CpE 213
Project 1
3/4/2014

Project 1: Modified WIMP51

The purpose of this project was to create a version of the WIMP51 processor in Quartus Il using Block

Diagram Files, and to become more familiar with how a microprocessor works in the process.

To do this project, two instructions were chosen to add to the original instruction set of the WIMP51
(Table 1): XCH A, Rn and CLR A. The instruction XCH A, Rn has an op code of 11001nnn and should be
able to exchange the data from the accumulator and a chosen register in the register bank. The
instruction CLR A has an op code of 11100100 and when activated, should set all bits of the accumulator

to 0.

MOV A, #D
ADDC A, #D
MOV Rn, A
MOV A, Rn
ADDC A, Rn
ORL A,Rn
ANL A, Rn
XRL A, Rn
SWAP A
CLR C

SETB C
SJUMP rel
JZ rel

XCH A, Rn
CLR A

01110100
00110100
11111nnn
11101nnn
00111nnn
01001nnn
01011nnn
01101nnn
11000100
11000011
11010011
10000000
01100000
11001nnn
11100100

dddddddd
dddddddd

dddaaaaa

daadaaaa

Table 1: Modified WIMP51 Instruction Set

A<=D

C, A<=A+D+C

Rn<=A

A<=Rn

C, A<=A+Rn+C
A<=A OR Rn

A<=A AND Rn

A<=A XOR Rn
A<=A(3-0) SWAP A(7-4)
C<=0

<=1

PC<=PC+rel+1
PC<=PC+rel+1 if Z
A<=Rn Rn<=A

A<=0

In order to in
accumulator
additional aU
accumulator
accumulator
REG write en
the XCH insty
AUX_WE wa
needed to bg
the AUX nee

ted into the
ter this, an

bm the

le and the
o that if
The

1P51 that
> data from
ng (Figures

rdua
Text Box

CpE 213
Project 1
3/4/2014
4-6). This was implemented using and AND gate into the MUX_2 branch, which selects the bypass
function in the ALU so that when XCH instruction appears, the ALU will allow the data to pass without
any changes.

I
v
i 0) D

=
]
c
5
'r
o
I
5
3
=
5
(3
-+

INPUT_S zfue

PARALLEL LS
CLRN
CLOCK

e

INFUT_1 OUTFUT_1

INPUT_2 OUTRUT_2

INFUT_2 OUTFUT 3

INFUT_4 OUTPUT_4

INFUT_E OUTPUT_5 [———r
INPUT_& OUTRUT & [—

INPUT_? ouTPUT_7 |—— |+
PARALLEL | OAD
CLRN
cLOCK

=t

—?Q*'E-J—D AUX_WE

Figure 2: AUX_WE

rdua
Text Box

rdua
Text Box

CpE 213
Project 1
3/4/2014

Figure 3: REG_WE

Figure 4: LA_SEL updated with instruction for XCH routed to MUX_2 (bypass adder and logic) and
instruction for CLR A routed to all 3 stages of Priority encoder

rdua
Text Box

rdua
Text Box

DUTPUT

Figure 5: Updated LA_SEL block symbol

ACCO

ACC1

TR
T meuTs
T INRUT S
T meuty

QooooDO0

ACCZ
ACC3
ACCH
ACCS
ACCH

ACCT

Li DiE?
L0 DisP
losic_msp_o
losic_Dise_1
losic_mep_2
losic_mise_s
losic_msp_+
losic_mise_s
losic mse 6
fosic mse 7
ACD S0
ACD_S_1
ACD 52
ACD_S_3
ACD_S 4
ACD_S S
ACD 56
ACD S 7
ALK 0 DIsP
L% 0 Dise2
U%_0_DIsP3
L%_0_DisPd
L% _0_CIsPs

cout

Ahreanalie loan AT

Figure 6: Updated ALU block symbol

CpE 213
Project 1
3/4/2014

rdua
Text Box

rdua
Text Box

CpE 213

Project 1
3/4/2014

In order to implement CLR A, the only update that was made was to the LA_SEL part. This update told

the unit that selects the function performed in the ALU that if CLR A instruction shows up, then send

zeroes to the accumulator. This was implemented using a NAND gate and AND gates, because if the CLR

instruction is not present, that part of the AND gate will be 1, and not interfere with the other logic

(Figure 4).

After updating the block diagrams to include the new instructions, a test program was written to make
sure that the original instruction set had not been changed, and that the new instructions worked
properly as well (Table 2).

Memory Machine

Address Code Data Value
OOH MOV A, #80H 74H

01H 80H A=80H
02H MOV RO, A F8H RO=80H
O3H SWAP A C4H A=08H
04H XCH A, RO C8H A=80H, R1=08H
O5H CLRC C3H

O6H ADDCA, RO 38H A=88H
O7H MOV R1, A FOH R1=88H
08H ORLA, RO 48H A=88H
0O9H MOV R2, A FAH R2=88H
OAH ANL A, RO 58H A=09H
0BH MOV R3, A FBH R3=08H
OCH XRL A, RO 68H A=00H
ODH MOV R4, A FCH R4=00H
OEH MOV A, RO E8H A=80H
OFH CLRC C3H

10H SETB C D3H

11H CLR A E4H A=00H
12H MOV A, #02H 74H

13H 01H A=02H
14H HERE: CLRC C3H

15H ADDCA, #0FFH 34H A=01H, A=00H
16H FFH

17H JZEND 60H

18H 02H

19H SJUMP HERE 80H

1AH FOH

1BH END: SJUMP END 80H

1CH FEH

Table 2: Test Program for Modified WIMP51

Conclusion

CpE 213
Project 1
3/4/2014

After doing this project, | was able to better understand how the WIMP51 works, as well as how to

program using machine and assembly level code. Having to trace what was happening to the data during
the testing process was the most helpful in understanding how the data flows in the WIMP51, while
writing a test program using instructions such as JZ and SJUMP helped me to understand how those
instructions work, as well as how to use them. JZ should be used when a countdown of any sort is taking
place, and the next action should only take place when the result is 0. SIUMP should be used to repeat
an action over and over. For the WIMP51, this is also used at the end of the program so that the
program will stop its actions without altering the current data in the registers. Using the Altera board for
an interface was helpful because not all parts were visible without manually choosing to view
something, such as the accumulator or the register bank; making a conscious decision to view some of
these registers was a good way to keep track of what was being viewed. This project was a good
stepping stone into understanding how the WIMP51 works.

