

10: CurrentA ← the element pointed by A-Pointer[i];

11: CurrentD ← the element pointed by D-Pointer[i];

12: Flag = false;}
13: else if ((CurrrentA.StartPos > stack[top].EndPos)

&& ( CurrentD.StartPos > stack[top].EndPos))

then

14: stack.pop();

15: else if (CurrentA.StartPos < CurrentD.StartPos)

then

16: {stack.push(CurrentA);

17: CurrentA ← A-List.next();}
18: else

19: {output all pairs (a ∈ stack,CurrentD);

20: CurrentD ← D-List.next();

21: if (CurrentD offside)then

22: Flag = true;}
23: end if

24: end if

25: end while

Structural join algorithm with pointer-based signature

filter efficiently reduces the unwanted accesses to the ele-

ments. However, the pointers occupy lots of memory space

if the number of bits with “1” is larger. So we first con-

juncts (logical AND) the two signature filters to reduce the

number of bits with “1” as possible. Then we compact the

pointer vector by discarding all bits of “0”.

Figure 7 gives the compacted one of the signature filter

described in Figure 6. In Figure 6, the2nd, 8th,10th bits

are all “1”,which means that there are probably join results

between the elements pointed by the corresponding point-

ers, so we only keep the pointers of them and delete others.

Then we only need to operate on the elements pointed by

these3 pairs of pointers. When compacting process has fin-

ished scanning the signature filters, the filtering process is

also finished.
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Figure 7. Compacting Pointer-based signa-

ture filter

The structural join algorithm with compacted signature

filter is similar to Algorithm 4. The only difference is that

the filtering operation has to be performed before structural

join operation. The details are left and not discussed here.

5 Performance Evaluation

In this section, we present the performance evaluation

of various structural join algorithms with different lengths

of signatures, different queries and different sizes of doc-

uments on the same platform. We consider the following

algorithms: stack-tree algorithm(STJ), structural join algo-

rithm with range-based signature filter(S-Filter), structural

7



join algorithm with pointer-based signature filter(PS-Filter)

and structural join algorithm with compacted pointer-based

signature filter(CPS-Filter).

All experiments are run on a PC with2.6GHz CPU,

512M memory and80G hard disk. The operating system is

WindowsXP. And we use Berkeley DB [15] to store XML

index, programming with Microsoft Visual C++ 6.0.

We adopt DBLP [16] data set with five sizes (20M, 40M,

60M, 80M and 100M). Firstly we parse these documents

and represent every position of element in code. Then we

parse the documents again to get the candidate element set

for each element. We generate signatures with different

sizes (128 bits, 256 bits, 512 bits, 1024 bits, 2048 bits) for

each element set. At last we design four query expressions,

Q1 (inproceedings//cite),Q2(article//url), Q3(article//ee)

andQ4(inproceedings//number), to examine the impact of

different document sizes and different signature lengths on

performance. The features of these queries are described as

follows: only a few ancestor elements ofQ1 can produce

join results while the majority of the descendant elements

can produce join results; only a few descendant elements of

Q2 can produce join results while the majority of the an-

cestor elements can produce join results;Q3 represents the

usual cases, whose join results are output from moderate

numbers of both ancestor and descendant elements;Q4 is

a particular case that only a few elements of ancestor and

descendant can produce join results.

5.1 Performance vs Different Queries

Figure 8 shows the execution time of the four queries. In

this experiment we adopt 100M DBLP data set and 1024-

bit signature. We can see fromQ1 and Q2 that S-Filter

greatly enhances the performance when filtering ancestor

elements because it reduces the stack operation in STJ algo-

rithm; while it does not as good when filtering descendant

elements because they need signature generating instead of

stack operation. Therefore the performance ofS-Filter is

affected by the character of query.PS-Filter shows good

performance andCPS-Filterperforms a bit better thanPS-

Filter. And characters of queries have no influence on these

two methods. ForQ3 andQ4, the algorithms with filter can

improve the performance in common cases, and in some ex-

treme cases with only a few elements producing join results,

the algorithm with filter shows great superiority.
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Figure 8. Elapsed Time for Q1 to Q4

5.2 Filtered-out Rate and False Pass Rate

The filtering performance of signature filter can be eval-

uated by filtered-out rate and false pass rate (see Definition

1 in Section2.3). Figure 9 shows the filtered-out rates and

false pass rates ofQ3 with different signature lengths on

100M test document. We can see that the filtered-out rates

of S-FilterandPS-Filterbecome higher when the signature

lengths become longer while the false pass rates decrease,

because the longer the length of signature, the more precise

the range of element set presented by signature filter (the

range represented by each bit is more narrow).

With different signature lengths, the filtered-out rate of

PS-Filter is higher than that ofS-Filter while the false pass

rate is lower than that ofS-Filter, so the performance ofPS-

Filter is better than that ofS-Filter. Since we use 100M

document, the code range is very large and the precision of

the signature filter is not good. So the false pass rate is a

little bit higher. However, with a smaller document, we can

get a lower false pass rate. What is more, false pass rate can

be deceased by increasing the signature length. But we did

not use longer signature filter for the sake of saving space.

5.3 Performance vs Different Signature Length

Figure 10 illustrates different elapsed time of4 queries

with different signature filter lengths. ForQ1,Q3 andQ4,

the filtering capability of signature filter improves with the

increase of signature length. There are more filtered-out

elements while the false passing elements become less. So
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Figure 9. Filtered-out rate and false pass rate

with different signature filter lengths

the elements that take part in join operation are reduced and

the elapsed time are shortened. ForQ2, few elements can be

filtered out. So the filtering capability cannot be improved

by increasing the length of filter.

5.4 Performance vs Different Document Size

Figure 11 illustrates different elapsed time of4 queries

with different document sizes. The time complexity of STJ

algorithm isO(n), in whichn is the number of elements in

input list. With the document size growing, we can see that

the elapsed time of STJ algorithm shows linear increase pro-

portionately. SinceS-Filter, PS-Filter andCPS-Filterare

based on STJ algorithm, the elapsed time also increases lin-

early. While the three filtering algorithms reduce the num-

ber of input elements, thus cut the curve slope of STJ algo-

rithm. And the filtered-out rates ofPS-FilterandCPS-Filter

are much higher because their curve slopes are the lowest.

The experiment results show thatS-Filter,PS-Filterand

CPS-Filter enhance the performance of structural join al-

gorithm effectively. S-Filter algorithm needs to scan the

input list once and cost some time on computing the signa-

ture of the filtered elements.PS-Filteralgorithm reduces the

accesses to unwanted elements and performs better.CPS-

Filter has better performance thanPS-Filter.

6 Conclusions

In this paper, we propose three signature-based algo-

rithms for XML structural joins. Range-based signature fil-

ter accelerates the joins by reducing push and pop opera-

tions of unwanted elements. What is needed is only a small

memory to store signature filter. Pointer-based signature fil-

ter adds an array of pointers, with which it can skip un-

wanted elements and locate the potential elements directly.

With a little extra memory, we achieve much greater join

efficiency. The optimized one further curtails memory cost

and expedites it a little.
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