Project 1

Create Your Own WIMP51 Version

INC A and INC Rn

## Table of Contents

| Introduction     | 3     |
|------------------|-------|
| INC A            | 3-5   |
| INC Rn           | 5-11  |
| Conclusion       | 11    |
| Appendix A: Code | 12-13 |

For this project, a version of the WIMP51 was created for the Altera DE2 FPGA board in Quartus II. This variation included two new instructions, increment of the accumulator and increment of a given register. In the following paragraphs, the changes to the original program and the reasons for the changes are documented below.

First, the increment of the accumulator was implemented. Using Appendix H of the Mazidi text, the INC A instruction was found to have the hex code of 04 and only required one byte. For this instruction, changes were made to the ALU. To start out, an 8:2:1 MUX was added to the ALU block diagr it receives 0000 0100, t line of the multiplexer.

## Figure 1: Desired Function for INC A

The output of the multiplexer was then fed back into the ripple-adder as before. This is shown below in Figure 2.

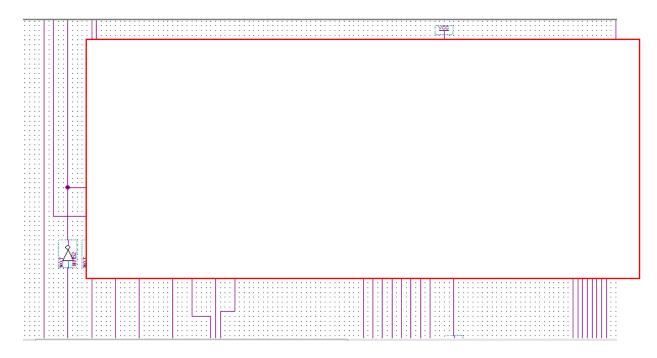



Figure 2: 8:2:1 MUX and AND Gate Added to ALU for INC A

Next, the output of the AUX Register was run into the 1 input section of the multiplexer while the 0 input section was accumulator if it receives straight through as if n below in Figure 3.

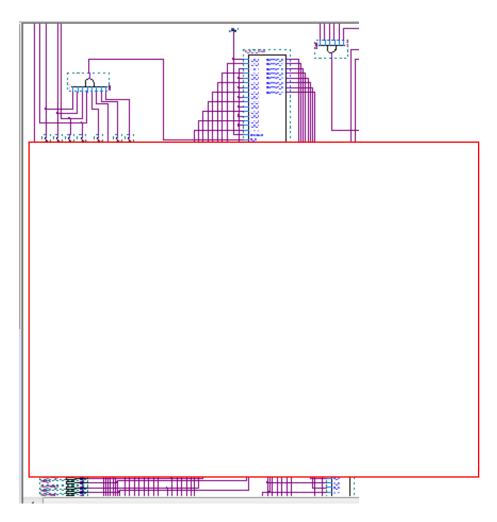



Figure 3: Overall Additions to ALU for INC A

Lastly, the L\_A Select block diagram file was slightly modified by an OR Gate was added to output if it received any of the preloaded codes or if it got the new INC A instruction. This is shown below in Figure 4.

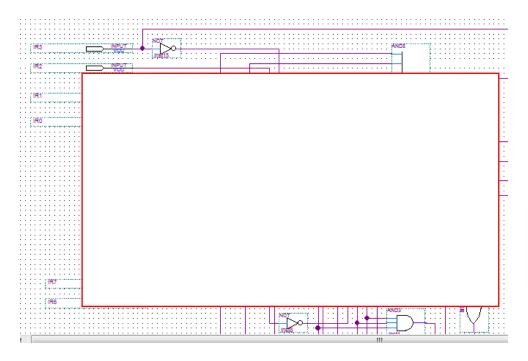



Figure 4: Changes Made to the L\_A\_SEL Block for INC A

For the next part of the project, INC Rn was implemented. After consulting the text, itwas found that INC Rn included hex codes 08H for R0 up to 0FH for R7 and it was also a onebyte instruction. An 8:2:1 Noutput was fed into the mulanother AND gate consistirIn below in Figure 5.

The output of the MUX was fed back into the ripple-adder, the same as with INC A. This can be found below in Figure 6.

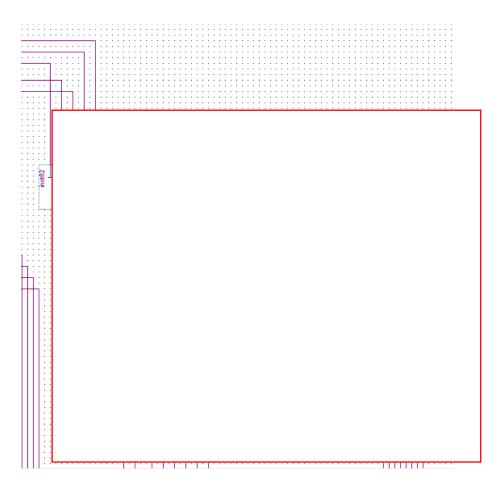



Figure 6: 8:2:1 MUX and AND Gate Added to ALU for INC Rn

The following figure shows the overall changes added to the ALU for the register increment.

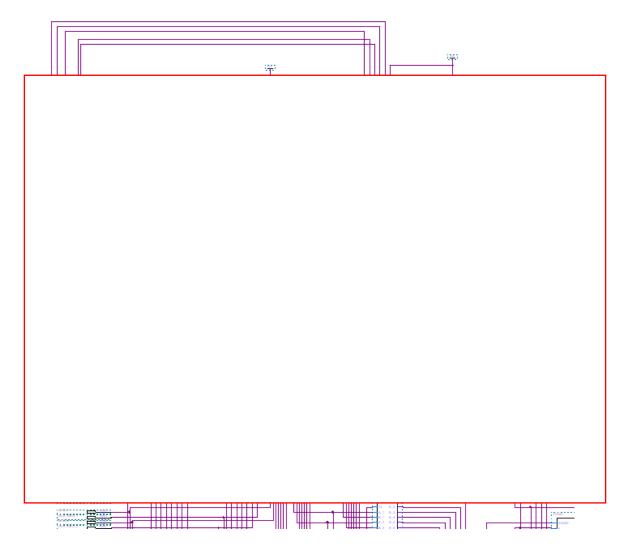



Figure 7: Overall Additions to ALU for INC Rn

The L\_A Select block also had to be changed for this instruction so another branch was added to the OR gate to allow this code to pass through, as shown in Figure 8.

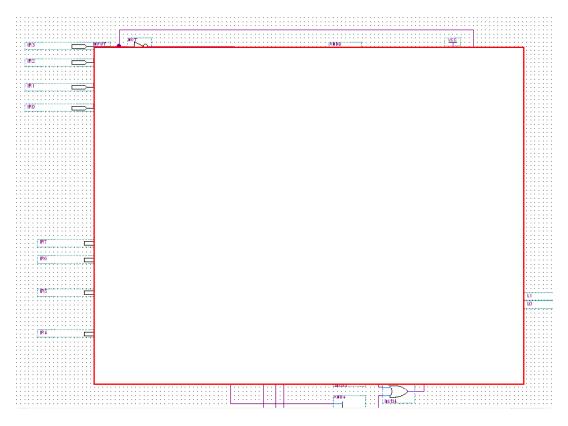



Figure 8: Changes Made to the L\_A\_SEL Block for INC Rn

Afterwards, the write-enable for the accumulator had to be modified for the program to implement properly by adding an extra branch off the existing NOR gate and incorporating the 0000 1xxx code. This is shown below in Figure 9.



Figure 9: Changes Made to the ACC\_WE Block for INC Rn

The register write enable file also had to be modified in order to incorporate the new instruction.

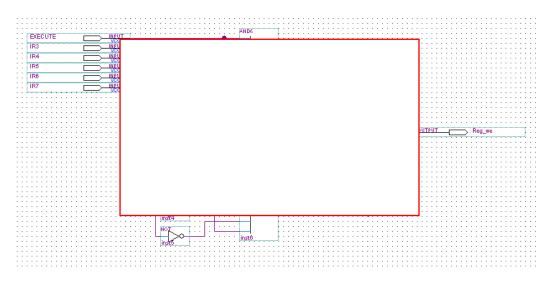



Figure 10: Changes Made to the REG\_WE Block for INC Rn

Lastly, some changes had to be made on the overall Block2 file. Another 8:2:1 MUX had to be added in which the accumulator outputs of the ALU block were rerouted to one of the input locations of the multiplexer along with the outputs of the accumulator block. Once again, the

Select line was activated by the 0000 1xxx code and the output of the MUX was sent into the Top Register location. This is shown below in Figure 11.

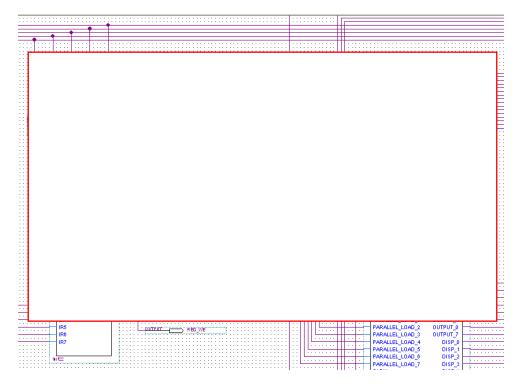



Figure 11: Additional 8:2:1 MUX Added to Block2 Used to Update the Register Values

After implementing these changes, INC A and INC Rn were successfully compiled and tested on the Altera board. The original instructions were also tested and no instructions seemed to be affected by the changes made. Included below in Appendix A is the program code used to test the variation program.

| 00H | MOV A, #D  | 74H |        |
|-----|------------|-----|--------|
| 01H | 04H        | 04H | A=04H  |
| 02H | CLR C      | СЗН | C=0    |
| 03H | SETB C     | D3H | C=1    |
| 04H | ADDC A, #D | 34H |        |
| 05H | 03H        | 03H | A=08H  |
| 06H | INC A      | 04H | A=09H  |
| 07H | MOV R0, A  | F8H | R0=09H |
| 08H | SWAP A     | C4H | A=90H  |
| 09H | MOV R1, A  | F9H | R1=90H |
| 0AH | INC R0     | 08H | R0=0AH |
| 0BH | INC R1     | 09H | R1=91H |
| 0CH | MOV A, R0  | E8H | A=0AH  |
| 0DH | ORL A, R1  | 49H | A=9BH  |
| 0EH | ANL A, RO  | 58H | A=0AH  |
| 0FH | XRL A, R3  | 6BH | A=0AH  |
| 10H | CLR C      | СЗН | C=0    |
| 11H | ADDC A, R0 | 38H | A=14H  |
| 12H | SJUMP      | 80H |        |
| 13H | FEH        | FEH |        |

## Appendix A: Test Program 2

| 00H | INC R0 | 08H | R0=01H |
|-----|--------|-----|--------|
| 01H | INC R1 | 09H | R1=01H |
| 02H | INC R2 | 0AH | R2=01H |
| 03H | INC R3 | 0BH | R3=01H |
| 04H | INC R4 | 0CH | R4=01H |
| 05H | INC R5 | 0DH | R5=01H |
| 06H | INC R6 | 0EH | R6=01H |
| 07H | INC R7 | 0FH | R7=09H |
| 08H | SJUMP  | 80H |        |
| 09H | FEH    | FEH |        |