EE 213
3/2/2014
INGC, JC, and JNZ Instructions for the WIMP51

For the beginning of the project | looked up the Hex code for the JNC, JC, JNZ, as well as JZ so
that | could compare with how it was created with the other jump instructions needed. The Hex codes,
as well as the binary codes, for each new instruction are on the ‘Code for Testing’ page.

The next step was to go over each write enable: ACC_WE, AUX_WE, IR_WE, REG_IN, REG_EN,
C_WE, and PC_WE. With each one | checked to see if the code for the instructions needed to be off or
on for Fetch , Decode, or Execute. After checking my code with all the write enables | found that my
code was active or inactive as it should be for each write enable except for PC_WE and ACC_WE.

G I RSSO
. e R L N EEE SRR SRR SR RREEE
2 S
e e T N 1 I et Tl
L R L MENT_DISREAY
i e N Lo a
E..I:I-.UI D Lol b
. ok b
I e d
e e A g S e
.................... :
R I | R g
MENT_DISPEAY -« oo oot oot S
a i e T
" b e e TR
- T N T
d e N NV
e e T 5
f e T T
P T AN
Figure 1: Accum changed

For the accumulator write eng™ Fetch, Decode, and

Execute. However, the accumulator u rded rather than
using code to show what is needed. E ne accumulator so |
had to add each one. In Figure 2 it sh with two AND gates
combined through an OR gate. Figure e already created JZ

code.

rdua
Text Box

rdua
Text Box

EE 213
3/2/2014

=
5
o "

- |-z Ebore e
ST x Deed |
N x1 Dect ol P I

et

e

Figure 2: Instructions added

to the ACC_WE JNC and JC

EURVRVENRVRURUE]

Ner A

Figure 3: INZ a

dded

The next change was to the PC_WE. After creating the new code for the PC_WE | had to create
a new input for IR2. With that | had to make a new PC_WE and bring it into the program and wire IR2 to
it from the ALU.

rdua
Text Box

rdua
Text Box

EE 213
3/2/2014

EXECUTE
DECODE
IR2

Figure 4: Program Counter Write Enable

For the PC_WE all three instructions had to be added. For the instruction JNZ to differentiate it
from other instructions | had to bring in IR2 which is shown in Figure 6. JNC and JC are shown at the top
of Figure 5 combine into two AND gates moved into an OR. JNZ is shown in the middle branching off of

the already created JZ instruction.

rdua
Text Box

rdua
Text Box

EE 213
. 3/2/2014

Figure 6: Shows the IR2 input added to the program

The jump instruction that already existed was located in the PC_ALU and that was where the
rest of the new jump instructions would be added. Figure 7 below shows the new PC_ALU block that
had to be input into the program after | made the changes for the carry bit to be brought in. The input
for the carry bit was called COUT and rewired for the new block.

::‘:::::::::::::: R I o Vi)
..... at FC_O
..... ao PC_1
_____ R4 PC_2
_____ R2 PC_3
..... IRz PC_4
IR1 PC_S
A7
—ZF
IR0
co
AU
PC,
Al
PC
CLliiiiiiis AU
PC,
SRS SEEN Al
PC.
HSSSSESSEEEE S & b ee—————
. . FC.
LLliiiinii AU
- PC

~ Figure 7: new PC_ALU block added showing COUT

For the PC_ALU the only jump instruction was originally JZ. For JZ it looked into a zero coming
for a jump and so for JNZ | added a NOT to the zero. Figure 11 shows that for the JC and JNC | added a
carry bit coming into the same OR as the zero commands were. Figure 9 shows that what | added to the
PC_ALU was for the JZ and JNZ instructions to use IR4 and IR3 put through an AND gate as 00
respectively, and for JC and JNC they were each put through an AND gate as well as 10 respectively.
After it is decided whether 00 or 10 is going through then it decides whether zero or carry is active or
not.

rdua
Text Box

rdua
Text Box

EE 213
3/2/2014

|

|

|

|

|

’T T rI
Figure 10: Shows the connection for IR4 and IR3

rdua
Text Box

rdua
Text Box

rdua
Text Box

EE 213
3/2/2014
|

]

¥ — L -l iyl [[I |
g L

.......... I:T
[— ud
[— ud

- :

Figure 11: Shows the connection for the ca

rry and zero bit

All the new instructions and previous instructions were tested with the code in the next section.
Each test was ran until ended by a SIMP which would cycle through the last command. Every jump
operated as needed and would proceed or not proceed depending on what the circumstance called for.

rdua
Text Box

EE 213
3/2/2014

Code for Testing
JNC: Hex -50 Binary - 01010000
JNZ: Hex-70 Binary - 01110000

JC: Hex-40 Binary - 01000000

Instruction Set: Address: Machine Code:
MOV A, #05H 00 74
01 05 A = #05H
JNZN_1 02 70
03 05 jump to 09
N 2 SETBC 04 D3 Cy=1
JCN_3 05 40
06 0A jump to 11
MOV A #00H 07 74
08 00 A = #00H
N 1 JINZN_2 09 70
0A F9 jump to 04
N5 CLRC 0B C3 CY=0
JNC N_6 oC 50
oD 0A jump to 18
N 4 SETBC OE D3 Cy=1
JCN 5 OF 40
10 FA jump to 0B
N 3 CLRC 11 C3 CY=0
MOV A #00H 12 74
13 00 A = #00H
ADD A #79H 14 34
15 79 A = #79H
INCN_4 16 50
17 F6 jump to OE
N_6/
BACK SIMP BACK 18 80

19 FE

