

 EE 213
 3/2/2014

JNC, JC, and JNZ Instructions for the WIMP51

 For the beginning of the project I looked up the Hex code for the JNC, JC, JNZ, as well as JZ so
that I could compare with how it was created with the other jump instructions needed. The Hex codes,
as well as the binary codes, for each new instruction are on the ‘Code for Testing’ page.

 The next step was to go over each write enable: ACC_WE, AUX_WE, IR_WE, REG_IN, REG_EN,
C_WE, and PC_WE. With each one I checked to see if the code for the instructions needed to be off or
on for Fetch , Decode, or Execute. After checking my code with all the write enables I found that my
code was active or inactive as it should be for each write enable except for PC_WE and ACC_WE.

Figure 1: Accumulator Write Enable one of the two write enables changed

 For the accumulator write enable my code was supposed to be inactive for Fetch, Decode, and
Execute. However, the accumulator uses a NOR gate to show which code is not needed rather than
using code to show what is needed. Every code I used was not present already in the accumulator so I
had to add each one. In Figure 2 it shows that my code for JNC and JC were added with two AND gates
combined through an OR gate. Figure 3 shows the JNZ that I added branched off the already created JZ
code.

rdua
Text Box

rdua
Text Box

 EE 213
 3/2/2014

 Figure 2: Instructions added to the ACC_WE JNC and JC

Figure 3: JNZ added to eh ACC_WE

 The next change was to the PC_WE. After creating the new code for the PC_WE I had to create
a new input for IR2. With that I had to make a new PC_WE and bring it into the program and wire IR2 to
it from the ALU.

rdua
Text Box

rdua
Text Box

 EE 213
 3/2/2014

Figure 4: Program Counter Write Enable

For the PC_WE all three instructions had to be added. For the instruction JNZ to differentiate it

from other instructions I had to bring in IR2 which is shown in Figure 6. JNC and JC are shown at the top
of Figure 5 combine into two AND gates moved into an OR. JNZ is shown in the middle branching off of
the already created JZ instruction.

Figure 5: JNC, JC, and JNZ added at the top and middle

rdua
Text Box

rdua
Text Box

 EE 213
 3/2/2014

Figure 6: Shows the IR2 input added to the program

 The jump instruction that already existed was located in the PC_ALU and that was where the
rest of the new jump instructions would be added. Figure 7 below shows the new PC_ALU block that
had to be input into the program after I made the changes for the carry bit to be brought in. The input
for the carry bit was called COUT and rewired for the new block.

Figure 7: new PC_ALU block added showing COUT

 For the PC_ALU the only jump instruction was originally JZ. For JZ it looked into a zero coming
for a jump and so for JNZ I added a NOT to the zero. Figure 11 shows that for the JC and JNC I added a
carry bit coming into the same OR as the zero commands were. Figure 9 shows that what I added to the
PC_ALU was for the JZ and JNZ instructions to use IR4 and IR3 put through an AND gate as 00
respectively, and for JC and JNC they were each put through an AND gate as well as 10 respectively.
After it is decided whether 00 or 10 is going through then it decides whether zero or carry is active or
not.

rdua
Text Box

rdua
Text Box

 EE 213
 3/2/2014

Figure 8: Zoomed out look to show most of the changes in the PC_ALU

Figure 9: Top shows IR4 and IR3 as 00 and 10 between an OR gate

Figure 10: Shows the connection for IR4 and IR3

rdua
Text Box

rdua
Text Box

rdua
Text Box

 EE 213
 3/2/2014

Figure 11: Shows the connection for the carry and zero bit

 All the new instructions and previous instructions were tested with the code in the next section.
Each test was ran until ended by a SJMP which would cycle through the last command. Every jump
operated as needed and would proceed or not proceed depending on what the circumstance called for.

rdua
Text Box

 EE 213
 3/2/2014

Code for Testing

JNC: Hex - 50 Binary - 01010000

JNZ: Hex - 70 Binary - 01110000

JC: Hex - 40 Binary - 01000000

Instruction Set: Address: Machine Code:

MOV A, #05H 00 74

 01 05 A = #05H

JNZ N_1 02 70

 03 05 jump to 09

N_2 SETB C 04 D3 CY = 1

 JC N_3 05 40

 06 0A jump to 11

 MOV A,#00H 07 74

 08 00 A = #00H

N_1 JNZ N_2 09 70

 0A F9 jump to 04

N_5 CLR C 0B C3 CY = 0

JNC N_6 0C 50

 0D 0A jump to 18

N_4 SETB C 0E D3 CY = 1

 JC N_5 0F 40

 10 FA jump to 0B

N_3 CLR C 11 C3 CY = 0

 MOV A,#00H 12 74

 13 00 A = #00H

 ADD A,#79H 14 34

 15 79 A = #79H

 JNC N_4 16 50

 17 F6 jump to 0E

N_6/

BACK SJMP BACK 18 80

 19 FE

