Quantum One
Solving the Eigenvalue Equation in Infinite Dimensional Spaces
In the last segment, we saw how to solve the eigenvalue problem in a finite dimensional state space, in which each linear operator is represented by a finite dimensional square matrix.

For a normal operator, i.e., one that commutes with its adjoint, the solution to the eigenvalue problem in such a space involves a two step process of

1. Finding the eigenvalues and their degeneracies by finding the roots and multiplicities of the characteristic equation, and

2. Solving the linear equations associated with the eigenvalue problem to obtain the expansion coefficients of the eigenstates in some representation.
In the last segment, we saw how to solve the eigenvalue problem in a finite dimensional state space, in which each linear operator is represented by a finite dimensional square matrix.

For a normal operator, i.e., one that commutes with its adjoint, the solution to the eigenvalue problem in such a space involves a two step process of

1. Finding the eigenvalues and their degeneracies by finding the roots and multiplicities of the characteristic equation, and

2. Solving the linear equations associated with the eigenvalue problem to obtain the expansion coefficients of the eigenstates in some representation.

In this segment, we consider what happens in infinite dimensional spaces, in which there are both discrete and continuous representations.
The methods taken to solve the eigenvalue equation in infinite dimensional state spaces usually do not constitute a straightforward extension of the procedure that is followed in finite dimensional spaces.
The methods taken to solve the eigenvalue equation in infinite dimensional state spaces usually do not constitute a straightforward extension of the procedure that is followed in finite dimensional spaces.

There is the obvious technical problem of taking the determinant of an infinite-dimensional matrix, but additional complications also get in the way.
The methods taken to solve the eigenvalue equation in infinite dimensional state spaces usually do not constitute a straightforward extension of the procedure that is followed in finite dimensional spaces.

There is the obvious technical problem of taking the determinant of an infinite-dimensional matrix, but additional complications also get in the way.

One additional problem is that, in contrast to what happens in finite dimensional spaces, it is not always true that the eigenvectors of a Hermitian operator span the space.
The methods taken to solve the eigenvalue equation in infinite dimensional state spaces usually do not constitute a straightforward extension of the procedure that is followed in finite dimensional spaces.

There is the obvious technical problem of taking the determinant of an infinite-dimensional matrix, but additional complications also get in the way.

One additional problem is that, in contrast to what happens in finite dimensional spaces, it is **not always true that the eigenvectors of a Hermitian operator span the space.**

Indeed, it is not all that unusual to find Hermitian operators that have **no eigenvectors at all in the space itself.**
The methods taken to solve the eigenvalue equation in infinite dimensional state spaces usually do not constitute a straightforward extension of the procedure that is followed in finite dimensional spaces.

There is the obvious technical problem of taking the determinant of an infinite-dimensional matrix, but additional complications also get in the way.

One additional problem is that, in contrast to what happens in finite dimensional spaces, it is not always true that the eigenvectors of a Hermitian operator span the space.

Indeed, it is not all that unusual to find Hermitian operators that have no eigenvectors at all in the space itself.

Hopefully, an example will help to make this clear.
Consider the space $L^2 (R^3)$ of square-integrable functions on R^3, which is a subspace of the larger set of Fourier transformable functions.
Consider the space $L^2 \left(\mathbb{R}^3 \right)$ of square-integrable functions on \mathbb{R}^3, which is a subspace of the larger set of Fourier transformable functions.

The position operator \vec{R} is a Hermitian operator in this space, since for any two square-integrable functions $\phi(\vec{r})$ and $\psi(\vec{r})$ we have
Consider the space $L^2 \left(\mathbb{R}^3 \right)$ of square-integrable functions on \mathbb{R}^3, which is a subspace of the larger set of Fourier transformable functions.

The position operator \mathbf{R} is a Hermitian operator in this space, since for any two square-integrable functions $\phi(\mathbf{r})$ and $\psi(\mathbf{r})$ we have

$$\langle \phi | \mathbf{R} | \psi \rangle = \int d^3r \: \phi^*(\mathbf{r}) \: \mathbf{r} \: \psi(\mathbf{r})$$
Consider the space $L^2 \left(\mathbb{R}^3 \right)$ of square-integrable functions on \mathbb{R}^3, which is a subspace of the larger set of Fourier transformable functions.

The position operator \vec{R} is a Hermitian operator in this space, since for any two square-integrable functions $\phi(\vec{r})$ and $\psi(\vec{r})$ we have

$$\langle \phi | \vec{R} | \psi \rangle = \int d^3r \; \phi^*(\vec{r}) \; \vec{r} \; \psi(\vec{r})$$
$$= \left[\int d^3r \; \psi^*(\vec{r}) \; \vec{r} \; \phi(\vec{r}) \right]^*$$
Consider the space $L^2(\mathbb{R}^3)$ of square-integrable functions on \mathbb{R}^3, which is a subspace of the larger set of Fourier transformable functions.

The position operator $\mathbf{\hat{R}}$ is a Hermitian operator in this space, since for any two square-integrable functions $\phi(\mathbf{r})$ and $\psi(\mathbf{r})$ we have

$$
\langle \phi | \mathbf{\hat{R}} | \psi \rangle = \int d^3r \, \phi^*(\mathbf{r}) \, \mathbf{r} \, \psi(\mathbf{r}) = \left[\int d^3r \, \psi^*(\mathbf{r}) \, \mathbf{r} \, \phi(\mathbf{r}) \right]^* = \langle \psi | \mathbf{\hat{R}} | \phi \rangle^*
$$
Consider the space $L^2 \left(\mathbb{R}^3 \right)$ of square-integrable functions on \mathbb{R}^3, which is a subspace of the larger set of Fourier transformable functions.

The position operator \vec{R} is a Hermitian operator in this space, since for any two square-integrable functions $\phi(\vec{r})$ and $\psi(\vec{r})$ we have

$$\langle \phi | \vec{R} | \psi \rangle = \int d^3r \, \phi^*(\vec{r}) \, \vec{r} \, \psi(\vec{r})$$

$$= \left[\int d^3r \, \psi^*(\vec{r}) \, \vec{r} \, \phi(\vec{r}) \right]^* = \langle \psi | \vec{R} | \phi \rangle^*$$

But the eigenstates of the position operator are represented by wave functions
Consider the space $L^2 \left(\mathbb{R}^3 \right)$ of square-integrable functions on \mathbb{R}^3, which is a subspace of the larger set of Fourier transformable functions.

The position operator \vec{R} is a Hermitian operator in this space, since for any two square-integrable functions $\phi(\vec{r})$ and $\psi(\vec{r})$ we have

$$
\langle \phi | \vec{R} | \psi \rangle = \int d^3 r \ \phi^*(\vec{r}) \ \vec{r} \ \psi(\vec{r}) \\
= \left[\int d^3 r \ \psi^*(\vec{r}) \ \vec{r} \ \phi(\vec{r}) \right]^* = \langle \psi | \vec{R} | \phi \rangle^*
$$

But the eigenstates of the position operator are represented by wave functions

$$\phi_{\vec{r}_n} (\vec{r}) = \langle \vec{r} | \vec{r}_n \rangle$$
Consider the space $L^2\left(R^3\right)$ of square-integrable functions on R^3, which is a subspace of the larger set of Fourier transformable functions.

The position operator \vec{R} is a Hermitian operator in this space, since for any two square-integrable functions $\phi(\vec{r})$ and $\psi(\vec{r})$ we have

$$\langle \phi | \vec{R} | \psi \rangle = \int d^3r \ \phi^* (\vec{r}) \ \vec{r} \ \psi (\vec{r})$$

$$= \left[\int d^3r \ \psi^* (\vec{r}) \ \vec{r} \ \phi (\vec{r}) \right]^* = \langle \psi | \vec{R} | \phi \rangle^*$$

But the eigenstates of the position operator are represented by wave functions

$$\phi_{\vec{r}'}(\vec{r}) = \langle \vec{r}' | \vec{r} \rangle = \delta(\vec{r} - \vec{r}')$$
Consider the space $L^2 \left(\mathbb{R}^3 \right)$ of square-integrable functions on \mathbb{R}^3, which is a subspace of the larger set of Fourier transformable functions.

The position operator \vec{R} is a Hermitian operator in this space, since for any two square-integrable functions $\phi(\vec{r})$ and $\psi(\vec{r})$ we have

$$\langle \phi | \vec{R} | \psi \rangle = \int d^3 r \, \phi^*(\vec{r}) \, \vec{r} \, \psi(\vec{r})$$

$$= \left[\int d^3 r \, \psi^*(\vec{r}) \, \vec{r} \, \phi(\vec{r}) \right]^* = \langle \psi | \vec{R} | \phi \rangle^*$$

But the eigenstates of the position operator are represented by wave functions

$$\phi_{\vec{r}'}(\vec{r}) = \langle \vec{r}' | \vec{r} \rangle = \delta(\vec{r}' - \vec{r})$$

that are not square integrable, because ...
they are of infinite norm. Thus, the position operator contains no eigenstates in the space of square-integrable functions. It is for this reason that we have chosen the space of Fourier transformable functions (which includes the delta functions and plane waves). This does not entirely dispose of the problem, but it does allow us to confront it less frequently.

\[
\int \, d^3 r \, \phi_{\mathbf{r}'}^* (\mathbf{r}) \phi_{\mathbf{r}''} (\mathbf{r})
\]
they are of infinite norm. Thus, the position operator contains no eigenstates in the space of square-integrable functions. It is for this reason that we have chosen the space of a single particle to be the space of Fourier transformable functions (which includes the delta functions and plane waves). This does not entirely dispose of the problem, but it does allow us to confront it less frequently.

\[
\int d^3r \, \phi_{\vec{r}''}^* (\vec{r}) \phi_{\vec{r}''} (\vec{r}) = \int d^3r \, \delta(\vec{r} - \vec{r}') \delta(\vec{r} - \vec{r}')
\]
They are of infinite norm. Thus, the position operator contains no eigenstates in the space of square-integrable functions. It is for this reason that we have chosen the space of Fourier transformable functions (which includes the delta functions and plane waves). This does not entirely dispose of the problem, but it does allow us to confront it less frequently.

\[
\int d^3r \phi^*_r \phi_r = \int d^3r \delta(r - r') \delta(r - r') = \delta(r' - r')
\]
They are of infinite norm. Thus, the position operator contains no eigenstates in the space of square-integrable functions. It is for this reason that we have chosen the space of Fourier transformable functions (which includes the delta functions and plane waves). This does not entirely dispose of the problem, but it does allow us to confront it less frequently.

\[\int d^3r \, \phi_{\vec{r}''}^*(\vec{r}) \phi_{\vec{r}''}(\vec{r}) = \int d^3r \, \delta(\vec{r} - \vec{r}'') \delta(\vec{r} - \vec{r}') = \delta(\vec{r}' - \vec{r}') = \infty \]
They are of infinite norm.

\[\int d^3r \phi_{r''}^* (\vec{r}) \phi_{r''} (\vec{r}) = \int d^3r \delta(\vec{r} - \vec{r}') \delta(\vec{r} - \vec{r}') = \delta(\vec{r}' - \vec{r}') = \infty \]
They are of infinite norm.

Thus, the position operator \vec{R} contains no eigenstates in the space of square-integrable functions.
They are of infinite norm.

Thus, the position operator \vec{R} contains no eigenstates in the space of square-integrable functions.

It is for this reason that we have chosen the space of a single particle to be the space of Fourier transformable functions (which includes the delta functions and plane waves).
They are of infinite norm.

Thus, the position operator \(\vec{R} \) contains no eigenstates in the space of square-integrable functions.

It is for this reason that we have chosen the space of a single particle to be the space of Fourier transformable functions (which includes the delta functions and plane waves).

This does not entirely dispose of the problem, but it does allow us to confront it less frequently.
It has become common in the mathematics literature to essentially define the problem away:
It has become common in the mathematics literature to essentially define the problem away:

Definition: A Hermitian operator on a linear vector space \(S \) is said to be an **observable** for \(S \) if there exists in \(S \) a complete orthonormal basis of eigenvectors for the space.
It has become common in the mathematics literature to essentially **define the problem away**:

Definition: A Hermitian operator on a linear vector space S is said to be an **observable** for S if there exists in S a complete orthonormal basis of eigenvectors for the space.

Thus, this **mathematical definition** simply coincides with our statement of the second postulate.
It has become common in the mathematics literature to essentially **define the problem away:**

Definition: A Hermitian operator on a linear vector space S is said to be an **observable** for S if there exists in S a complete orthonormal basis of eigenvectors for the space.

Thus, this **mathematical definition** simply coincides with our statement of the second postulate.

As examples of observables, we have in the space of Fourier transformable functions the operators X, Y, Z, \vec{R}, and $V(\vec{R})$.

It has become common in the mathematics literature to essentially define the problem away:

Definition: A Hermitian operator on a linear vector space S is said to be an observable for S if there exists in S a complete orthonormal basis of eigenvectors for the space.

Thus, this **mathematical definition** simply coincides with our statement of the second postulate.

As examples of observables, we have in the space of Fourier transformable functions the operators X, Y, Z, \vec{R}, and $V(\vec{R})$, which are all diagonal in the position representation,
It has become common in the mathematics literature to essentially **define the problem away**:

Definition: A Hermitian operator on a linear vector space S is said to be an **observable** for S if there exists in S a complete orthonormal basis of eigenvectors for the space.

Thus, this **mathematical definition** simply coincides with our statement of the second postulate.

As examples of observables, we have in the space of Fourier transformable functions the operators X, Y, Z, \vec{R}, and $V(\vec{R})$, which are all diagonal in the position representation, and the operators $K_x, K_y, K_z, \vec{K}, \vec{P}$, and T,
It has become common in the mathematics literature to essentially **define the problem away**:

Definition: A Hermitian operator on a linear vector space \mathcal{S} is said to be an **observable** for \mathcal{S} if there exists in \mathcal{S} a complete orthonormal basis of eigenvectors for the space.

Thus, this **mathematical definition** simply coincides with our statement of the second postulate.

As examples of observables, we have in the space of Fourier transformable functions the operators $X, Y, Z, \vec{R},$ and $V(\vec{R})$, which are all diagonal in the position representation, and the operators $K_x, K_y, K_z, \vec{K}, \vec{P},$ and T, which are all diagonal in the wavevector representation.
More generally, in infinite dimensional quantum state spaces there are two main approaches to solving the eigenvalue problem for a linear operator A.
More generally, in infinite dimensional quantum state spaces there are two main approaches to solving the eigenvalue problem for a linear operator A.

1. **The algebraic approach**, in which one uses commutation relations (i.e., commutator algebra) involving the operator A and other operators of interest to deduce the spectrum and degeneracy of the eigenstates directly, and
More generally, in infinite dimensional quantum state spaces there are two main approaches to solving the eigenvalue problem for a linear operator \mathbf{A}.

1. **The algebraic approach**, in which one uses commutation relations (i.e., commutator algebra) involving the operator \mathbf{A} and other operators of interest to deduce the spectrum and degeneracy of the eigenstates directly, and

2. **A differential or integral equation approach**, in which one expresses the eigenvalue equation as a differential equation, an integral equation, or an integro-differential equation in some continuous representation, that is then solved subject to appropriate boundary conditions, as we have done in Schrödinger's mechanics.
More generally, in infinite dimensional quantum state spaces there are two main approaches to solving the eigenvalue problem for a linear operator \mathbf{A}

1. **The algebraic approach**, in which one uses commutation relations (i.e., commutator algebra) involving the operator \mathbf{A} and other operators of interest to deduce the spectrum and degeneracy of the eigenstates directly, and

2. **A differential or integral equation approach**, in which one expresses the eigenvalue equation as a differential equation, an integral equation, or an integro-differential equation in some continuous representation, that is then solved subject to appropriate boundary conditions, as we have done in Schrödinger's mechanics.

Later in this course we will use the **algebraic approach** to solve the eigenvalue problem for the **Harmonic Oscillator** Hamiltonian, and for the components of the **angular momentum operator**.
More generally, in infinite dimensional quantum state spaces there are two main approaches to solving the eigenvalue problem for a linear operator A

1. **The algebraic approach**, in which one uses commutation relations (i.e., commutator algebra) involving the operator A and other operators of interest to deduce the spectrum and degeneracy of the eigenstates directly, and

2. **A differential or integral equation approach**, in which one expresses the eigenvalue equation as a differential equation, an integral equation, or an integro-differential equation in some continuous representation, that is then solved subject to appropriate boundary conditions, as we have done in Schrödinger's mechanics.

Later in this course we will use the **algebraic approach** to solve the eigenvalue problem for the **Harmonic Oscillator** Hamiltonian, and for the components of the **angular momentum operator**. We defer discussion of this approach until later.
To see how the differential or integral equation approach arises, consider, for a single particle, the Hamiltonian operator
To see how the differential or integral equation approach arises, consider, for a single particle, the Hamiltonian operator

\[H = \frac{P^2}{2m} + V \]
To see how the differential or integral equation approach arises, consider, for a single particle, the Hamiltonian operator

\[H = \frac{P^2}{2m} + V \]

the first term of which is diagonal in the wavevector representation,
To see how the differential or integral equation approach arises, consider, for a single particle, the Hamiltonian operator

\[H = \frac{P^2}{2m} + V \]

the first term of which is diagonal in the wavevector representation, the second term \(V = V(\vec{R}) \) is diagonal in the position representation.
To see how the differential or integral equation approach arises, consider, for a single particle, the Hamiltonian operator

\[H = \frac{P^2}{2m} + V \]

the first term of which is diagonal in the wavevector representation, the second term \(V = V(\vec{R}) \) is diagonal in the position representation.

The operator \(H \), however, is generally not diagonal in either.
To see how the differential or integral equation approach arises, consider, for a single particle, the Hamiltonian operator

\[H = \frac{P^2}{2m} + V \]

the first term of which is diagonal in the wavevector representation, the second term \(V = V(\vec{R}) \) is diagonal in the position representation.

The operator \(H \), however, is generally not diagonal in either.

So to find solutions to the eigenvalue equation

\[H|\phi\rangle = E|\phi\rangle \]
To see how the differential or integral equation approach arises, consider, for a single particle, the Hamiltonian operator

\[H = \frac{P^2}{2m} + V \]

the first term of which is diagonal in the wavevector representation, the second term \(V = V(\vec{R}) \) is diagonal in the position representation.

The operator \(H \), however, is generally not diagonal in either.

So to find solutions to the eigenvalue equation

\[H|\phi\rangle = E|\phi\rangle \]

we have to choose one of these representations in which to work.
To see how the differential or integral equation approach arises, consider, for a single particle, the Hamiltonian operator

$$H = \frac{P^2}{2m} + V$$

the first term of which is diagonal in the wavevector representation, the second term $V = V(\vec{R})$ is diagonal in the position representation.

The operator H, however, is generally not diagonal in either.

So to find solutions to the eigenvalue equation

$$H |\phi\rangle = E |\phi\rangle$$

we have to choose one of these representations in which to work.

We can choose either the position or the wavevector representation.
In the position representation, the eigenvector

\[|\phi\rangle = \int d^3 r \, \phi(r) |r\rangle \]

is represented by the eigenfunction \(\phi(r) \).
In the position representation the eigenvector

$$|\phi\rangle = \int d^3r \, \phi(\vec{r}) |\vec{r}\rangle$$

is represented by the eigenfunction $\phi(\vec{r})$.

In this representation, the kinetic energy is a differential operator, while the potential energy is a multiplicative operator.
In the position representation the eigenvector

\[|\phi\rangle = \int d^3r \, \phi(\vec{r}) |\vec{r}\rangle \]

is represented by the eigenfunction \(\phi(\vec{r}) \)

In this representation, the kinetic energy is a differential operator, while the potential energy is a multiplicative operator.
In the position representation the eigenvector

$$|\phi\rangle = \int d^3 r \, \phi(\vec{r}) |\vec{r}\rangle$$

is represented by the eigenfunction $\phi(\vec{r})$.

In this representation, the kinetic energy is a differential operator, while the potential energy is a multiplicative operator.

We “look at” the eigenvalue equation

$$H|\phi\rangle = E|\phi\rangle$$
In the position representation the eigenvector

\[|\phi\rangle = \int d^3r \, \phi(r) |r\rangle \]

is represented by the eigenfunction \(\phi(r) \).

In this representation, the kinetic energy is a differential operator, while the potential energy is a multiplicative operator.

We “look at” the eigenvalue equation in the position representation by multiplying on the left by the basis vector \(\langle \vec{r} | \)

\[\langle \vec{r} | H |\phi\rangle = \langle \vec{r} | E |\phi\rangle \]
In the position representation, the eigenvector

\[|\phi\rangle = \int d^3r \, \phi(\vec{r}) \, |\vec{r}\rangle \]

is represented by the eigenfunction \(\phi(\vec{r}) \)

In this representation, the kinetic energy is a differential operator, while the potential energy is a multiplicative operator.

We “look at” the eigenvalue equation in the position representation by multiplying on the left by the basis vector \(\langle \vec{r}| \)

\[\langle \vec{r}| H |\phi\rangle = \langle \vec{r}| E |\phi\rangle \]

which then becomes

\[-\frac{\hbar^2}{2m} \nabla^2 \phi(\vec{r}) + V(\vec{r})\phi(\vec{r}) = E\phi(\vec{r}) \]
Thus in the position representation the energy eigenvalue equation becomes a partial differential equation

\[-\frac{\hbar^2}{2m} \nabla^2 \phi(\vec{r}) + V(\vec{r})\phi(\vec{r}) = E\phi(\vec{r}) \]

equivalent to that given in Schrödinger's mechanics.
Thus in the position representation the energy eigenvalue equation becomes a partial differential equation

$$\frac{\hbar^2}{2m} \nabla^2 \phi(\vec{r}) + V(\vec{r}) \phi(\vec{r}) = E \phi(\vec{r})$$

equivalent to that given in Schrödinger's mechanics.

The eigenvalues of H are then identified with those solutions which lie within the relevant space, which in our case, is the space of Fourier transformable functions.
Thus in the position representation the energy eigenvalue equation becomes a partial differential equation

$$-\frac{\hbar^2}{2m} \nabla^2 \phi(\vec{r}) + V(\vec{r})\phi(\vec{r}) = E\phi(\vec{r})$$

equivalent to that given in Schrödinger's mechanics.

The eigenvalues of H are then identified with those solutions which lie within the relevant space, which in our case, is the space of Fourier transformable functions (which defines more precisely what we mean by "an acceptable solution", i.e., it includes square-integrable functions, but also includes plane waves, delta functions, and other functions that remain bounded as $|\vec{r}| \rightarrow \infty$. 56
Thus in the position representation the energy eigenvalue equation becomes a partial differential equation

\[
-\frac{\hbar^2}{2m} \nabla^2 \phi(\vec{r}) + V(\vec{r})\phi(\vec{r}) = E\phi(\vec{r})
\]

equivalent to that given in Schrödinger's mechanics.

The eigenvalues of \(H\) are then identified with those solutions which lie within the relevant space, which in our case, is the space of Fourier transformable functions (which defines more precisely what we mean by "an acceptable solution", i.e., it includes square-integrable functions, but also includes plane waves, delta functions, and other functions that remain bounded as \(|\vec{r}| \to \infty\).

Thus, for example, when \(V = 0\) this leads us to the plane waves, but excludes exponentials of the form \(\phi(\vec{r}) = \exp(\vec{\alpha} \cdot \vec{r})\) for real vectors \(\vec{\alpha}\).
Thus in the position representation, the energy eigenvalue equation becomes a partial differential equation

\[-\frac{\hbar^2}{2m} \nabla^2 \phi(\vec{r}) + V(\vec{r})\phi(\vec{r}) = E\phi(\vec{r})\]

equivalent to that given in Schrödinger's mechanics.

The eigenvalues of \hat{H} are then identified with those solutions which lie within the relevant space, which in our case, is the space of Fourier transformable functions (which defines more precisely what we mean by "an acceptable solution"); i.e., it includes square-integrable functions, but also includes plane waves, delta functions, and other functions that remain bounded as $|\vec{r}| \to \infty$.

Thus, for example, when $V = 0$ this leads us to the plane waves, but excludes exponentials of the form $\phi(\vec{r}) = \exp(\vec{\alpha} \cdot \vec{r})$ for real vectors $\vec{\alpha}$, which diverge along the direction of $\vec{\alpha}$ and are not Fourier transformable.
In the momentum or wavevector representation, the eigenvector

\[|\phi\rangle = \int d^3 k \phi(\vec{k}) \ |\vec{k}\rangle \]

is represented by a momentum space eigenfunction \(\phi(\vec{k}) \).
In the momentum or wavevector representation the eigenvector

\[|\phi\rangle = \int d^3k \, \phi(k) \, |k\rangle \]

is represented by a momentum space eigenfunction \(\phi(k) \).

In this representation, the kinetic energy is a multiplicative operator, while the potential energy is “more complicated”.
In the momentum or wavevector representation, the eigenvector

$$|\phi\rangle = \int d^3k \, \phi(\vec{k}) \, |\vec{k}\rangle$$

is represented by a momentum space eigenfunction $\phi(\vec{k})$.

In this representation, the kinetic energy is a multiplicative operator, while the potential energy is "more complicated".

We "look at" the eigenvalue equation in the momentum representation by multiplying on the left by the basis vector $\langle \vec{k} |$

$$\langle \vec{k} | H |\phi\rangle = \langle \vec{k} | E |\phi\rangle$$
In the momentum or wavevector representation, the eigenvector

\[|\phi\rangle = \int d^3k \phi(\vec{k}) |\vec{k}\rangle \]

is represented by a momentum space eigenfunction \(\phi(\vec{k}) \).

In this representation, the kinetic energy is a multiplicative operator, while the potential energy is “more complicated”.

We “look at” the eigenvalue equation in the momentum representation by multiplying on the left by the basis vector \(\langle \vec{k} | \)

\[\langle \vec{k} | H |\phi\rangle = \langle \vec{k} | E |\phi\rangle \]

On the left, we have

\[\langle \vec{k} | H |\phi\rangle = \langle \vec{k} | \frac{P^2}{2m} |\phi\rangle + \langle \vec{k} | V |\phi\rangle \]
But in this representation, the kinetic energy terms becomes

$$\langle \vec{k} | \frac{\vec{P}^2}{2m} | \phi \rangle = \frac{\hbar^2 k^2}{2m} \phi(\vec{k})$$
But in this representation, the kinetic energy terms becomes

$$\langle \vec{k} | \frac{\vec{P}^2}{2m} | \phi \rangle = \frac{\hbar^2 k^2}{2m} \phi(\vec{k})$$

while the potential energy term can be written

$$\langle \vec{k} | V | \phi \rangle = \int d^3 k' \langle \vec{k} | V | \vec{k}' \rangle \langle \vec{k}' | \phi \rangle$$

$$= \int d^3 k' \ V(\vec{k}, \vec{k}') \phi(\vec{k}')$$
But in this representation, the kinetic energy terms becomes

\[\langle \vec{k} | \frac{P^2}{2m} | \phi \rangle = \frac{\hbar^2 k^2}{2m} \phi(k) \]

while the potential energy term can be written

\[
\langle \vec{k} | V | \phi \rangle = \int d^3 k' \langle \vec{k} | V | \vec{k}' \rangle \langle \vec{k}' | \phi \rangle \\
= \int d^3 k' V(\vec{k}, \vec{k}') \phi(k')
\]

combining these with the expression

\[\langle \vec{k} | E | \phi \rangle = E \phi(k) \]

which appears on the right hand side of the eigenvalue equation ...
we obtain an integral equation

\[\frac{\hbar^2 k^2}{2m} \phi(\vec{k}) + \int d^3k' V(\vec{k}, \vec{k'}) \phi(\vec{k'}) = E \phi(\vec{k}) \]

which represents the eigenvalue equation in the momentum representation.
we obtain an integral equation

\[\frac{\hbar^2 k^2}{2m} \phi(\vec{k}) + \int d^3k' \ V(\vec{k}, \vec{k}') \phi(\vec{k}') = E \phi(\vec{k}) \]

which represents the eigenvalue equation in the momentum representation.

To put it in a more standard integral equation form, we move the integral to the right and combine the terms proportional to \(\phi(\vec{k}) \) on the left to
we obtain an integral equation

\[\frac{\hbar^2 k^2}{2m} \phi(\vec{k}) + \int d^3k' V(\vec{k}, \vec{k}') \phi(\vec{k}') = E \phi(\vec{k}) \]

which represents the eigenvalue equation in the momentum representation.

To put it in a more standard integral equation form, we move the integral to the right and combine the terms proportional to \(\phi(\vec{k}) \) on the left to obtain

\[(E - E_k) \phi(\vec{k}) = \int d^3k' V(\vec{k}, \vec{k}') \phi(\vec{k}') \quad \text{where} \quad E_k = \frac{\hbar^2 k^2}{2m} \]
we obtain an **integral equation**

\[
\frac{\hbar^2 k^2}{2m} \phi(\vec{k}) + \int d^3 k' \, V(\vec{k}, \vec{k}') \phi(\vec{k}') = E \phi(\vec{k})
\]

which represents the eigenvalue equation in the momentum representation.

To put it in a more standard integral equation form, we move the integral to the right and combine the terms proportional to \(\phi(\vec{k}) \) on the left to obtain

\[
(E - E_k) \, \phi(\vec{k}) = \int d^3 k' \, V(\vec{k}, \vec{k}') \phi(\vec{k}') \quad \text{where} \quad E_k = \frac{\hbar^2 k^2}{2m}
\]

or

\[
\phi(\vec{k}) = \frac{1}{(E - E_k)} \int d^3 k' \, V(\vec{k}, \vec{k}') \phi(\vec{k}')
\]
Often integral equations of this form can be put in a form where they can be solved by iteration. We will see how to “solve” integral equations of this form later in the course.
Often integral equations of this form can be put in a form where they can be solved by **iteration**. We will see how to “solve” integral equations of this form later in the course.

Of course to work with this integral equation we need the matrix elements \(V(\vec{k}, \vec{k}') \) of the potential energy operator in the momentum representation.
Often integral equations of this form can be put in a form where they can be solved by iteration. We will see how to “solve” integral equations of this form later in the course.

Of course to work with this integral equation we need the matrix elements $V(\vec{k}, \vec{k}')$ of the potential energy operator in the momentum representation.

Inserting a decomposition of V in the \vec{r} - representation we find that
Often integral equations of this form can be put in a form where they can be solved by iteration. We will see how to “solve” integral equations of this form later in the course.

Of course to work with this integral equation we need the matrix elements $V(\vec{k}, \vec{k}')$ of the potential energy operator in the momentum representation.

Inserting a decomposition of V in the \vec{r} - representation we find that

$$V(\vec{k}, \vec{k}') = \langle \vec{k} | V | \vec{k}' \rangle$$
Often integral equations of this form can be put in a form where they can be solved by **iteration**. We will see how to “solve” integral equations of this form later in the course.

Of course to work with this integral equation we need the matrix elements $V(\vec{k}, \vec{k}')$ of the potential energy operator in the momentum representation.

Inserting a decomposition of V in the \vec{r} - representation we find that

$$V(\vec{k}, \vec{k}') = \langle \vec{k}|V|\vec{k}' \rangle = \int d^3r \langle \vec{k}|\vec{r} \rangle V(\vec{r})\langle \vec{r} |\vec{k}' \rangle$$
Often integral equations of this form can be put in a form where they can be solved by iteration. We will see how to “solve” integral equations of this form later in the course.

Of course to work with this integral equation we need the matrix elements \(V(\vec{k}, \vec{k}') \) of the potential energy operator in the momentum representation.

Inserting a decomposition of \(V \) in the \(\vec{r} \) - representation we find that

\[
V(\vec{k}, \vec{k}') = \langle \vec{k}|V|\vec{k}' \rangle = \int d^3 r \langle \vec{k}|\vec{r} \rangle V(\vec{r}) \langle \vec{r}|\vec{k}' \rangle = \int \frac{d^3 r}{(2\pi)^3} V(\vec{r}) e^{-i(\vec{k}-\vec{k}') \cdot \vec{r}}.
\]
Often integral equations of this form can be put in a form where they can be solved by iteration. We will see how to “solve” integral equations of this form later in the course.

Of course to work with this integral equation we need the matrix elements $V(\vec{k}, \vec{k}')$ of the potential energy operator in the momentum representation.

Inserting a decomposition of V in the \vec{r} - representation we find that

$$ V(\vec{k}, \vec{k}') = \langle \vec{k} | V | \vec{k}' \rangle = \int d^{3} r \langle \vec{k} | \vec{r} \rangle V(\vec{r}) \langle \vec{r} | \vec{k}' \rangle $$

$$ = \int \frac{d^{3} r}{(2\pi)^{3}} V(\vec{r}) e^{-i(\vec{k} - \vec{k}') \cdot \vec{r}} = \tilde{V}(\vec{k} - \vec{k}') $$
Often integral equations of this form can be put in a form where they can be solved by **iteration**. We will see how to “solve” integral equations of this form later in the course.

Of course to work with this integral equation we need the matrix elements $V(\vec{k}, \vec{k}')$ of the potential energy operator in the momentum representation.

Inserting a decomposition of V in the \vec{r} - representation we find that

$$V(\vec{k}, \vec{k}') = \langle \vec{k} | V | \vec{k}' \rangle = \int d^3r \langle \vec{k} | \vec{r} \rangle V(\vec{r}) \langle \vec{r} | \vec{k}' \rangle$$

$$= \int \frac{d^3r}{(2\pi)^3} V(\vec{r}) e^{-i(\vec{k} - \vec{k}') \cdot \vec{r}} = \tilde{V}(\vec{k} - \vec{k}')$$

where $\tilde{V}(\vec{k})$ is “essentially” the Fourier transform of $V(\vec{r})$.

77
The energy eigenvalue equation is not always an integral equation in momentum space.
The energy eigenvalue equation is not always an integral equation in momentum space.

Consider, for example, the case of a particle moving in 1D, in response to a constant force of magnitude F directed along the positive x-axis.
The energy eigenvalue equation is not always an integral equation in momentum space.

Consider, for example, the case of a particle moving in 1D, in response to a constant force of magnitude F directed along the positive x-axis.

The corresponding classical potential is just a linear ramp, i.e.,

$$V(x) = -Fx$$
The energy eigenvalue equation is not always an integral equation in momentum space.

Consider, for example, the case of a particle moving in 1D, in response to a constant force of magnitude F directed along the positive x-axis.

The corresponding classical potential is just a linear ramp, i.e.,

$$V(x) = -Fx$$

the negative gradient of which generates the constant force.
The quantum mechanical Hamiltonian operator is

\[H = \frac{P^2}{2m} - FX \]
The quantum mechanical Hamiltonian operator is

\[H = \frac{P^2}{2m} - FX \]

In the position representation the energy eigenvalue equation becomes a second order differential equation

\[\langle x | H | \phi \rangle = \langle x | E | \phi \rangle \]
The quantum mechanical Hamiltonian operator is

\[H = \frac{P^2}{2m} - FX \]

In the position representation the energy eigenvalue equation becomes a second order differential equation

\[\langle x|H|\phi \rangle = \langle x|E|\phi \rangle \]

\[-\frac{\hbar^2}{2m} \phi''(x) - (Fx + E) \phi(x) = 0 \]
The quantum mechanical Hamiltonian operator is

\[H = \frac{P^2}{2m} - FX \]

In the position representation the energy eigenvalue equation becomes a second order differential equation

\[\langle x | H | \phi \rangle = \langle x | E | \phi \rangle \]

\[-\frac{\hbar^2}{2m} \phi''(x) - (Fx + E) \phi(x) = 0 \]

whose solutions, after considerable work, can be expressed in terms of the Airy functions \(\text{Ai}(x) \).
In the momentum representation, however, the eigenvalue equation takes the form

\[\frac{\hbar^2 k^2}{2m} \phi(k) - iF \phi'(k) - E \phi(k) = 0 \]
In the momentum representation, however, the eigenvalue equation takes the form

\[
\frac{\hbar^2 k^2}{2m} \phi (k) - iF \phi' (k) - E \phi (k) = 0
\]

which is just a first order equation, due to the fact that \(X\) acts as a first-order differential operator in the momentum representation.
In the momentum representation, however, the eigenvalue equation takes the form

\[
\frac{\hbar^2 k^2}{2m} \phi(k) - iF \phi'(k) - E \phi(k) = 0
\]

which is just a first order equation, due to the fact that \(X\) acts as a first-order differential operator in the momentum representation.

This can be separated

\[
\frac{d\phi}{dk} = i (\varepsilon - \alpha k^2) \phi
\]
In the momentum representation, however, the eigenvalue equation takes the form

\[\frac{\hbar^2 k^2}{2m} \phi(k) - iF \phi'(k) - E \phi(k) = 0 \]

which is just a first order equation, due to the fact that \(X \) acts as a first-order differential operator in the momentum representation.

This can be separated

\[\frac{d\phi}{dk} = i (\varepsilon - \alpha k^2) \phi \]

where

\[\alpha = \frac{\hbar^2}{2mF} \]
In the momentum representation, however, the eigenvalue equation takes the form

\[
\frac{\hbar^2 k^2}{2m} \phi (k) - iF \phi' (k) - E \phi (k) = 0
\]

which is just a first order equation, due to the fact that \(X\) acts as a first-order differential operator in the momentum representation.

This can be separated

\[
\frac{d\phi}{dk} = i \left(\varepsilon - \alpha k^2 \right) \phi
\]

where

\[
\alpha = \frac{\hbar^2}{2mF} \quad \varepsilon = \frac{E}{F}
\]
In the momentum representation, however, the eigenvalue equation takes the form

\[
\frac{\hbar^2 k^2}{2m} \phi(k) - i F \phi'(k) - E \phi(k) = 0
\]

which is just a first order equation, due to the fact that \(X\) acts as a first-order differential operator in the momentum representation.

This can be separated

\[
\frac{d\phi}{dk} = i (\varepsilon - \alpha k^2) \phi
\]

where

\[
\alpha = \frac{\hbar^2}{2mF} \quad \varepsilon = \frac{E}{F}
\]

and integrated

\[
\int_{\phi(0)}^{\phi(x)} \frac{d\phi}{\phi} = i \int_{0}^{k} (\varepsilon - \alpha k^2) dk
\]
to give

\[\ln \phi(x) / \phi(0) = i(\varepsilon k - \frac{1}{3} \alpha k^3) \]
to give

\[\ln \phi(x) / \phi(0) = i(\varepsilon k - \frac{1}{3} \alpha k^3) \]

or

\[\phi_\varepsilon(k) = \phi(0) \exp(i[\varepsilon k - \frac{1}{3} \alpha k^3]) \]
to give

\[
\ln \phi (x) / \phi (0) = i (\varepsilon k - \frac{1}{3} \alpha k^3)
\]

or

\[
\phi_{\varepsilon} (k) = \phi (0) \exp(i[\varepsilon k - \frac{1}{3} \alpha k^3])
\]

These solutions remain bounded only for real values of \(\varepsilon \).
to give

$$\ln \phi(x)/\phi(0) = i(\varepsilon k - \frac{1}{3} \alpha k^3)$$

or

$$\phi_{\varepsilon}(k) = \phi(0) \exp(i[\varepsilon k - \frac{1}{3} \alpha k^3])$$

These solutions remain bounded only for real values of ε.

So the particle subjected to a constant force has an energy spectrum that consists of all real values of ε (positive and negative),
to give

\[\ln \phi(x) / \phi(0) = i(\varepsilon k - \frac{1}{3} \alpha k^3) \]

or

\[\phi_\varepsilon(k) = \phi(0) \exp(i[\varepsilon k - \frac{1}{3} \alpha k^3]) \]

These solutions remain bounded only for real values of \(\varepsilon \).

So the particle subjected to a constant force has an energy spectrum that consists of all real values of \(\varepsilon \) (positive and negative), which is consistent with the classical idea that we can always find some place on the linear ramp, where the potential energy takes any real value.
to give

\[\ln \phi(x) / \phi(0) = i(\varepsilon k - \frac{1}{3} \alpha k^3) \]

or

\[\phi_\varepsilon(k) = \phi(0) \exp(i[\varepsilon k - \frac{1}{3} \alpha k^3]) \]

These solutions remain bounded only for real values of \(\varepsilon \).

So the particle subjected to a constant force has an energy spectrum that consists of all real values of \(\varepsilon \) (positive and negative), which is consistent with the classical idea that we can always find some place on the linear ramp, where the potential energy takes any real value.

To normalize these solutions, we see that, since the spectrum is continuous, **Dirac normalization** is the appropriate condition to impose.
Thus we must choose the value of $\phi(0)$ so that
Thus we must choose the value of \(\phi(0) \) so that

\[
\int_{-\infty}^{\infty} dk \, \phi^*_\varepsilon(k) \phi_{\varepsilon'}(k) = \delta(\varepsilon - \varepsilon')
\]
Thus we must choose the value of $\phi(0)$ so that

$$\int_{-\infty}^{\infty} dk \, \phi_{\varepsilon}^* (k) \phi_{\varepsilon'} (k) = \delta (\varepsilon - \varepsilon')$$

This requires that

$$|\phi(0)|^2 \int_{-\infty}^{\infty} dk \, e^{-i(\varepsilon-\varepsilon')k} = \delta (\varepsilon - \varepsilon')$$
Thus we must choose the value of $\phi (0)$ so that

$$\int_{-\infty}^{\infty} dk \ \phi_{\varepsilon}^* (k) \phi_{\varepsilon'} (k) = \delta (\varepsilon - \varepsilon')$$

This requires that

$$|\phi (0)|^2 \int_{-\infty}^{\infty} dk \ e^{-i(\varepsilon-\varepsilon')k} = \delta (\varepsilon - \varepsilon')$$

Assuming $\phi (0)$ to be real and positive, one finds that $\phi (0) = (2\pi)^{-1/2}$
Thus we must choose the value of $\phi(0)$ so that

$$\int_{-\infty}^{\infty} dk \, \phi^*_\varepsilon(k) \phi_{\varepsilon'}(k) = \delta(\varepsilon - \varepsilon')$$

This requires that

$$|\phi(0)|^2 \int_{-\infty}^{\infty} dk \, e^{-i(\varepsilon - \varepsilon')k} = \delta(\varepsilon - \varepsilon')$$

Assuming $\phi(0)$ to be real and positive, one finds that $\phi(0) = (2\pi)^{-1/2}$

Thus, for any fixed value of α, and for all $\varepsilon \in \mathbb{R}$, the functions
Thus we must choose the value of $\phi (0)$ so that

$$\int_{-\infty}^{\infty} dk \; \phi_{\varepsilon}^* (k) \phi_{\varepsilon'} (k) = \delta (\varepsilon - \varepsilon')$$

This requires that

$$|\phi (0)|^2 \int_{-\infty}^{\infty} dk \; e^{-i(\varepsilon-\varepsilon')k} = \delta (\varepsilon - \varepsilon')$$

Assuming $\phi (0)$ to be real and positive, one finds that $\phi (0) = (2\pi)^{-1/2}$

Thus, for any fixed value of α, and for all $\varepsilon \in \mathbb{R}$, the functions

$$\phi_{\varepsilon} (k) = \frac{1}{\sqrt{2\pi}} \exp \left(-i \left[\varepsilon k + \frac{1}{3} \alpha k^3 \right] \right)$$

represent a complete set of states $|\varepsilon\rangle$ for a particle moving in $1D$. 103
Note that these states, represented by momentum space wavefunctions

\[\phi_\epsilon (k) = \frac{1}{\sqrt{2\pi}} \exp \left(i \left[\epsilon k - \frac{1}{3} \alpha k^3 \right] \right) \]

can be used as a basis set to work in, even when the particle is not subject to a constant force,
Note that these states, represented by momentum space wavefunctions

\[\phi_{\epsilon}(k) = \frac{1}{\sqrt{2\pi}} \exp \left(i \left[\epsilon k - \frac{1}{3} \alpha k^3 \right] \right) \]

can be used as a basis set to work in, even when the particle is not subject to a constant force,

Just as the plane waves form a perfectly good representation, even when the particle is not free.
In this segment, we discussed how to solve the eigenvalue problem in an infinite dimensional state space, which can have both discrete and continuous representations.
In this segment, we discussed how to solve the eigenvalue problem in an infinite dimensional state space, which can have both discrete and continuous representations.

We showed how an eigenvalue equation in continuous representations can lead to differential equations, or integral equations, and sometimes to equations that contain both integral parts and differential parts.
In this segment, we discussed how to solve the eigenvalue problem in an infinite dimensional state space, which can have both discrete and continuous representations.

We showed how an eigenvalue equation in continuous representations can lead to differential equations, or integral equations, and sometimes to equations that contain both integral parts and differential parts.

In solving these equations, the eigenvalues emerge as those values for which acceptable solutions exist, i.e., solutions that actually lie inside the state space.
In this segment, we discussed how to solve the eigenvalue problem in an infinite dimensional state space, which can have both discrete and continuous representations.

We showed how an eigenvalue equation in continuous representations can lead to differential equations, or integral equations, and sometimes to equations that contain both integral parts and differential parts.

In solving these equations, the eigenvalues emerge as those values for which acceptable solutions exist, i.e., solutions that actually lie inside the state space.

Sometimes, Hermitian operators do not have eigenstates that lie within the state space.
In this segment, we discussed how to solve the eigenvalue problem in an infinite dimensional state space, which can have both discrete and continuous representations.

We showed how an eigenvalue equation in continuous representations can lead to differential equations, or integral equations, and sometimes to equations that contain both integral parts and differential parts.

In solving these equations, the eigenvalues emerge as those values for which acceptable solutions exist, i.e., solutions that actually lie inside the state space.

Sometimes, Hermitian operators do not have eigenstates that lie within the state space.

So in an infinite dimensional space, not all Hermitian operators are observables for that space.
In the next segment, we finish up our discussion of the properties of linear operators, by considering under what circumstances two different observables can have

1. No common eigenstates,
In the next segment, we finish up our discussion of the properties of linear operators, by considering under what circumstances two different observables can have

1. No common eigenstates,
2. Some common eigenstates, but not an ONB of eigenstates,
In the next segment, we finish up our discussion of the properties of linear operators, by considering under what circumstances two different observables can have

1. No common eigenstates,
2. Some common eigenstates, but not an ONB of eigenstates,
3. An ONB of eigenstates that are simultaneous eigenstates of both observables.
In the next segment, we finish up our discussion of the properties of linear operators, by considering under what circumstances two different observables can have

1. No common eigenstates,
2. Some common eigenstates, but not an ONB of eigenstates,
3. An ONB of eigenstates that are simultaneous eigenstates of both observables.

Once we start discussing the third postulate, it will be seen that it is only in the 3rd case, where we can simultaneously measure both observables at once.
In the next segment, we finish up our discussion of the properties of linear operators, by considering under what circumstances two different observables can have

1. No common eigenstates,
2. Some common eigenstates, but not an ONB of eigenstates,
3. An ONB of eigenstates that are simultaneous eigenstates of both observables.

Once we start discussing the third postulate, it will be seen that it is only in the 3rd case, where we can simultaneously measure both observables at once.

Sets of observables satisfying condition (3), are therefore called compatible observables.