

Project 1

Create Your Own WIMP51 Version

INC A and INC Rn

Page 2 of 13

Table of Contents

Introduction 3

INC A 3-5

INC Rn 5-11

Conclusion 11

Appendix A: Code 12-13

Page 3 of 13

 For this project, a version of the WIMP51 was created for the Altera DE2 FPGA board in

Quartus II. This variation included two new instructions, increment of the accumulator and

increment of a given register. In the following paragraphs, the changes to the original program

and the reasons for the changes are documented below.

 First, the increment of the accumulator was implemented. Using Appendix H of the

Mazidi text, the INC A instruction was found to have the hex code of 04 and only required one

byte. For this instruction, changes were made to the ALU. To start out, an 8:2:1 MUX was added

to the ALU block diagram file. For this instruction, an and gate was added to tell the program if

it receives 0000 0100, then it needed to run the special instruction and this was put into the select

line of the multiplexer. The code that was desired is shown below in Figure 1.

Figure 1: Desired Function for INC A

The output of the multiplexer was then fed back into the ripple-adder as before. This is shown

below in Figure 2.

rdua
Text Box

Page 4 of 13

Figure 2: 8:2:1 MUX and AND Gate Added to ALU for INC A

Next, the output of the AUX Register was run into the 1 input section of the multiplexer while

the 0 input section was loaded with 01H meaning that the program would add 1 to the

accumulator if it received the 04H implement code, otherwise, it would just pass the AUX

straight through as if no changes had been made. The overall changes to the ALU can be found

below in Figure 3.

rdua
Text Box

rdua
Text Box

Page 5 of 13

Figure 3: Overall Additions to ALU for INC A

Lastly, the L_A Select block diagram file was slightly modified by an OR Gate was added to

output if it received any of the preloaded codes or if it got the new INC A instruction. This is

shown below in Figure 4.

rdua
Text Box

Page 6 of 13

Figure 4: Changes Made to the L_A_SEL Block for INC A

 For the next part of the project, INC Rn was implemented. After consulting the text, it

was found that INC Rn included hex codes 08H for R0 up to 0FH for R7 and it was also a one

byte instruction. An 8:2:1 MUX was added into the ALU once again except this time, the ACC

output was fed into the multiplexer instead of the AUX output. The select line was fed off

another AND gate consisting of 0000 1xxx instead this time. This is shown below in Figure 5.

Figure 5: Desired Function for INC Rn

The output of the MUX was fed back into the ripple-adder, the same as with INC A. This can be

found below in Figure 6.

rdua
Text Box

rdua
Text Box

Page 7 of 13

Figure 6: 8:2:1 MUX and AND Gate Added to ALU for INC Rn

The following figure shows the overall changes added to the ALU for the register increment.

rdua
Text Box

Page 8 of 13

Figure 7: Overall Additions to ALU for INC Rn

The L_A Select block also had to be changed for this instruction so another branch was added to

the OR gate to allow this code to pass through, as shown in Figure 8.

rdua
Text Box

Page 9 of 13

Figure 8: Changes Made to the L_A_SEL Block for INC Rn

Afterwards, the write-enable for the accumulator had to be modified for the program to

implement properly by adding an extra branch off the existing NOR gate and incorporating the

0000 1xxx code. This is shown below in Figure 9.

rdua
Text Box

Page 10 of 13

Figure 9: Changes Made to the ACC_WE Block for INC Rn

The register write enable file also had to be modified in order to incorporate the new instruction.

Figure 10: Changes Made to the REG_WE Block for INC Rn

Lastly, some changes had to be made on the overall Block2 file. Another 8:2:1 MUX had to be

added in which the accumulator outputs of the ALU block were rerouted to one of the input

locations of the multiplexer along with the outputs of the accumulator block. Once again, the

rdua
Text Box

rdua
Text Box

Page 11 of 13

Select line was activated by the 0000 1xxx code and the output of the MUX was sent into the

Top Register location. This is shown below in Figure 11.

Figure 11: Additional 8:2:1 MUX Added to Block2 Used to Update the Register Values

 After implementing these changes, INC A and INC Rn were successfully compiled and

tested on the Altera board. The original instructions were also tested and no instructions seemed

to be affected by the changes made. Included below in Appendix A is the program code used to

test the variation program.

rdua
Text Box

Page 12 of 13

Appendix A: Test Program 1

00H MOV A, #D 74H

01H 04H 04H A=04H

02H CLR C C3H C=0

03H SETB C D3H C=1

04H ADDC A, #D 34H

05H 03H 03H A=08H

06H INC A 04H A=09H

07H MOV R0, A F8H R0=09H

08H SWAP A C4H A=90H

09H MOV R1, A F9H R1=90H

0AH INC R0 08H R0=0AH

0BH INC R1 09H R1=91H

0CH MOV A, R0 E8H A=0AH

0DH ORL A, R1 49H A=9BH

0EH ANL A, R0 58H A=0AH

0FH XRL A, R3 6BH A=0AH

10H CLR C C3H C=0

11H ADDC A, R0 38H A=14H

12H SJUMP 80H

13H FEH FEH

Page 13 of 13

Appendix A: Test Program 2

00H INC R0 08H R0=01H

01H INC R1 09H R1=01H

02H INC R2 0AH R2=01H

03H INC R3 0BH R3=01H

04H INC R4 0CH R4=01H

05H INC R5 0DH R5=01H

06H INC R6 0EH R6=01H

07H INC R7 0FH R7=09H

08H SJUMP 80H

09H FEH FEH

