
Page 1 of 9

Project 1 Report: WIMP51 “The Extended” Version

 The goal of this project was to increase the functionality of a program named WIMP51.

The original WIMP51 is a program that simulates thirteen different functions of an 805l

microprocessor. Table 1 in appendix A lists those functions. The extended version of WIMP51

has 5 extra functions that manipulate the accumulator: rotate right (RR), rotate right through

carry (RRC), rotate left (RL), rotate left thought carry (RLC), and Compliment (CPL). In order

to achieve this goal changes had to be made to the AUX write enable, the PC write enable, and

the ALU.

 First, the AUX write enable, which previously excluded only SWAP A, CLR C, and

SETB C during the execute or decode cycles, was changed to also exclude RR, RRC, RL, RLC,

and CPL. This is because the AUX only stores temporary data from external memory or register

file, and the new additions are neither. Figure 1 of Appendix B shown the new version of the

AUX, where AUX_WE=() (̅̅ ̅̅ ̅ ̅̅ ̅̅ ̅ ̅̅ ̅̅ ̅̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅) (̅̅ ̅̅ ̅̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅) (̅̅ ̅̅ ̅̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅)

(̅̅ ̅̅ ̅ ̅̅ ̅̅ ̅ ̅̅ ̅̅ ̅ ̅̅ ̅̅ ̅̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅).

.

 Next the PC write enable needed to be altered. This is because the simplified code of the

ADDC matched exactly that of RL and RLC. To make the program counter not increment twice

in one cyle, during RL and RLC, IR2 was used to differentiate between the old and new codes.

The PC write enable then beacame PC_WE=() (̅̅ ̅̅ ̅ ̅̅ ̅̅ ̅) (̅̅ ̅̅ ̅ ̅̅ ̅̅ ̅)

(̅̅ ̅̅ ̅) (̅̅ ̅̅ ̅ (̅̅ ̅̅ ̅ ̅̅ ̅̅ ̅ ̅̅ ̅̅ ̅)).

. This can be seen in figure 2 of appendix B.

rdua
Text Box

rdua
Text Box

Page 2 of 9

 Next, The major changes came in the ALU. The LA select of the ALU needed to have a

larger priority encoder to accommodate the new instructions. The 4 to 2 priority encoder was

increased to an 8 to 3 priority encoder. This allowed to add four new funtions. One was used to

control when RR and RRC ocurred, another controlled RL and RLC, and another controlled

CPL. The final spot of the priority encoder was not used. Figure 3 of Appendix B shows the

updated LA select.

 The next part in the ALU to change was the 4 to1 MUXs. More funtionality means

bigger MUXs. All the 4 to 1 MUXs going to outputs were incresed to 8 to 1 MUXs. Figure 4

shows the updated ALU. In order to compliment the acuumulator each bite was routed through a

not gate and into Mux 6 of the 8 to 1 MUXs. For mux 6 to be selected the L_A_SEL block

needed to be updated. The instruction CPL matches 111X 0XXX, and will be decoded as 1 at

line I_6. The priority encoder then outputs 110 selecting mux six allowing the complimented

accumulator data to pass into the accumulator. For the RR and RRC instructions the

accumulator LSB is either roateted into the MSB or the Carry Flag and the remaining bits are

roatated in the same way for both instructions. In the ALU the MUX 4 input of the 8:1 MUXs is

the line that connects the bits rotating right. The instructions have to be decoded in the

L_A_SEL block, since the opcode for RR, and RRC is 000, and no other instruction shares this

opcode, these bits are all that is required to set I_4 of the priority encoder high, and select MUX

4. For the instructions RL, and RLC MUX 5 is the line that connects the bits rotating left. Inside

the L_A_SEL the Opcode 001 is decoded and set to I_3 since this is also the Opcode for the

instructions RL, and RLC this can be anded with not IR2, and ̅̅ ̅̅ ̅. So that I_5 will not go high

when the ADDC instructions are performed. The rest of the L_A_SEL block can remain the

same for I_3, I_2, and I_1. Since the MUX lines that they select have not been changed.

rdua
Text Box

rdua
Text Box

Page 3 of 9

 Originally the proablem that occurred when roatating the Carry bit was that the data

rotated into the carry bit would also be passed into wherever the Carry was rotated into. When

the RLC instrctions was tested with the Carry Flag high, accumulator MSB 0, and LSB 0, during

the execute cycle at the negative edge of the clock the instead of getting a 1 at LSB, a 0 would

pass into carry and then into LSB. To fix this problem a positive edge triggered D flip flop was

placed after the carry flag to hold its value just before the rotate occurs, and does not update

when the Carry Flag is updated.

 A 4:1 MUX now feeds into the Carry Flag and a priority encoder was used for the select

lines. The input to the mux 0,1, 2, and 3 line is Cout from the adder, and either clear or set C for

I_1, the MSB for I_2, the LSB for I_3, and when none of these inputs of the 4:1 MUX is active

then the Carry Flag will retain its value. For the instruction RL, and RLC the instruction opcode

is the same as both the ADDC instructions, and the Carry Flag needs to hold its value when RL

is performed. So the bits were added decoder, are 001X XXXX, or 110X X0XX if an

instruction fitting this description where in the instruction register then I_1 would go high and

the carry flag would accept new input. For the input I_2 of the priority encoder the instruction

0011 00XX is decoded this is the instruction RLC. The mux 2 line of 4:1 MUX that outputs to

the Carry Flag is connected to MSB. The input I_3 to the priority encoder is high for the opcode

000 which is the rotate right instructions this passes the LSB to mux 3 and into the Carry Flag.

rdua
Text Box

rdua
Text Box

Appendix A – Instruction Set & Test Programs

Page 4 of 9

Table 1 – Insctuction set for WIMP51 Extended

MOV A,#D 01110100 dddddddd

ADDC A,#D 00110100 dddddddd

MOV Rn,A 11111nnn

MOV A,Rn 11101nnn

ADDC A,Rn 00111nnn

ORL A,Rn 01001nnn

ANL A,Rn 01011nnn

XRL A,Rn 01101nnn

SWAP A 11000100

CLR C 11000011

SETB C 11010011

SJMP Rel 10000000 dddddddd

JZ Rel 01100000 dddddddd

RR A 00000011

RRC A 00010011

RL A 00100011

RLC A 00110011

CPL A 11110100

Appendix A – Instruction Set & Test Programs

Page 5 of 9

Table 2 – Test Program 1 (all but JZ)

PC Machine code Instruction Accumulator

00 74 MOV A,#99H

01 99 99

02 03 RR A CC

03 C3 CLRC

04 34 ADDC #40H

05 04 D0

06 23 RL A A1

07 F8 MOV R0,A

08 38 ADDC A, R0 42

09 F9 MOV R1,A

0A 13 RRC A A1

0B D3 SETC

0C 33 RLC A 43

0D E8 MOV A,R0 A1

0E F4 CPL A 5E

0F C4 SWAP A E5

10 49 ORL A,R1 E7

11 58 ANL A,R0 A1

12 68 XRL A,R0 00

13 80 SJMP STOP

14 FE

Table 3 – Test Program 2 JZ

PC Machine Code Instruction Accumulator

00 74 MOV A,#00H

01 00 00

02 60 JZ

03 03 03

04 XX XX

05 XX XX

06 XX XX

07 80 SJMP STOP

08 FE

Appendix B – Block Diagrams

Page 6 of 9

Figure 1 – AUX Write Enable

Figure 2 – PC Write Enable

rdua
Text Box

rdua
Text Box

Appendix B – Block Diagrams

Page 7 of 9

Figure 3 – LA Select

rdua
Text Box

Appendix B – Block Diagrams

Page 8 of 9

Figure 4 - ALU

rdua
Text Box

