
CpE 213
Project 1
3/4/2014

Project 1: Modified WIMP51

The purpose of this project was to create a version of the WIMP51 processor in Quartus II using Block

Diagram Files, and to become more familiar with how a microprocessor works in the process.

To do this project, two instructions were chosen to add to the original instruction set of the WIMP51

(Table 1): XCH A, Rn and CLR A. The instruction XCH A, Rn has an op code of 11001nnn and should be

able to exchange the data from the accumulator and a chosen register in the register bank. The

instruction CLR A has an op code of 11100100 and when activated, should set all bits of the accumulator

to 0.

MOV A, #D 01110100 dddddddd A<=D

ADDC A, #D 00110100 dddddddd C, A<=A+D+C

MOV Rn, A 11111nnn

Rn<=A

MOV A, Rn 11101nnn

A<=Rn

ADDC A, Rn 00111nnn

C, A<=A+Rn+C

ORL A,Rn 01001nnn

A<=A OR Rn

ANL A, Rn 01011nnn

A<=A AND Rn

XRL A, Rn 01101nnn

A<=A XOR Rn

SWAP A 11000100

A<=A(3-0) SWAP A(7-4)

CLR C 11000011

C<=0

SETB C 11010011

C<=1

SJUMP rel 10000000 aaaaaaaa PC<=PC+rel+1

JZ rel 01100000 aaaaaaaa PC<=PC+rel+1 if Z

XCH A, Rn 11001nnn

A<=Rn Rn<=A

CLR A 11100100

A<=0

Table 1: Modified WIMP51 Instruction Set

In order to implement XCH A, Rn, it was noted that the data from the register would be updated into the

accumulator before the accumulator data had a chance to reach the register. In order to counter this, an

additional auxiliary register was added as a data holder to ensure that the old data from the

accumulator could still be passed into the selected register (Figure 1). The data was routed from the

accumulator into the AUX_2 register, and then to the register bank. Next, the AUX write enable and the

REG write enable were updated with the added op code of the XCH instruction (Figures 2-3) so that if

the XCH instruction is decoded, the register and auxiliary register will allow the data to enter. The

AUX_WE was used for both the AUX register and the AUX_2 register. The last part of the WIMP51 that

needed to be updated was the LA_SEL located in the ALU. This needed to be updated because data from

the AUX needs to pass through the accumulator without the logic or add commands interfering (Figures

rdua
Text Box

CpE 213
Project 1
3/4/2014

4-6). This was implemented using and AND gate into the MUX_2 branch, which selects the bypass

function in the ALU so that when XCH instruction appears, the ALU will allow the data to pass without

any changes.

Figure 1: Additional AUX register

Figure 2: AUX_WE

rdua
Text Box

rdua
Text Box

CpE 213
Project 1
3/4/2014

Figure 3: REG_WE

Figure 4: LA_SEL updated with instruction for XCH routed to MUX_2 (bypass adder and logic) and

instruction for CLR A routed to all 3 stages of Priority encoder

rdua
Text Box

rdua
Text Box

CpE 213
Project 1
3/4/2014

Figure 5: Updated LA_SEL block symbol

Figure 6: Updated ALU block symbol

rdua
Text Box

rdua
Text Box

CpE 213
Project 1
3/4/2014

In order to implement CLR A, the only update that was made was to the LA_SEL part. This update told

the unit that selects the function performed in the ALU that if CLR A instruction shows up, then send

zeroes to the accumulator. This was implemented using a NAND gate and AND gates, because if the CLR

instruction is not present, that part of the AND gate will be 1, and not interfere with the other logic

(Figure 4).

After updating the block diagrams to include the new instructions, a test program was written to make

sure that the original instruction set had not been changed, and that the new instructions worked

properly as well (Table 2).

Memory
Address

Machine
Code Data Value

00H MOV A, #80H 74H
 01H

80H A=80H

02H MOV R0, A F8H R0=80H
03H SWAP A C4H A=08H

04H XCH A, R0 C8H A=80H, R1=08H
05H CLR C C3H

 06H ADDC A, R0 38H A=88H
07H MOV R1, A F9H R1=88H
08H ORL A, R0 48H A=88H

09H MOV R2, A FAH R2=88H
0AH ANL A, R0 58H A=09H
0BH MOV R3, A FBH R3=08H
0CH XRL A, R0 68H A=00H
0DH MOV R4, A FCH R4=00H
0EH MOV A, R0 E8H A=80H

0FH CLR C C3H
 10H SETB C D3H
 11H CLR A E4H A=00H

12H MOV A, #02H 74H
 13H

01H A=02H

14H HERE: CLR C C3H
 15H ADDC A, #0FFH 34H A=01H, A=00H

16H

FFH
 17H JZ END 60H
 18H

02H

 19H SJUMP HERE 80H
 1AH

F9H

 1BH END: SJUMP END 80H
 1CH

FEH

Table 2: Test Program for Modified WIMP51

Conclusion

CpE 213
Project 1
3/4/2014

After doing this project, I was able to better understand how the WIMP51 works, as well as how to

program using machine and assembly level code. Having to trace what was happening to the data during

the testing process was the most helpful in understanding how the data flows in the WIMP51, while

writing a test program using instructions such as JZ and SJUMP helped me to understand how those

instructions work, as well as how to use them. JZ should be used when a countdown of any sort is taking

place, and the next action should only take place when the result is 0. SJUMP should be used to repeat

an action over and over. For the WIMP51, this is also used at the end of the program so that the

program will stop its actions without altering the current data in the registers. Using the Altera board for

an interface was helpful because not all parts were visible without manually choosing to view

something, such as the accumulator or the register bank; making a conscious decision to view some of

these registers was a good way to keep track of what was being viewed. This project was a good

stepping stone into understanding how the WIMP51 works.

