3 THERMAL ANALYSIS

3.1 Introduction

UDEC allows simulation of transient heat conduction in materials, and the development of thermally induced displacements and stresses. This includes the following specific features.

1. Heat transfer is modeled as conduction – either isotropic or anisotropic, depending on the user’s choice of material properties.
2. Several different thermal boundary conditions may be imposed.
3. Any of the mechanical block models may be used with the thermal model.
4. Heat sources may be inserted into the material as volume sources. The sources may be made to decay exponentially with time.
5. Both implicit and explicit calculations schemes are available, and the user can switch from one to the other at any time during a run.
6. The thermal analysis provides one-way coupling to the mechanical stress calculation through the thermal expansion coefficient.
7. The thermal analysis provides one-way coupling to the calculation for fluid flow in joints through the temperature dependency of fluid density and joint permeability.

This section contains a description of the thermal formulation (Section 3.2). Recommendations for solving thermal and thermal-mechanical problems are also provided (Section 3.3). The *UDEC* input commands for thermal analysis (Section 3.4), and the system of units for thermal analysis (Section 3.5) are given. Finally, several verification problems (Section 3.6) are described. Refer to these examples as a guide for creating *UDEC* models for thermal analysis and coupled thermal-stress analysis. See Section 2 for a description of coupled thermal-fluid flow analysis.

* The data files in this section are stored in the directory “ITASCA\UDEC500\Datafiles\Thermal” with the extension “.DAT.” A project file is also provided for each example. In order to run an example and compare the results to plots in this section, open a project file in the *GIIC* by clicking on the *File/Open Project* menu item and selecting the project file name (with extension “.PRJ”). Click on the *Project Options* icon at the top of the *Project Tree Record*, select *Rebuild unsaved states*, and the example data file will be run, and plots created.
3.2 Formulation

3.2.1 Basic Equations

The basic equation of conductive heat transfer is Fourier’s law, which can be written in one dimension as

\[Q_i = -k_{ij} \frac{\partial T}{\partial x_j} \] \hspace{1cm} (3.1)

where \(Q_i \) = flux in the \(i \)-direction (W/m²); \(k_{ij} \) = thermal conductivity tensor (W/m°C); and \(T \) = temperature.

Also, for any mass, the change in temperature can be written as

\[\frac{\partial T}{\partial t} = \frac{Q_{\text{net}}}{C_p M} \] \hspace{1cm} (3.2)

where \(Q_{\text{net}} \) = net heat flow into mass (M); \(C_p \) = specific heat (J/kg°C); and \(M \) = mass (kg).

These two equations are the basis of the thermal version of UDEC.

For two-dimensional heat transfer, Eq. (3.2) can be written as

\[\frac{\partial T}{\partial t} = \frac{1}{C_p \rho} \left[\frac{\partial Q_x}{\partial x} + \frac{\partial Q_y}{\partial y} \right] \] \hspace{1cm} (3.3)

where \(\rho \) is the mass density.

Combining this with Eq. (3.1),

\[\frac{\partial T}{\partial t} = \frac{1}{C_p \rho} \frac{\partial}{\partial x} \left[k_x \frac{\partial T}{\partial x} \right] + \frac{\partial}{\partial y} \left[k_y \frac{\partial T}{\partial y} \right] \] \hspace{1cm} (3.4)

\[= \frac{1}{\rho C_p} \left[k_x \frac{\partial^2 T}{\partial x^2} + k_y \frac{\partial^2 T}{\partial y^2} \right] \]
if k_x and k_y are constant. This is called the diffusion equation.

Temperature changes cause stress changes according to the equation

$$\Delta \sigma_{ij} = -\delta_{ij} 3K^* \alpha \Delta T$$ \hspace{1cm} (3.5)

where $\Delta \sigma_{ij} = \text{change in stress } ij$;

$\delta_{ij} = \text{Kronecker delta } (\delta_{ij} = 1 \text{ for } i = j \text{ and } 0 \text{ for } i \neq j)$;

$K^* = K$ (for plane strain);

$= 6K G/(3K + 4G)$ for plane stress, where K is bulk modulus and G is shear modulus;

$\alpha = \text{linear thermal expansion coefficient}$; and

$\Delta T = \text{temperature change}$.

The mechanical changes can also cause temperature changes as energy is dissipated in the system. This effect is neglected because it is usually negligible.

3.2.2 Diffusion Equation – Explicit Algorithm

UDEC discretizes fully deformable blocks into triangular zones which are also used for the thermal analysis.

At each timestep, **Eqs. (3.1) and (3.2) are solved numerically, using the following scheme.**

1. In each triangle, $(\partial T/\partial x \text{ and } \partial T/\partial y)$ are approximated using the equation

$$\frac{\partial T}{\partial x_i} = \frac{1}{A} \int T n_i \, ds$$ \hspace{1cm} (3.6)

$$\approx \frac{1}{A} \sum_{m=1}^{3} \bar{T}^m \epsilon_{ij} \Delta x^m_j$$

where

$A = \text{area of the triangle}$;

$n_i = \text{i}^{th} \text{ component of outward normal}$;

$\bar{T}^m = \text{average temperature on side } m$;

$\Delta x^m_j = \text{difference in } x_j \text{ between ends of side } m$; and

$\epsilon_{ij} = \text{two-dimensional permutation tensor}$.

$$\epsilon_{ij} = \begin{pmatrix} 0 & 1 \\ -1 & 0 \end{pmatrix}$$
The heat flow into each gridpoint of the triangle is calculated from

\[F_i = A_j Q_i \] (3.7)

where \(A_j \) is the width of the line perpendicular to the component \(Q_i \), as shown in Figure 3.1.

\[F_{\text{total}} = F_x + F_y \]
\[= A_y Q_x + A_x Q_y \] (3.8)

Figure 3.1 Heat flow into gridpoint \(k \)

2. For each gridpoint,

\[\Delta T = \frac{Q_{\text{net}}}{C_p M} \Delta t \] (3.9)

where \(Q_{\text{net}} \) is the sum of \(F_{\text{totals}} \) from all zones affecting gridpoint \(i \).

3.2.3 Stability and Accuracy of the Explicit Scheme

For the explicit scheme, \(\Delta t \) is limited by numerical stability considerations. The critical timestep for stability, assuming \(\Delta x = \) the smallest zone dimension in the model (see, for example, Karlekar and Desmond 1982), is

\[\Delta t \leq \frac{(\Delta x)^2}{4\kappa \left[1 + \frac{h\Delta x}{2k} \right]} \] (3.10)

where \(h = \) the convective heat transfer coefficient; and
\(\kappa = \) the thermal diffusivity \((k/\rho C_p \text{ for } k_x = k_y = k) \).
The accuracy of the explicit solution scheme is determined by the introduction of errors from several sources. A strict definition of error in the explicit formulation is not obtained, simply because error arises from the finite difference approximations used; the error also is affected by the zone discretization and timestep. The explicit solution introduces a mixed order of error in the diffusion equation. This is because a forward difference formulation is used in time, which is first-order accurate, and a central difference formulation is used in spatial coordinates, which is second-order accurate.

3.2.4 Diffusion Equation – Implicit Thermal Logic

The implicit thermal logic in *UDEC* uses the Crank-Nicholson method, and the set of equations is solved by an iterative scheme known as the Jacobi method. An implicit method is advantageous for solving linear problems, such as heat conduction with constant conductivity, because it allows the use of much larger timesteps than those permitted by an explicit method, particularly at later times in a problem, when temperatures are changing slowly.

The usual one-dimensional, explicit finite-difference scheme for heat conduction can be written as

\[
\frac{\rho C_p}{k} \frac{T_i(t + \Delta t) - T_i(t)}{\Delta t} = \frac{T_{i+1}(t) - 2T_i(t) + T_{i-1}(t)}{(\Delta x)^2}
\]

(3.11)

An implicit method can be derived by replacing the right-hand side of Eq. (3.11) with the expression

\[
\frac{1}{2} \left[\frac{T_{i+1}(t + \Delta t) - 2T_i(t + \Delta t) + T_{i-1}(t + \Delta t)}{(\Delta x)^2} + \frac{T_{i-1}(t) - 2T_i(t) + T_{i-1}(t)}{(\Delta x)^2} \right]
\]

This method, known as the Crank-Nicholson method, has the advantage that it is stable for all values of Δt, but it has the disadvantage of being implicit. This means that the temperature change at any point depends on the temperature change at other points. This can be seen by rewriting the implicit scheme as

\[
\frac{\rho C_p}{k} \Delta T_i = \left[\frac{T_{i+1} + \frac{1}{2} \Delta T_{i+1} - 2(T_i + \frac{1}{2} \Delta T_i) + T_{i-1} + \frac{1}{2} \Delta T_{i-1}}{(\Delta x)^2} \right]
\]

(3.12)

since $T_k(t + \Delta t) = T_k(t) + \Delta T_k$.

The implicit method requires that a set of equations be solved at each timestep for the values of ΔT_i.

In matrix notation, the *explicit* method can be written as

\[
\Delta \tilde{T} = C \tilde{T} \]

(3.13)
where \(C \) is a coefficient matrix;
\(\bar{T} \) is a vector of the temperatures; and
\(\Delta \bar{T} \) is a vector of the temperature change.

The implicit scheme can be written as

\[
\Delta \bar{T} = C \left(\bar{T} + \frac{1}{2} \Delta \bar{T} \right)
\]

which can be rewritten as

\[
\left(I - \frac{1}{2} C \right) \Delta \bar{T} = C \bar{T}
\]

where we need to solve for \(\Delta \bar{T} \) at each timestep.

The matrix

\[
(I - \frac{1}{2} C)
\]

is diagonally dominant and sparse, because only neighboring points contribute nonzero values to \(C \).

Thus, this set of equations is efficiently solved by an iterative scheme. For ease of implementation as a simple extension of the explicit method, the Jacobi method is used. For the \(N \times N \) system \(Ax = b \), this can be written for the \(n^{th} \) iteration as

\[
x_i(n+1) = \frac{b_i}{a_{ii}} - \sum_{j=1, j \neq i}^{N} \left(\frac{a_{ij}}{a_{ii}} x_j(n) \right) \quad i = 1, 2, \ldots N
\]

That is,

\[
x_i(n+1) = \frac{1}{a_{ii}} \left[b_i - \sum_{j=1}^{N} a_{ij} x_j(n) \right] + x_i(n)
\]
In our case, this becomes

\[\Delta T_i(n + 1) = \frac{1}{1 - \frac{1}{2} C_{ii}} \left[\sum_{j=1}^{N} C_{ij} T_j - \sum_{j=1}^{N} (\delta_{ij} - \frac{1}{2} C_{ij}) \Delta T_j(n) \right] + \Delta T_i(n) \]

\[\Delta T_i(n) = \frac{1}{1 - \frac{1}{2} C_{ii}} \left[\sum_{j=1}^{N} C_{ij} T_j + \frac{1}{2} \sum_{j=1}^{N} C_{ij} \Delta T_j(n) - \Delta T_i(n) \right] + \Delta T_i(n) \]

(3.17)

This equation shows the analogy between the implicit scheme and the explicit scheme, which can be written as

\[\Delta T_i = \sum_{j=1}^{N} C_{ij} T_j \]

(3.18)

The amount of calculation required for each timestep is approximately \(n + 1 \) times that required for one timestep in the explicit scheme, where \(n \) is the number of iterations per timestep. This extra calculation can be more than offset by the much larger timestep permitted by the implicit method, which makes the implicit scheme advantageous when the temperature change is linear in time.

3.2.5 Stability and Accuracy of the Implicit Scheme

As described previously, the implicit solution scheme has the advantage that it is unconditionally stable for all timesteps. However, the differencing scheme presented in Eq. (3.11) assumes that the temperature change is a linear function of time in a single timestep. Depending on the problem to be modeled, this assumption may lead to inaccurate results if temperature gradients are very high or are changing very rapidly (e.g., at early times in a simulation).

The code uses a Jacobi iteration method to solve the system of equations at every timestep. From a strictly numerical perspective, convergence of the iteration is achieved if

\[|a_{ii}| > \sum_{\substack{j=1 \atop j \neq i}}^{N} |a_{ij}| \quad i = 1, 2, ..., N \]

(3.19)

where \(a_{ij} \) are the previously described coefficients of the solution matrix \(A \).
The above condition simply means that it is possible to obtain a numerical solution to the system of equations but that the solution has no bearing on the accuracy with which the derived solution compares to the true solution.

There is no explicit method for determination of convergence to the true solution as a function of timestep, since the convergence depends on many factors (including properties, grid dimensions and grading, and boundary conditions). In most cases, the critical timestep (from Eq. (3.10)) provides a lower-bound estimate for the implicit timestep. A trial-and-error procedure is required to set the timestep above this value. Typically, a thermal problem is set up and initialized using the explicit procedure.

3.2.6 Thermal-Stress Coupling

The heat transfer may be coupled to thermal-stress calculations at any time during a transient simulation. The coupling occurs in one direction only (i.e., the temperature may result in stress changes, but mechanical changes in the body resulting from force application do not result in temperature change). This restriction is not believed to be of great significance here, since the energy changes for quasi-static mechanical problems is usually negligible. The stress change in a triangular zone is given by (from Eq. (3.5))

\[
\Delta \sigma_{ij} = -\delta_{ij} 3K \alpha \Delta T
\]

(3.20)

This assumes a constant temperature in each triangular zone, which is interpolated from the surrounding gridpoints. This stress is added to the zone stress state prior to application of the constitutive law.
3.3 Solving Thermal-Only and Coupled-Thermal Problems

UDEC has the ability to perform thermal analysis and coupled thermal-mechanical and thermal-fluid flow analysis. The form of the coupled thermal-mechanical interaction is described in Section 3.3.2. The coupling of thermal analysis with fluid flow in joints is described in Section 2.2.8. In all cases, the **CONFIG** command must be given with the **thermal** keyword before the **BLOCK** command is specified.

The procedure and required commands to implement the thermal-only and thermal-mechanical analysis approach is described in the following sections. The application of the thermal analytic capability is illustrated by several verification problems in Section 3.6.

3.3.1 Thermal Analysis

UDEC can perform both transient and steady-state thermal analysis. The thermal calculation is performed with the **RUN** command. In order to perform a thermal-only analysis, the linking to the mechanical calculation must be suppressed with the command **SET nther=0**. This is the default state.

Both explicit and implicit solution methods are available for thermal analysis. By default, an explicit solution procedure is invoked with the **RUN** command. The thermal timestep is calculated from Eq. (3.10). A number of thermal steps can be specified with the **RUN step** command. Alternatively, a heating time limit, in seconds, can be specified with the **RUN age** command. The change in temperature during one thermal timestep is limited to 20°, by default. The thermal calculation will stop if this limit is exceeded. The limit can be changed with the **temperature** keyword following the **RUN** command, or the temperature change can be reduced by reducing the thermal timestep with the **RUN delt** or **SET thdt** command. The thermal timestep is printed to the screen when **RUN** is given. The timestep can also be obtained with the **PRINT info** command.

The implicit solution algorithm described in Section 3.2.4 is implemented with the keyword **implicit** following the **RUN** command. The thermal timestep can then be adjusted with the keyword **delt** following the **RUN** command, or with the **SET thdt** command. It is permissible to change between implicit and explicit solution methods at any time during a run, using the **RUN** and **RUN implicit** commands. The explicit scheme is always used unless the keyword **implicit** is given.

The advantage of an implicit method is that the timestep **thdt** is not restricted by numerical stability. There are three disadvantages:

1. extra memory is required to use this method;
2. a set of simultaneous equations must be solved at each timestep; and
3. larger timesteps may introduce inaccuracy.

These disadvantages must be kept in mind when deciding which method to use. They are discussed below.
Memory Requirement – If an attempt is made to use the implicit method for a problem when the UDEC memory is almost full (typically, when the PRINT mem command reports at least 95% full), an error message may be generated. The only way to avoid this is to run a smaller problem or use the explicit method.

Solving a Set of Equations – The set of equations to be solved at each timestep is solved iteratively. Each iteration of the solution takes about the same length of time as a single step of the explicit method. The number of iterations depends on the timestep chosen and the particular problem being solved, but is always at least 3. Thus, the implicit scheme only offers an advantage over the explicit scheme if the timestep is much larger than that which the explicit scheme would use. On the other hand, the iterative scheme does introduce some restriction on the timestep. In general, a timestep between 100 and 10,000 times that used by the explicit scheme is satisfactory.

The program displays the iteration counter and a measure of convergence (the residual) to the left of the timestep counter while the implicit scheme is running. The user should check that the number of iterations being taken is such that the implicit scheme is indeed more efficient than the explicit scheme. If not, switch to the explicit scheme or change the timestep. This counter will also indicate whether the method is not converging. If the residual is increasing with successive iterations, the method is not converging, and a smaller timestep must be used.

Inaccuracy due to Large Timesteps – In the initial period of a solution, temperatures generally change much faster than later in the solution period. In addition, the implicit scheme uses more iterations when modeling rapid changes. It is appropriate, therefore, to use a smaller timestep or the explicit method, initially, and to then switch to the implicit method with a large timestep later in the solution period. Convergence of the solution generally occurs in fewer iterations at later timesteps.

Selecting the Implicit Method – From the preceding discussion, it can be seen that the implicit method is most efficient when used at late times in the solution, and only if the timestep can be increased significantly over the one used by the explicit scheme.

3.3.2 Thermal-Mechanical Analysis

The thermal calculation can be combined with the mechanical calculation to perform a thermal-mechanical analysis with UDEC. All the features of the thermal calculation (including transient and steady-state heat transfer, and thermal solution by either the explicit or implicit algorithm) are available in a thermal-mechanical calculation.

The thermal-mechanical coupling is provided by the influence of temperature change on the volumetric change of a zone (see Eq. (3.20)). The linear thermal expansion coefficient is assigned via the keyword thexp given with the PROPERTY command.

The thermal model applies to all zones in the UDEC model. If zones are made null mechanically, the thermal model automatically is made null as well.

The thermal-mechanical coupling can be invoked for any of the built-in mechanical constitutive models for plane-strain analysis. Plane-stress analysis can only be performed with the elastic isotropic and strain-hardening/softening models.
The most common way to use UDEC to solve thermomechanical problems is to come to initial mechanical equilibrium and then take thermal steps to a time of interest. Remember that transient thermal problems involve time (e.g., the solution may be required after 10 years of heating). At this point, the mechanical problem has not been solved, although temperatures have been calculated. Mechanical steps are then taken until equilibrium is reached. This process is illustrated in Figure 3.2:

<table>
<thead>
<tr>
<th></th>
<th>SETUP</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>- configuration for thermal analysis (CONFIG thermal)</td>
</tr>
<tr>
<td></td>
<td>- define problem geometry</td>
</tr>
<tr>
<td></td>
<td>- define material models and properties</td>
</tr>
<tr>
<td></td>
<td>- define thermal models and properties</td>
</tr>
<tr>
<td></td>
<td>- set boundary conditions (thermal & mechanical)</td>
</tr>
<tr>
<td></td>
<td>- set initial conditions (thermal & mechanical)</td>
</tr>
<tr>
<td></td>
<td>- set any internal conditions, such as heat sources</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>STEP TO EQUILIBRATE MECHANICALLY (STEP or SOLVE).</td>
</tr>
<tr>
<td>3</td>
<td>PERFORM ANY DESIRED ALTERATIONS such as excavations.</td>
</tr>
<tr>
<td>4</td>
<td>STEP TO EQUILIBRATE MECHANICALLY.</td>
</tr>
<tr>
<td></td>
<td>REPEAT steps 3 and 4 until "initial" mechanical state is reached for thermal analysis.</td>
</tr>
<tr>
<td>5</td>
<td>TAKE THERMAL TIMESTEPS until desired time is reached (RUN).</td>
</tr>
<tr>
<td>6</td>
<td>STEP TO EQUILIBRATE MECHANICALLY (STEP or SOLVE).</td>
</tr>
<tr>
<td></td>
<td>REPEAT steps 5 and 6 until sufficient time has been simulated.</td>
</tr>
<tr>
<td></td>
<td>REPEAT steps 3 to 6 as necessary.</td>
</tr>
</tbody>
</table>

Figure 3.2 General solution procedure for thermal-mechanical analysis

UDEC can be used in the usual way to model the excavation of material, change material properties and change boundary conditions. The mechanical logic (the standard UDEC program) is also used in the thermomechanical program to take “snapshots” of the mechanical state at appropriate intervals in the development of the transient thermal stresses.

The SOLVE, STEP or CYCLE command is used to control the mechanical steps. The RUN command controls the thermal process. For a problem in which the number of thermal steps is small before mechanical stepping is needed, analyses require a sequence of many RUN and STEP commands, which can be cumbersome to create and run. Therefore, it is possible to use the RUN command to switch automatically to mechanical steps during a series of thermal steps, using the SET nther and SET nmech commands. SET nther specifies the increment of thermal steps at which mechanical steps are to be taken. If nther is not zero, the calculation will switch to mechanical stepping every
nther steps, or when the temperature change parameter (set with \texttt{RUN temp}) is exceeded. \texttt{SET nmech} specifies the maximum number of mechanical steps executed between thermal steps. The mechanical calculation sub-stepping will stop when either the maximum number of mechanical steps is reached or the maximum unbalanced force ratio becomes smaller than 10^{-5}. The default is $nmech=500$.

A difficulty with thermal-mechanical analysis is that a large temperature increase may cause a large increase in unbalanced forces in the blocks. If the analysis being performed is linear-elastic, no temperature increase will be too great, and \textit{UDEC} need only equilibrate when the simulation time is such that a solution is required. For nonlinear problems, it is necessary to experiment to obtain an acceptable temperature increase effect on unbalanced forces. This can be done with the following steps.

1. Save the mechanical equilibrium state reached by \textit{UDEC}. This state may be restored later for additional analyses.
2. Plot the stresses and shear displacements. If the stresses are near yield, the thermal stresses caused by the temperature changes should not be large. If the stresses are far from yield, larger stresses can be tolerated.
3. Run thermal steps until a particular temperature increase is reported by the program (using a \texttt{RUN temp} command).
4. Cycle mechanically to attain equilibrium.
5. Again, plot the stresses and shear displacements. If the area where the stresses are at or near yield is not much larger than at step 2, and the shear displacements are not very different, the allowed temperature increase was acceptable. If the changes are judged to be too great, the run must be repeated with a smaller allowed temperature change.

It is important to note that the same temperature increase is not necessarily acceptable for all times in a problem. While the system is far from yield, large temperature increases will be acceptable; near yield, only relatively small increases can be tolerated.

3.3.3 Heat Transfer across Joints

Heat transfers across the joints between blocks without resistance, provided that the blocks are in contact. Contacts are created along block edges for deformable blocks when the blocks are divided into triangular zones for mechanical calculations. For thermal calculations, the same zoning is used, with the exception that the triangles are further subdivided where the block is in contact with a corner on another block (Figure 3.3).

Rigid blocks are divided into triangles using the centroid as a common vertex of all the triangles, with the other vertices at the corner and at the contact with corners on other blocks (Figure 3.4).
If the schemes outlined above are used without modification, it would be possible for very narrow triangles (such as those shown in Figure 3.5) to be formed.

This causes inaccuracy, and may also lead to extremely small thermal timesteps. To avoid this, it is important to not have blocks with small zones neighboring blocks with large zones or large rigid blocks. The “thermal tolerance” option (keyword tolo) on the RUN command should also be used to force points such as A and B in Figure 3.5 to be treated as one for thermal calculations.

The tolerance may need to be reduced for models that contain small blocks or fine zoning. The value for tolo must be smaller than the smallest block or zone edge length if the gridpoints associated with the smallest edge are not to be combined for the thermal calculation. For this reason, the tolerance is reduced for the verification examples in Section 3.6.
3.3.4 Thermal Boundary Locations

When modeling an infinite region, it is necessary to truncate the UDEC grid far enough away from the region of interest that the boundaries do not affect the solution. To determine whether the boundaries are far enough away, follow these steps:

1. Let the boundary representing infinity be insulated (the default boundary condition).
2. Solve the problem.
3. Examine the temperature changes on the boundary.
4. If the temperature changes are small, it is safe to assume the boundary has a negligible effect. If the temperature changes are not small, the boundary is probably too close. To confirm this, or disprove it, rerun the problem with the boundary temperatures fixed at their initial values. If the results are significantly different, the boundary was too close.
3.4 Input Instructions for Thermal Analysis

3.4.1 UDEC Commands

The following commands are provided to run thermal problems. Note that several thermal commands are invoked by new keywords used with existing commands in the standard mechanical code. The command `CONFIG thermal` must be given before the `BLOCK` command whenever a thermal analysis is to be performed. A summary of the thermal commands is given in Table 3.1:

<table>
<thead>
<tr>
<th>Table 3.1 Summary of thermal commands</th>
</tr>
</thead>
<tbody>
<tr>
<td>set thermal mode</td>
</tr>
<tr>
<td>thermal properties</td>
</tr>
<tr>
<td>initialize temperatures</td>
</tr>
<tr>
<td>specify thermal boundary conditions</td>
</tr>
<tr>
<td>thermal-only solution</td>
</tr>
<tr>
<td>coupled thermal-mechanical solution</td>
</tr>
<tr>
<td>output options</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
</tbody>
</table>

`CONFIG thermal`

This command specifies extra memory to be assigned to each zone or gridpoint for a thermal analysis. `CONFIG` must be given before the `BLOCK` command.
thermal can be combined with other calculation modes described in Section 1 in the Command Reference.

FLUID dt

Fluid density is a function of temperature. Table number \(n \) is used to look up variations of fluid density as a function of temperature.

HISTORY

<keyword>

temperature \(x, y \)

history of the temperature at a gridpoint

thtime

history of real time for heat transfer problems

INIT

value \(xl \) \(xu \) \(yl \) \(yu \)

The temperature is set to \(\text{value} \) at all corners and gridpoints in the range \(xl \leq x \leq xu, \ yl \leq y \leq yu \). Thermal stresses are not induced by this method of setting the temperature.

PLOT

The following keywords have been added.

boundary \(\text{thermal} \)

plots thermal boundaries.

hist \(n1 < n2 \ldots > \)

temperature histories \(n1, n2 \ldots \) assigned by the HIST command

temperature temperature contours

tfix plots locations of gridpoints with fixed boundaries.

PRINT

keyword \(<\text{range} \ldots > \)

gridpoint \(\text{temp} \)

gridpoint temperature

The column headings are:

1. gridpoint address;
2. \(x \)-coordinate of gridpoint;
3. \(y \)-coordinate of gridpoint; and
4. temperature at gridpoint.

hist \(<n1 \ldots > \)

Histories \(n1, n2 \ldots \) are printed. If no history number is specified, then a list of all history locations is printed.
prop thermal

The properties relevant to the thermal model (and described under the PROPERTY command) are printed.

thermal Thermal boundary conditions and sources are printed.

PROPERTY material n keyword v <keyword v>

The following keywords have been added.

cond thermal conductivity
specheat specific heat
thexp linear thermal expansion coefficient
xcond thermal conductivity in x-direction
ycond thermal conductivity in y-direction

The actual properties used by the program are the thermal conductivities in the x- and y-directions. The cond keyword simply sets the conductivities in both directions equal to the set value.

For jcons = 2 or 5, joint permeability can be specified as a function of temperature by the following keyword.

ktable n

Table n (see the TABLE command) contains a list of pairs (e.g., permeability and temperature) defining the temperature dependency. The table applies to all joint permeabilities, regardless of joint material number. Note that for a “parallel-plate” joint, jperm = (1/12) μ, in which μ is the fluid dynamic viscosity.

RESET hist

All current histories are lost.

RUN <<keyword value>> . . .

This command executes thermal timesteps. Calculation is performed until some limiting condition is reached. The limiting condition may be the temperature increase at any point, the number of steps, or the simulated age. The limits are changed by the optional keywords listed below. Once a particular limit is specified, it is used for future RUN commands.
Special Features – Structures/Fluid Flow/Thermal/Dynamics

- \textbf{age} \quad t

 thermal “heating time” limit (in consistent units with input properties)

- \textbf{delt} \quad dt

 The thermal timestep, \(dt \), is calculated automatically by the program. This parameter allows the user to change the timestep. If the program determines that this value is too large when the explicit scheme is used, it will automatically reduce the timestep to a suitable value when it begins the analysis. The value determined by the program is usually one-half the critical value for numerical stability. If the program selects a value that causes instability, this option can be used to further reduce the timestep.

- \textbf{noage}

 turns off the previously requested test for exceeding age \(t \). The default for the age parameter is that the age is not tested until an age has been explicitly requested via an “\textbf{age} = \textbf{value}” following a \textbf{RUN} command.

- \textbf{step} \quad s

 thermal step limit (default = 100,000)

- \textbf{temp} \quad dtp

 maximum total temperature change, \(dtp \) since the previous mechanical cycles (default is \(dtp = 20 \))

Two other keywords are available:

- \textbf{implicit}

 uses the implicit scheme rather than the default explicit scheme.

- \textbf{tol} \quad tol

 Points in this tolerance are merged for thermal calculations (default = 0.1).

Old limits apply when set or restarted. When a \textbf{RUN} command has been completed, the program will indicate which parameter has caused it to terminate. To ensure that it stops for the correct one, the values of the others should be set very high.

The explicit scheme is always used unless the keyword \textbf{implicit} follows the \textbf{RUN} command.

- \textbf{SET} \quad \textbf{keyword} \quad \textbf{value}

 The following keywords have been added.

UDEC Version 5.0
nmec

maximum number of mechanical steps executed between thermal steps, when nther is nonzero (see below). The mechanical stepping will stop when either the maximum step number defined by nmec is reached or the maximum unbalanced force ratio becomes smaller than 10^{-5}. The default value = 500.

nther

number of thermal steps to do before switching to mechanical steps

NOTE: The default value of nther is zero, in which case no interlinking occurs. If nther is not zero, the program will switch to mechanical steps every nther steps or when the temperature change parameter (RUN temp = value) is violated. If the temperature change parameter is violated when nther = 0, thermal cycling stops, and further thermal or mechanical cycling is controlled by the user.

CAUTION: Geometry changes are ignored by the thermal model until a RUN command is given. This means that when the mechanical models are accessed automatically, the geometry changes are ignored on return to thermal steps. If large geometry changes occur, it is better to divide the run into several RUN commands instead of only one.

thdt

The thermal timestep is set to value.

NOTE: The program calculates the thermal timestep automatically. This keyword allows the user to choose a different timestep. For the explicit method, if the program determines that the chosen step is too large, it will automatically reduce it to a suitable value when thermal steps are taken. It will not revert to a user-selected value until another SET thdt command is issued. The program selects a value that is usually one-half the critical value for numerical stability. This command has the same effect as a RUN delt command.

TADD

ntab xc,yc ang1,ang2

ntab table number (between 1 and 10)

xc,yc coordinates of center of arc

ang1,ang2 beginning and ending angles of arc (between -180° and 180°)

Temperatures can be incremented in an angular region using this command. The temperatures are taken from table *ntab* (see the TABLE command). The angular region is centered at (*xc,yc*), and the arc is defined by the angles *ang1* and *ang2*. If a complete circular region is required, the angles should be given as -180° and 180°. The *x,y* pairs in table *ntab* represent pairs of radii and temperature increments. The radii represent the distance from (*xc,yc*), and the code interpolates between these *x*-values to add to the *y*-values in the table to the current temperatures. The thermal stresses are also applied, based on these temperature changes.
NOTE: The **TABLE** command must precede the **TADD** command.

TFIX

`value <range...>`

The temperatures at all corners and gridpoints are held fixed at `value` during the simulation. If `value` is not the current temperature, stresses are induced by the difference between `value` and the current temperature. An optional `range` can be given to limit the range of `TFIX`. (See Section 1.1.3 in the **Command Reference**.)

NOTE: By default, all temperatures are free to change initially.

TFREE

`<range...>`

The temperatures at all corners and gridpoints are allowed to change during the simulation. An optional `range` can be specified to limit the range of `TFREE`. (See Section 1.1.3 in the **Command Reference**.)

NOTE: By default, all temperatures are free to change initially.

THAPP

`keyword = value1, value2 <range...>`

The **THAPP** command applies a thermal boundary condition to external boundaries and thermal sources to internal regions. An optional `range` can be specified to limit the range of **THAPP**. (See Section 1.1.3 in the **Command Reference**.)

The following keywords are available.

- **convection**

 `value1` is the convective heat transfer coefficient (w/m² °C).

 `value2` is the temperature of the medium to which convection occurs.

 A convective boundary condition is applied between corners within the range.

- **flux**

 `value1` is the initial flux (watts/m²).

 `value2` is the decay constant (s⁻¹).

 A flux boundary condition is applied between corners within the range. If a flux is applied between two blocks, the specified flux will be applied to both blocks.

- **radiation**

 `value1` is the radiative heat transfer coefficient. (For black bodies, this is the Stefan-Boltzmann constant, 5.668 × 10⁻⁸ w/m² K⁴.)

 `value2` is the temperature of the medium to which radiation occurs.

 A radiation boundary condition is applied between corners within the range.
Source

value1 is the initial strength.

value2 is the decay constant \((s - 1) \).

The **source** keyword results in a volume source of the stated strength in all blocks that have centroids in the specified range. The user is responsible for determining the strength of the source for different size blocks. The initial strength to be given for each block is the intended power/volume ratio multiplied by the area of the block. The correct units for **source** are Watts/m, \((\text{cal/s})/\text{cm}\) or the British equivalents.

The decay constant in the **source** and **flux** options is defined by the equation

\[
S_{\text{curr}} = S_{\text{ini}} \times \exp[c_d (t_{\text{curr}} - t_{\text{ini}})]
\]

where

- \(S_{\text{curr}} \) = current strength;
- \(S_{\text{ini}} \) = initial strength;
- \(c_d \) = decay constant;
- \(t_{\text{curr}} \) = current time; and
- \(t_{\text{ini}} \) = initial time (when **THAPP** is invoked).

To remove a **convection** or **radiation** boundary condition, the same condition should be applied with the heat transfer coefficient of opposite sign.

CAUTION: It is not physically realistic to use negative heat transfer coefficients in any other circumstances.

To remove a **flux** or **source** condition, the condition should be applied with the strength replaced by \(S_{\text{rep}} \), where

\[
S_{\text{rep}} = - S_{\text{ini}} \times \exp[c_d (t_{\text{curr}} - t_{\text{ini}})]
\]

Note that unless otherwise specified by the **THAPP** command, all boundaries are adiabatic (i.e., insulated).
3.4.2 **FISH Variables**

The following scalar variables are available in a *FISH* function to assist with thermal analysis.

- **thdt**: timestep for the thermal calculation (as set by the `SET thdt` command)
- **thtime**: thermal time

The *UDEC* grid variable, temperature, can be accessed and modified by using the *FISH* function `fmem` to access the gridpoint temperature. The temperature is found from

```
fmem(gp + $KGTEMP)
```

where `gp` is the gridpoint index, and `$KGTEMP` is the symbolic name for the gridpoint temperature address. See Section 4 in the *FISH volume* and the data files in Section 3.6.

Also, thermal property values may be accessed (changed, as well as tested) in a *FISH* function. See the `PROPERTY` command in Section 3.4.1 for a list of the thermal properties.
3.5 Systems of Units for Thermal Analysis

All thermal quantities must be given in an equivalent set of units. No conversions are performed by the program. Tables 3.2 and 3.3 present examples of consistent sets of units for thermal parameters.

Table 3.2 System of SI units for thermal problems

<table>
<thead>
<tr>
<th>Length</th>
<th>m</th>
<th>m</th>
<th>m</th>
<th>cm</th>
</tr>
</thead>
<tbody>
<tr>
<td>Density</td>
<td>kg/m³</td>
<td>10³ kg/m³</td>
<td>10⁶ kg/m³</td>
<td>10⁶ g/cm³</td>
</tr>
<tr>
<td>Stress</td>
<td>Pa</td>
<td>kPa</td>
<td>MPa</td>
<td>bar</td>
</tr>
<tr>
<td>Temperature</td>
<td>K</td>
<td>K</td>
<td>K</td>
<td>K</td>
</tr>
<tr>
<td>Time</td>
<td>s</td>
<td>s</td>
<td>s</td>
<td>s</td>
</tr>
<tr>
<td>Specific Heat</td>
<td>J/(kg K)</td>
<td>10⁻³ J/(kg K)</td>
<td>10⁻⁶ J/(kg K)</td>
<td>10⁻⁶ cal/(g K)</td>
</tr>
<tr>
<td>Thermal Conductivity</td>
<td>W/(mK)</td>
<td>W/(m² K)</td>
<td>W/(m² K)</td>
<td>(cal/s)/cm² K⁴</td>
</tr>
<tr>
<td>Convective Heat Transfer</td>
<td>W/(m² K)</td>
<td>(W/m² K)</td>
<td>W/(m² K)</td>
<td>(cal/s)/(cm² K)</td>
</tr>
<tr>
<td>Coefficient</td>
<td>Radiative Heat Transfer</td>
<td>W/(m² K⁴)</td>
<td>W/(m² K⁴)</td>
<td>W/(m² K⁴)</td>
</tr>
</tbody>
</table>

Table 3.3 System of Imperial units for thermal problems

<table>
<thead>
<tr>
<th>Length</th>
<th>ft</th>
<th>in</th>
</tr>
</thead>
<tbody>
<tr>
<td>Density</td>
<td>slugs/ft³</td>
<td>snails/in³</td>
</tr>
<tr>
<td>Stress</td>
<td>lbf</td>
<td>psi</td>
</tr>
<tr>
<td>Temperature</td>
<td>R</td>
<td>R</td>
</tr>
<tr>
<td>Time</td>
<td>hr</td>
<td>hr</td>
</tr>
<tr>
<td>Specific Heat</td>
<td>(32.17)⁻¹ Btu/(1b R)</td>
<td>(32.17)⁻¹ Btu/(1b R)</td>
</tr>
<tr>
<td>Thermal Conductivity</td>
<td>(Btu/hr)/(in R)</td>
<td>(Btu/hr)/(in R)</td>
</tr>
<tr>
<td>Convective Heat Transfer Coefficient</td>
<td>(Btu/hr)/(ft² R)</td>
<td>(Btu/hr)/(ft² R)</td>
</tr>
<tr>
<td>Radiative Heat Transfer Coefficient</td>
<td>(Btu/hr)/(ft² R⁴)</td>
<td>(Btu/hr)/(ft² R⁴)</td>
</tr>
<tr>
<td>Flux Strength</td>
<td>(Btu/hr)/ft²</td>
<td>(Btu/hr)/ft²</td>
</tr>
<tr>
<td>Source Strength</td>
<td>(Btu/hr)/ft³</td>
<td>(Btu/hr)/ft³</td>
</tr>
<tr>
<td>Decay Constant</td>
<td>hr⁻¹</td>
<td>hr⁻¹</td>
</tr>
<tr>
<td>Stefan-Boltzmann Constant</td>
<td>1.713 × 10⁻⁹ Btu/(ft² hr R⁴)</td>
<td>1.19 × 10⁻¹¹ Btu/(in² hr R⁴)</td>
</tr>
</tbody>
</table>
where \(1 \text{K} = 1.8 \text{ R} \);
\[
\begin{align*}
1 \text{J} &= 0.239 \text{ cal} = 9.48 \times 10^{-4} \text{ Btu}; \\
1 \text{J/kg K} &= 2.39 \times 10^{-4} \text{ btu/lb R}; \\
1 \text{W} &= 1 \text{ J/s} = 0.239 \text{ cal/s} = 3.412 \text{ Btu/hr}; \\
1 \text{W/m K} &= 0.578 \text{ Btu/(ft/hr R)}; \text{ and} \\
1 \text{W/m}^2 \text{ K} &= 0.176 \text{ Btu/ft}^2 \text{ hr R}.
\end{align*}
\]

Note that, unless radiation is being used, temperatures may be quoted in the more common units of °C (instead of K) or °F (instead of R), where

\[
\begin{align*}
\text{Temp(°C)} &= \frac{5}{9} (\text{Temp(°F)} - 32); \\
\text{Temp(°F)} &= (1.8 \text{ Temp(°C)}) + 32; \\
\text{Temp(°C)} &= \text{Temp(K)} - 273; \text{ and} \\
\text{Temp(°F)} &= \text{Temp(R)} - 460.
\end{align*}
\]
3.6 Verification Examples

Several verification examples are presented to demonstrate the thermal model in UDEC. The data files for these examples are located in the “Datafiles\Thermal” directory.

All of the models contain joints. This allows the evaluation of joint behavior on the thermal and thermal-mechanical response of the models. The joint stiffnesses can influence the results for thermal-mechanical analyses; stiffnesses are at least two to three orders of magnitude higher than the block stiffnesses for the thermal-mechanical examples.

3.6.1 Conduction through a Composite Wall

An infinite wall consisting of two distinct layers is exposed to an atmosphere at a high temperature on one side and a low temperature on the other. The wall eventually reaches an equilibrium at a constant heat flux and unchanging temperature distribution.

The two layers of the wall have the specifications presented in Table 3.4. Figure 3.6 shows the wall geometry and boundary conditions.

The wall is of infinite height and thickness, and the temperatures of the atmosphere on either side are constant. The two layers, individually, are homogeneous and isotropic, and the conductive contact between them is perfect.

<table>
<thead>
<tr>
<th>Table 3.4 Problem specifications</th>
</tr>
</thead>
<tbody>
<tr>
<td>temperature of outside</td>
</tr>
<tr>
<td>convection coefficient</td>
</tr>
<tr>
<td>thermal conductivity</td>
</tr>
<tr>
<td>thickness</td>
</tr>
</tbody>
</table>

Figure 3.6 Composite wall
The analytical steady-state solution to this problem is quite simple and common. The total equilibrium heat flux is

\[\frac{q}{A} = \frac{T_i - T_o}{R_T} \]

where \(R_T \) is the sum of the four thermal resistances:

\[
R_1 = \frac{1}{h_i} \\
R_2 = \frac{d_1}{k_1} \\
R_3 = \frac{d_2}{k_2} \\
R_4 = \frac{1}{h_o}
\]

This heat flux is constant across the three interfaces. Hence, after setting this flux equal to the temperature difference divided by the interface resistance and solving for the unknown, we arrive at

\[
T_1 = T_i - \frac{q}{A} \cdot \frac{1}{h_i} \\
T_2 = T_1 - \frac{q}{A} \cdot \frac{d_1}{k_1} \\
T_3 = T_2 - \frac{q}{A} \cdot \frac{d_2}{k_2}
\]

The temperature will vary linearly among the three.

Example 3.1 contains the input commands necessary to solve this problem with UDEC. Commands for both the explicit and implicit solutions are given. The data file as shown runs the explicit solution. If the semicolon is removed from the SET thdt=6000 command, and the implicit keyword is added to the RUN command, then the implicit solution will be performed. The model is run to a thermal age of 600,000 seconds to reach steady-state for both solutions.
Example 3.1 Conduction through a composite wall

```plaintext
config thermal
round 0.001
edge 0.002
block 0.0 0.25E-2 0.4 0.25E-2 0.4 0
crack (0.25,-1) (0.25,1) join
gen edge 0.05 range 0,0.25 0,2.5E-2
gen edge 0.025 range 0.25,0.4 0,2.5E-2
group zone 'wall:high density' range 0,0.25 0,2.5E-2
group zone 'wall:low density' range 0.25,0.4 0,2.5E-2
zone model elastic density 1E4 cond 1.6 specheat 300 range group &
  'wall:high density'
zone model elastic density 1.25E3 cond 0.2 specheat 300 range group &
  'wall:low density'
thapp convection 100.0 3000.0 range -0.001,0.001 -0.001,2.6E-2
thapp convection 15.0 25.0 range 0.399,0.401 -0.001,2.6E-2
initemp 2500.0 range -0.001,0.251 -0.001,2.6E-2
initemp 1000.0 range 0.249,0.401 -0.001,2.51E-2
run age 600000.0 temp 100000.0 tol 1.0E-4
save cond1.sav

; def constants
  d_1 = 0.25
  d_2 = 0.15
  t_i = 3000.0
  t_o = 25.0
  h_i = 100.0
  h_o = 15.0
  k_1 = 1.6
  k_2 = 0.2
  r_1 = 1.0/h_i
  r_2 = d_1/k_1
  r_3 = d_2/k_2
  r_4 = 1.0/h_o
  r_t = r_1 + r_2 + r_3 + r_4
  q_a = (t_i-t_o) / r_t
  t_1 = t_i - q_a * r_1
  t_2 = t_1 - q_a * r_2
  t_3 = t_2 - q_a * r_3

end

constants
; store numerical results in table 1
call block.fin
def num_sol
```

UDEC Version 5.0
The wall is idealized by the geometry shown in Figure 3.7. Since the model is infinitely long in one direction, the model is essentially one-dimensional, and horizontal boundaries may be represented as adiabatic boundaries.
In the *UDEC* analysis, the wall is defined by two deformable blocks; each block corresponds to an individual layer of the wall. The zoning for the two blocks is shown in Figure 3.8. An adiabatic boundary condition (zero heat flux across boundary) is applied to the top and bottom of this model to simulate the infinite dimensions of the wall. (Adiabatic boundaries are the default condition.) The appropriate convective boundary conditions are applied to the ends of the grid, and the different sets of thermal properties are applied to the two blocks to model the composite material.

Figure 3.8 Zone distribution

Figure 3.9 shows a contour plot of the steady-state temperature distribution using the explicit solution.
Figure 3.9 Steady-state temperature distribution

Figure 3.10 compares UDEC’s temperature distribution with the analytical solution. The numerical calculations for steady-state temperatures are stored in table 1, and the analytical values are stored in table 2 for comparison.

Figure 3.10 Temperature vs distance comparison between UDEC and analytical solution
Table 3.5 displays a more precise comparison for five points along the wall, including the three interface points ("interface" refers to thermal properties, not a mechanical interface). The results based on the implicit solution are identical.

<table>
<thead>
<tr>
<th>Position</th>
<th>Analytical (°C)</th>
<th>UDEC (°C)</th>
<th>% Error</th>
</tr>
</thead>
<tbody>
<tr>
<td>T₁</td>
<td>0</td>
<td>2970</td>
<td>2970</td>
</tr>
<tr>
<td></td>
<td>0.125</td>
<td>2733</td>
<td>2733</td>
</tr>
<tr>
<td>T₂</td>
<td>0.250</td>
<td>2497</td>
<td>2496</td>
</tr>
<tr>
<td></td>
<td>0.325</td>
<td>1362</td>
<td>1361</td>
</tr>
<tr>
<td>T₃</td>
<td>0.400</td>
<td>226.7</td>
<td>226.7</td>
</tr>
</tbody>
</table>

The comparison between UDEC and the analytical solution shows that, for this simple one-dimensional problem, UDEC produces excellent agreement. The errors on both the boundaries and the interface are negligible (<0.1%).
3.6.2 Thermal Response of a Heat-Generating Slab

An infinite plate of thickness $2L = 1$ m generates heat internally. This problem determines the transient temperature distribution after application of a constant temperature boundary condition.

The physical properties of the plate in question are

- Density (ρ) = 500 kg/m3
- Specific heat (C_p) = 0.2 J/kg °C
- Thermal conductivity (k) = 20 W/m °C

The plate is initially at a uniform temperature of 60 °C, the surface is then fixed at 32 °C, and the plate itself has internal heat generation of 40 kW/m3 (as shown in Figure 3.11).

![Figure 3.11: Heat-generating slab showing initial and boundary conditions](image)

Assuming that the slab is infinitely long and that the material is homogeneous, isotropic and continuous, with temperature-independent thermal properties, the governing equation for this problem is

$$\frac{\partial^2 T}{\partial x^2} + \frac{Q}{k} = \frac{1}{\kappa} \cdot \frac{\partial T}{\partial t}$$ \hspace{1cm} (3.23)

where
- $T = \text{temperature}$;
- $x = \text{distance from slab centerline}$;
- $Q = \text{constant volumetric heat generation rate}$;
- $k = \text{thermal conductivity}$;
- $t = \text{time}$; and
- $\kappa = \text{diffusivity} = \frac{k}{\rho C_p}$.
By symmetry, only half of the plate is modeled. The applied initial and boundary conditions are

\[\frac{\partial T}{\partial x} = 0 \quad x = 0; \quad t > 0 \]
\[T = T_s \quad x = L; \quad t > 0 \]
\[T = T_i \quad t \leq 0 \]

where \(T_i \) = initial uniform temperature;
\(T_s \) = constant temperature at the slab faces; and
\(L \) = slab half-width.

The integration of Eq. (3.23) is presented by Ozisik (1980):

\[
T(x, t) = T_s + \frac{Q}{2k} (L^2 - x^2) + \frac{2}{L} (T_i - T_s) \sum_{m=0}^{\infty} (-1)^m e^{-\kappa \beta^2 m t} \left(\cos(\beta m x) \right) \frac{1}{\beta m}
- \frac{2Q}{Lk} \sum_{m=0}^{\infty} (-1)^m e^{-\kappa \beta^2 m t} \left(\cos(\beta m x) \right) \frac{1}{\beta^3 m}
\]

where \(\beta_m \) are the positive roots of the transcendental equation

\[\cos(\beta_m \cdot L) = 0 \quad \text{or} \quad \beta_m = \frac{(2m + 1)\pi}{2L}, \quad m = 0, 1, 2... \]

For steady-state condition \((t \to \infty)\), the two last terms of Eq. (3.24) tend to zero, so

\[
T_{steady}(x) = T_s + \frac{Q}{2k} (L^2 - x^2)
\]

The conditions imposed to model this problem are shown in Figure 3.12; the corresponding UDEC model is given in Figure 3.13. Because the plate is infinitely long, and because the heat generation is uniform, symmetry conditions exist for any plane perpendicular to the long axis of the plate. These are represented by adiabatic boundaries. The right boundary of the model has a fixed temperature of 32°C. The left boundary is a symmetry line.
The model is run to a thermal time of 0.1, 0.5 and 5 seconds. The last time corresponds to a steady-state condition. Example 3.2 contains the input commands necessary to solve this problem with UDEC.
Example 3.2 Thermal response of a heat-generating slab

title
Thermal Response of a Heat-Generating Slab - Explicit Solution
; --- problem constants ---
def constants
 tabo = -1
 tabe = 0
 v_l = 0.5
 v_ti = 60.
 v_ts = 32.
 v_q = 4.e4
 v_k = 20.
 v_cp = 0.2
 v_rho = 500.
 v_kappa = v_k / (v_rho * v_cp)
 qk = v_q / v_k
 tits = v_ti - v_ts
 pi2l = pi / (2.0 * v_l)
end
constants
; store analytical results in odd numbered tables
; store numerical results in even numbered tables
call block.fin
def solution
 tabo = tabo + 2
 tabe = tabe + 2
 ib = block_head
loop while ib # 0
 ig = b_gp(ib)
loop while ig # 0
 if gp_y(ig) > ym_tol then
 if gp_y(ig) < yp_tol then
 x_p = gp_x(ig)
 kt = v_kappa * thtime
 s_old = 0.0
 monem = -1.
 m = 0
 loop while m < 100
 monem = -monem
 betam = pi2l * (2.0 * m + 1.)
 betam2 = betam * betam
 e1 = exp(-kt*betam2)/betam
 s_new = s_old+(tits-qk/betam2)*monem*cos(betam*x_p)*e1
 if s_new = s_old then
 UDEC Version 5.0
m = 100
else
 s_old = s_new
 m = m + 1
endif
endloop
v_temp = s_new*2./v_l+v_ts+qk*0.5*(v_l-x_p)*(v_l+x_p)
u_temp = fmem(ig+$kgtemp)
table(tabo,x_p) = v_temp
table(tabe,x_p) = u_temp
endif
dendif
ig = gp_next(ig)
endloop
ib = b_next(ib)
endloop
dend
dset ym_tol = .2 yp_tol = .3

dconfig thermal
dround 1E-3
dedge 2E-3
dblock 0,0,0.5 0.5,0.5 0.5,0

dcrack (0.25,0) (0.25,1) join
dgen quad 0.075
dgroup zone ‘block’
dzone model elastic density 500 cond 20 specheat 0.2 range group ‘block’

dinitemp 60.0
dtfix 32.0 range 0.499,0.51 -1,2
dthapp source 5000.0 0.0
dhist temperature 0.25,0.5
dhist temperature 0.0,0.5
dhist thtime

drun age 0.1 tem 200 tol 0.01
dsolution

drun age 0.5 tem 200 tol 0.01
dsolution

drun age 5.0 tem 2000 tol 0.01
dsolution

dudec version 5.0
Figure 3.14 shows the evolution of temperature in the center of the slab ($x = 0$). Steady-state conditions are reached at $t = 5$. Figure 3.15 shows the temperature distribution at steady state. The temperature distributions for $t = 0.1$, 0.5 and 5 seconds are compared to the analytical solution in Figure 3.16. The agreement is excellent, with an error of less than 1%.
Figure 3.15 Temperature distribution at steady-state

Figure 3.16 UDEC and analytical temperature distributions at thermal time = 0.1, 0.5 and 5.0 seconds (analytical values = odd-numbered tables; numerical values = even-numbered tables)
3.6.3 Heating of a Hollow Cylinder

A hollow cylinder of infinite length is initially at a constant temperature of 0 °C. The inner radius of the cylinder is exposed to a constant temperature of 100 °C, and the outer radius is kept at 0 °C. The problem is to determine the temperatures and thermally induced stresses in the cylinder when the equilibrium thermal state is reached.

Nowacki (1962) provides the solution to this problem in terms of the temperatures and radial, tangential and axial stresses at the steady-state thermal state:

\[
\frac{T(r)}{T_a} = \frac{\ln(b/r)}{\ln(b/a)} \quad (3.27)
\]

\[
\frac{\sigma_r(r)}{mGT_a} = -\left[\frac{\ln(b/r)}{\ln(b/a)} - \frac{(b/r)^2 - 1}{(b/a)^2 - 1} \right] \quad (3.28)
\]

\[
\frac{\sigma_t(r)}{mGT_a} = -\left[\frac{\ln(b/r) - 1}{\ln(b/a)} + \frac{(b/r)^2 + 1}{(b/a)^2 - 1} \right] \quad (3.29)
\]

\[
\frac{\sigma_a(r)}{mGT_a} = -\left[\frac{2 \ln(b/r) - \frac{\lambda}{2(\lambda + G)}}{\ln(b/a)} + \left(\frac{\lambda}{2\lambda + G} \right) \left(\frac{2}{(b/a)^2 - 1} \right) \right] \quad (3.30)
\]

where \(T \) = temperature;
\(r \) = radial distance from the cylinder center;
\(a \) = inner radius of the cylinder;
\(b \) = outer radius of the cylinder;
\(T_a \) = temperature at the inner radius;
\(\sigma_r \) = radial stress;
\(\sigma_t \) = tangential stress;
\(\sigma_a \) = axial stress;
\(m = \frac{3K\alpha}{\lambda + 2G} \);
\(\lambda = K - \frac{2}{3}G \);
\(K \) is the bulk modulus;
\(G \) is the shear modulus; and
\(\alpha \) is the linear thermal expansion coefficient.

The analytical solutions for temperature and stresses are programmed as \textit{FISH} functions in the \textit{UDEC} data file. The analytical and numerical results can then be compared directly in tables.
The following properties are prescribed for this example.

Geometry
- inner radius of cylinder \((a)\) 1.0 m
- outer radius of cylinder \((b)\) 2.0 m

Material Properties
- density \((\rho)\) 2000 kg/m\(^3\)
- specific heat \((C_p)\) 880.0 J/kg °C
- thermal conductivity \((k)\) 4.2 W/m °C
- linear thermal expansion coefficient \((\kappa)\) \(5.4 \times 10^{-6}\)/°C
- shear modulus \((G)\) 28.0 GPa
- bulk modulus \((K)\) 48.0 GPa

A quarter-section of the cylinder is modeled with UDEC. Figure 3.17 shows the UDEC zoning. A constant-temperature boundary of 100 °C is specified for the inner radius of the model; the temperature at the outer radius is specified to be 0 °C.

The UDEC model can be run as either a coupled or uncoupled thermal-mechanical analysis. In this example, we run the model in an uncoupled mode: the thermal calculation is performed first to reach the equilibrium heat flux state; then the thermally induced mechanical stresses are calculated. The UDEC data file is listed in Example 3.3.

![Figure 3.17 UDEC grid for heating of a hollow cylinder](image-url)
Example 3.3 Heating of a hollow cylinder

```
config thermal
title Heating of a Hollow Cylinder
round=0.001
; set geometry (one quarter of a rod)
b1 0 0 0 2 2 2 0
arc (0,0) (1.0,0) 90 12
arc (0,0) (1.25,0) 90 12
arc (0,0) (1.5,0) 90 12
arc (0,0) (1.75,0) 90 12
arc (0,0) (2.0,0) 90 12
; hollow out the rod to make a cylinder
del range annulus (0,0) 0.0 1.0
; delete outside of cylinder
del range annulus (0,0) 2.0 3.0
; add construction joints for zoning
jset angle 22.5 spacing 4 origin 0,0
jset angle 45 spacing 4 origin 0,0
jset angle 67.5 spacing 4 origin 0,0
join_cont
gen quad 0.1 range ann (0,0) 0 1.2
gen quad 0.15 range ann (0,0) 0 1.5
gen quad 0.2
; set material properties
group zone 'block'
zone model elastic density 2E3 bulk 4.8E10 shear 2.8E10 cond 4.2 specheat &
880 thexp 5.4E-6 range group 'block'
; set boundary conditions
bound yvel 0.0 range (0,3) (-0.01,.01)
bound xvel 0.0 range (-0.01,.01) (0,3)
; temperature=100 fixed at radius= 1
tfix 100.0 range ann (0,0) 0.99 1.01
; temperature=0 fixed at radius= 2
tfix 0.0 range ann (0,0) 1.99 2.01
; thermal histories to check thermal equilibrium
history temperature 1.25,1.25
history temperature 1.0,1.0
history thtime
; mechanical histories at different joints to check mech. equil.
hist nstr (1.25,0)
hist nstr (1.25,1.25)
hist nstr (0,1.25)
hist sstr (1.25,0)
```
hist sstr (1.25,1.25)
hist sstr (0,1.25)
; run thermal problem until equilibrium (explicit procedure)
run temp=15000 step=5000 tol .001
save cy1.sav
;
; then run mechanical problem
solve ratio 1e-6
save cy2.sav
;
; --- fish constants ---
def constants
 c_b = 2.
 eps = 1.e-4
 xtol = 0.01
 yp_tol = 0.05
 c_g = 28e9 ; shear modulus
 c_k = 48e9 ; bulk modulus
 c_al = 5.4e-6 ; coefficient of thermal expansion
 t1 = 100. ; boundary temperature
 oc1 = 1. / ln(c_b)
 oc2 = 1. / (c_b * c_b - 1.)
 oc3 = 0.5 * (c_k - c_g * 2. / 3.)/(c_k + c_g / 3.)
 c_mmu = c_g * (3. * c_k * c_al) / (c_k + 4. * c_g / 3.)
 tab1 = 1 ; numerical temperature
 tab2 = 2 ; analytical temperature
 tab3 = 3 ; numerical radial stress
 tab4 = 4 ; analytical radial stress
 tab5 = 5 ; numerical tangential stress
 tab6 = 6 ; analytical tangential stress
 tab7 = 7 ; numerical axial stress
 tab8 = 8 ; analytical axial stress
end constants
call block.fin
def num_solt
 ib = block_head
 loop while ib # 0
 ig = b_gp(ib)
 loop while ig # 0
 if gp_y(ig) < eps then
 x = gp_x(ig)
 table(tab1,x) = fmem(ig+$kgtemp) / t1
 endif
 ig = gp_next(ig)
 endloop
ib = b_next(ib)
enloop
def ana_solt
 nn = 0
 ib = block_head
 loop while ib # 0
 ig = b_gp(ib)
 loop while ig # 0
 if gp_y(ig) < eps then
 x = gp_x(ig)
 table(tab2,x) = ln(c_b / x) * ocl
 nn = nn + 1
 endif
 ig = gp_next(ig)
 endloop
 ib = b_next(ib)
 endloop
end

; def num_solst ; table tab1 must be available
ns = 1
nz = 0
loop while ns < nn
 x = (xtable(tab1,ns) + xtable(tab1,ns+1)) * 0.5
 xp_tol = x + xtol
 xm_tol = x - xtol
 ib = block_head
 loop while ib # 0
 iz = b_zone(ib)
 loop while iz # 0
 if z_x(iz) < xp_tol then
 if z_x(iz) > xm_tol then
 if z_y(iz) < yp_tol then
 nz = nz + 1
 xc = z_x(iz)
 yc = z_y(iz)
 ra2 = xc*xc + yc*yc
 ra = sqrt(ra2)
 xtable(tab3,nz) = ra
 xstr = z_sxx(iz)*xc*xc
 ystr = z_syy(iz)*yc*yc
 xystr = 2.*z_sxy(iz)*xc*yc
 val = (xstr + ystr + xystr)/ra2
 ytable(tab3,nz) = val / (c_mmu * t1)
 xtable(tab5,nz) = ra
 endif
 endif
 endif
 endloop
 ib = b_next(ib)
 endloop
end

UDEC Version 5.0
xstr = z_sxx(iz)*yc*yc
ystr = z_syy(iz)*xc*xc
xystr = 2.*z_sxy(iz)*xc*yc
val = (xstr + ystr - xystr)/ra2
ytable(tab5,nz) = val / (c_mmu * t1)
xttable(tab7,nz) = ra
val = z_szz(iz)
ytable(tab7,nz) = val / (c_mmu * t1)
endif
endif
endif
iz = z_next(iz)
end_loop
ib = b_next(ib)
end_loop
ns = ns + 1
end_loop
end

def ana_solst ; table tab1 must be available
ns = 1
nz = 0
loop while ns < nn
 x = (xtable(tab1,ns) + xtable(tab1,ns+1)) * 0.5
 xp_tol = x + xtol
 xm_tol = x - xtol
 ib = block_head
 loop while ib # 0
 iz = b_zone(ib)
 loop while iz # 0
 if z_x(iz) < xp_tol then
 if z_x(iz) > xm_tol then
 if z_y(iz) < yp_tol then
 nz = nz + 1
 xc = z_x(iz)
 yc = z_y(iz)
 ra = sqrt(xc*xc + yc*yc)
 xtable(tab4,nz) = ra
 val = c_b / ra
 ytable(tab4,nz) = -(ln(val)*oc1-(val*val-1.)*oc2)
 xtable(tab6,nz) = ra
 ytable(tab6,nz) = -((ln(val)-1.)*oc1+(val*val+1.)*oc2)
 xtable(tab8,nz) = ra
 ytable(tab8,nz) = -((2.*ln(val)-oc3)*oc1+2.*oc3*oc2)
 endif
 endif
 endif
 endif
 endif
end
end

UDEC Version 5.0
iz = z_next(iz)
end_loop
ib = b_next(ib)
end_loop
ns = ns + 1
end_loop
end
save cy3.sav
;
num_solt
ana_solt
num_solst
ana_solst
label table 1
Temperature - UDEC
label table 2
Temperature - Analytic
label table 3
Radial Stress - UDEC
label table 4
Radial Stress - Analytic
label table 5
Tangential Stress - UDEC
label table 6
Tangential Stress - Anal
label table 7
Axial Stress - UDEC
label table 8
Axial Stress - Analytic
pl tab 1 cross 2
pl tab 3 cross 4
pl tab 5 cross 6
pl tab 7 cross 8
save cy4.sav

Numerical and analytical results are compared in Figures 3.18 through 3.21. The figures show plots of tables for temperature and stress distributions through the cylinder at steady state. In each figure, the numerical values are plotted as the odd numbered table, and the analytical values are plotted as the even numbered table. The plotted values are normalized. Temperature is normalized by dividing by T_a, and stress is normalized by dividing by $mG T_a$. Figure 3.18 shows the temperature distribution at steady state for the numerical and analytical solutions. Comparisons of results for radial, tangential and axial stress distributions at steady state are provided in Figures 3.19, 3.20 and 3.21, respectively.
Figure 3.18 Temperature distribution at steady state for heating of a hollow cylinder

Figure 3.19 Radial stress distribution at steady state for heating of a hollow cylinder
Figure 3.20 Tangential stress distribution at steady state for heating of a hollow cylinder

Figure 3.21 Axial stress distribution at steady state for heating of a hollow cylinder
3.6.4 Infinite Line Heat Source in an Infinite Medium

An infinite line heat source with a constant heat-generating rate is located in an infinite elastic medium with constant thermal properties. Nowacki (1962) provides the solution to this problem for the transient values of temperature, radial and tangential stress and radial displacement:

\[
\frac{T}{a} = \frac{1}{4\pi} E_1(\xi) \quad (3.31)
\]

\[
\frac{\sigma_r}{bG} = \frac{1}{-4\pi} \left[E_1(\xi) + \frac{1 - e^{-\xi}}{\xi} \right] \quad (3.32)
\]

\[
\frac{\sigma_t}{bG} = \frac{1}{-4\pi} \left[E_1(\xi) - \frac{1 - e^{-\xi}}{\xi} \right] \quad (3.33)
\]

\[
\frac{u_r}{bL} = \frac{1}{8\pi} r \left[E_1(\xi) + \frac{1 - e^{-\xi}}{\xi} \right] \quad (3.34)
\]

where \(\xi = \frac{r^2}{4\kappa} \),

\(r \) = radial distance to the line source;

\(\kappa = \frac{k}{\rho C_p} \);

\(a = \frac{q}{k} \);

\(b = \alpha a \frac{9K}{3K + 4G} \);

\(L \) = unit length; and

\(E_1(\xi) = \int_\xi^\infty e^{-u} du \) is the exponential integral.

The material properties and initial and boundary conditions for this example are defined as follows.

Material Properties

- density \((\rho)\) = 2000 kg/m\(^3\)
- shear modulus \((G)\) = 30 GPa
- bulk modulus \((K)\) = 50 GPa
- specific heat \((C_p)\) = 1000 J/kg °C
- thermal conductivity \((k)\) = 4 W/m °C
- linear thermal expansion coefficient \((\alpha)\) = 5 \(\times\) 10\(^{-6}\) /°C

UDEC Version 5.0
Initial/Boundary Conditions

initial uniform temperature 0°C
initial stress state no stresses

Line Heat Source

energy release per unit length (Q) 1600 W/m

It is assumed that the material properties are temperature-independent, the thermal output of the source is constant (no decay), and the heat line source is of infinite length.

The UDEC model for this problem is a quarter-section of a cylindrical disk with a hole in the center. The axis of the line heat source coincides with the centroid of the disk. The zoning in the model is radially graded in the xy-plane by cutting the original block with a series of construction arcs; each arc has a radius that is 1.1 times larger than the previous arc. The model is shown in Figure 3.22. A close-up view of the block zoning near the heat source is shown in Figure 3.23.

Figure 3.22 UDEC grid for an infinite line heat source
The line heat source is simulated by a constant heat flux applied at the inner hole boundary of the disk. The line heat source is assumed to have a fictitious radius of $R = 1.0$ m, so that the applied flux will be

$$\text{Flux} = q = \frac{Q}{2\pi R} = 254.65 \text{ w/m}^2$$

The other boundaries of the model are kept adiabatic to represent thermal symmetry planes. The disk is extended to a radius of 500 m to simulate infinity. The far boundary is mechanically fixed; the boundaries along the x-axis and y-axis are fixed to represent shear-free symmetry planes.

The problem is first solved thermally to an age of one year using the implicit solution algorithm, and then stepped to mechanical equilibrium. The UDEC data file is listed in Example 3.4.

The dimensionless form of the analytical solutions in Eqs. (3.31) to (3.34) are programmed as FISH functions in Example 3.4. The analytical and numerical values can then be compared directly in tables. The analytical solutions for temperature and radial displacement are programmed in FISH function ana_soltu, and for radial and tangential stresses in ana_solst. The exponential integral function used in the analytical solutions is programmed as a separate FISH function contained in file “EXP_INT.FIS” (see Example 3.5). The dimensionless values for the numerical results for temperature and displacement are calculated in FISH function num_soltu, and for radial and tangential stresses in num_solst. The numerical values for dimensionless temperature, radial stress,
tangential stress and radial displacement are stored in Tables 1, 3, 5 and 7, respectively. The analytical values for dimensionless temperature, radial stress, tangential stress and radial displacement are stored in Tables 2, 4, 6 and 8, respectively.

Example 3.4 Infinite line heat source in an infinite medium

```plaintext
new
;file: linesource.dat
title
Infinite line heat source in infinite elastic medium
cfg thermal
round 1E-3
dge 2E-3
block 0,0 0,500 500,500 500,0
;Name:arc_cut
;Input:xcut/float/1.0/x-coord of cut
;Input:narc/int/6/number of segments in arc
;Input:ntot/int/48/number of arcs
;Input:rat/float/1.1/geometric ratio
def arc_cut
   nc = 1
   xloc = xcut
   numarc = narc
   loop while nc < ntot
      command
         arc (0,0) (xloc,0) 90 numarc
      endcommand
      xcut = rat * xcut
      xloc = xloc + xcut
      nc = nc + 1
   endloop
end
set xcut=1.0 narc=6 ntot=48 rat=1.1
arc_cut
delete range annulus (0,0) 450 800
delete range annulus (0,0) 0 1
jset angle 45 spacing 800 origin 0,0
join_cont
gen quad 100.0
;
; set material properties
group zone 'block'
zone model elastic density 2E3 bulk 5E10 shear 3E10 cond 4 specheat 1E3 &
   thexp 5E-6 range group 'block'
;
; set boundary conditions
```
boundary yvelocity 0 range 0.5,00 -0.1,0.1
boundary xvelocity 0 range -0.1,0.1 0,500
boundary nvelocity 0 range annulus (0,0) 440 500
; apply heat source for 1600 W/m
thapp flux 254.65,0 range annulus (0,0) 0.9 1.1
;
; thermal histories to check thermal equilibrium
history temperature 1.25,1.25
history temperature 5.0,5.0
history thtime
;
; mechanical histories at different joints to check mech. equil.
hist nstr (1.25,0)
hist nstr (1.25,1.25)
hist nstr (0,1.25)
hist sstr (1.25,0)
hist sstr (1.25,1.25)
hist sstr (0,1.25)
;
save line.sav
;
; run thermal problem for 1 year of heating (implicit procedure)
set thdt=6480.0
run implicit step 4800 temp 500000.0
save line_th.sa
;
res line_th.sav
;
; then run mechanical problem
set ovtol 0.1
frac 0.1 0.5
damp auto
step 9000
;
save line_1yr.sav
;
; -------------------------------
; line source in infinite medium
; comparison of numerical and analytical solutions
; -------------------------------
; --- fish functions ---
def cons
 t_time = 3.11e7
 xtol = 0.3
 yp_tol = 5.0
 eps = 1.e-4
THERMAL ANALYSIS

\[c_g = 3. \times 10^3 \quad ; \text{shear modulus} \]
\[c_k = 5. \times 10^3 \quad ; \text{bulk modulus} \]
\[c_al = 5. \times 10^{-6} \quad ; \text{coefficient of thermal expansion} \]
\[c_tk = 4. \quad ; \text{conductivity} \]
\[c_cp = 1 \times 10^3 \quad ; \text{specific heat} \]
\[q_q = 1600. \quad ; \text{line source intensity} \]
\[c_density = 2 \times 10^3 \]
\[\kappa = \frac{c_tk}{c_density \times c_cp} \]
\[o4c = \frac{1}{(4 \times \kappa)} \]
\[o8p = o4p \times 0.5 \]
\[val = \frac{c_k}{c_g} \]
\[c_nu = \frac{(3 \times val - 2)}{(6 \times val + 2)} \]
\[c_eta = \frac{c_al}{c_g} \times \frac{c_nu}{1 + c_nu} \times \frac{1 - c_nu}{c_g} \]
\[a_a = \frac{q_q}{c_tk} \]
\[b_b = c_eta \times a_a \]
\[c_c = b_b \times \frac{1}{c_g} \]
\[tab1 = 1 \quad ; \text{numerical temperature} \]
\[tab2 = 2 \quad ; \text{analytical temperature} \]
\[tab3 = 3 \quad ; \text{numerical radial stress} \]
\[tab4 = 4 \quad ; \text{analytical radial stress} \]
\[tab5 = 5 \quad ; \text{numerical tangential stress} \]
\[tab6 = 6 \quad ; \text{analytical tangential stress} \]
\[tab7 = 7 \quad ; \text{numerical radial displacement} \]
\[tab8 = 8 \quad ; \text{analytical radial displacement} \]

end

cons
call block.fin
call exp_int.fis
def num_soltu
 nn = 0
 ib = block_head
 loop while ib # 0
 ig = b_gp(ib)
 loop while ig # 0
 if gp_y(ig) < eps then
 x = gp_x(ig)
 if x > 0.0 then
 table(tab1,x) = fmem(ig+$kgtemp) \times a_a
 table(tab7,x) = gp_xdis(ig) \times c_c
 nn = nn + 1
 end_if
 end_if
 end_if
 end_if
end
ig = gp_next(ig)
endloop
ib = b_next(ib)
end_loop
end
num_soltu
def ana_soltu
ib = block_head
loop while ib # 0
ig = b_gp(ib)
loop while ig # 0
if gp_y(ig) < eps then
 x = gp_x(ig)
 if x > 0.0 then
 e_val = x * x * o4c / thtime
 val = exp_int
 table(tab2,x) = val * o4p
 table(tab8,x) = (val + (1.-exp(-e_val))/e_val) * x * o8p
 end_if
endif
ig = gp_next(ig)
endloop
ib = b_next(ib)
end_loop
end
num_solst ; table tab1 must be available
ns = 2
nz = 0
loop while ns < nn
 x = (xtable(tab1,ns) + xtable(tab1,ns+1)) * 0.5
 if ns > 10 then
 xtol = 1.0
 endif
 if ns > 50 then
 xtol = 5.0
 endif
 xp_tol = x + xtol
 xm_tol = x - xtol
 ib = block_head
 loop while ib # 0
 iz = b_zone(ib)
 loop while iz # 0
 if z_x(iz) < xp_tol then
 if z_x(iz) > xm_tol then
 nzgp = 0
 endif
 endif
 endloop
igz1 = z_gp(iz,1)
ygz1 = gp_y(igz1)
if ygz1 < eps then
 nzgp = nzgp + 1
endif
igz2 = z_gp(iz,2)
ygz2 = gp_y(igz2)
if ygz2 < eps then
 nzgp = nzgp + 1
endif
igz3 = z_gp(iz,3)
ygz3 = gp_y(igz3)
if ygz3 < eps then
 nzgp = nzgp + 1
endif
if nzgp = 2 then
 ns = ns + 1
 xc = z_x(iz)
 yc = z_y(iz)
 ra2 = xc*xc + yc*yc
 ra = sqrt(ra2)
 xstr = z_sxx(iz)*xc*xc
 ystr = z_syy(iz)*yc*yc
 xystr = 2.*z_sxy(iz)*xc*yc
 val = (xstr + ystr + xystr)/ra2
 table(tab3,ra) = val * b_b
 xstr = z_sxx(iz)*yc*yc
 ystr = z_syy(iz)*xc*xc
 xystr = 2.*z_sxy(iz)*xc*yc
 val = (xstr + ystr + xystr)/ra2
 table(tab5,ra) = val * b_b
endif
def ana_solst ; table tab1 must be available
ns = 2
nz = 0
loop while ns < nn
 x = (xtable(tab1,ns) + xtable(tab1,ns+1)) * 0.5
if ns > 10 then
 xtol = 1.0
endif
if ns > 50 then
 xtol = 5.0
endif
xp_tol = x + xtol
xm_tol = x - xtol
ib = block_head
loop while ib # 0
 iz = b_zone(ib)
 loop while iz # 0
 if z_x(iz) < xp_tol then
 if z_x(iz) > xm_tol then
 nzgp = 0
 igz1 = z_gp(iz,1)
 ygz1 = gp_y(igz1)
 if ygz1 < eps then
 nzgp = nzgp + 1
 endif
 igz2 = z_gp(iz,2)
 ygz2 = gp_y(igz2)
 if ygz2 < eps then
 nzgp = nzgp + 1
 endif
 igz3 = z_gp(iz,3)
 ygz3 = gp_y(igz3)
 if ygz3 < eps then
 nzgp = nzgp + 1
 endif
 endif
 endif
 if nzgp = 2 then
 nz = nz + 1
 xc = z_x(iz)
 yc = z_y(iz)
 ra2 = xc*xc + yc*yc
 ra = sqrt(ra2)
 e_val = ra2 * o4c / thtime
 val1 = exp_int
 val2 = (1. - exp(-e_val)) / e_val
 table(tab4,ra) = - (val1 + val2) * o4p
 table(tab6,ra) = - (val1 - val2) * o4p
 endif
 endif
 iz = z_next(iz)
end_loop
ib = b_next(ib)
end_loop
ns = ns + 1
end_loop
end
;
save line_fish.sav
;
num_soltu
ana_soltu
num_solst
ana_solst
label tab 1
Temp. 1 Year - UDEC
label tab 2
Temp. 1 Year - Analytic
label table 3
Radial Stress - UDEC
label table 4
Radial Stress - Anal
label table 5
Tangential Stress - UDEC
label table 6
Tangential Stress - Anal
label table 7
Radial Displacement - UDEC
label table 8
Radial Displacement - Anal
;
save line_compare.sav
;
pl hold tab 1 cross 2
pl hold tab 3 cross 4 5 cross 6
pl hold tab 7 cross 8
ret
Example 3.5 Exponential integral function

```plaintext
; --- Exponential integral E1(e_val) ---
;
;    Input : e_val
;
; def exp_int
;  if e_val < 0.0 then
;      ii=out(' Argument of Exponential function must be positive')
;      exit
;  end_if
;  if e_val = 0.0 then
;      exp_int = 1.e12
;      exit
;  endif
;  if e_val < 1. then
;      e_e1 = ((.00107857 * e_val - 0.00976004) * e_val + .05519968) * e_val
;      e_e1 = ((e_e1 - .24991055) * e_val + .99999193) * e_val
;      exp_int = e_e1 - .57721566 - ln(e_val)
;  else
;      e_e1 = .250621 + e_val * (2.334733 + e_val)
;      e_e1 = e_e1 / (1.681534 + e_val * (3.330657 + e_val))
;      exp_int = e_e1 * exp(-e_val) / e_val
;  end_if
; end
```

The results for temperature, radial displacement, and radial and tangential stress distributions at 1 year are presented in the table plots in Figures 3.24 through 3.26. The differences between numerical and analytical values are generally within 10%. Improved agreement can be expected as the block rounding length is decreased. The outer boundary also has an influence on the numerical results farther from the source.
Figure 3.24 Temperature distribution at 1 year

Figure 3.25 Radial displacement distribution at 1 year
Figure 3.26 Radial and tangential stress distributions at 1 year
3.7 References

