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CpE 213: Digital Systems Design
Project 1: WIMP51 Modification
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Introduction:

The Weekend Instructional Microprocessor, or WIMP51 for short (51 being a reference to the popular
8051 line of 8 bit microcontrollers), was created for use in undergraduate environments to help
introduce the concepts of computer organization. The original design was crafted in VHDL, a high-level
programming language, which physically changes how hardware operates. The original design, however,
was not made available to us, and had to be recreated. This was done using Quartus Il Web Edition 9.1
sp2. Quartus, though capable of both VHDL and Verilog (another HDL), has a built in Block Editor that
allows the same creative process as using VHDL but by drawing connections visually rather than typing
them in. The processor was created with a restricted set of operations, all of which requiring 3 clock
cycles maximum to complete. The goal of this project was to give students a better understanding of the
inner workings of the WIMP51, as well as allowing them the ability to create new instructions for the
Microcontroller. The instructions | have chosen to add are the subtraction instructions SUBB A,#D ,
SUBB A,Rn, and NOP.

Part 1: SUBB

The subtraction commands are a useful portion of any Microcontroller instruction set, allowing for new
possibilities for creating counters and a more efficient way to perform subtraction. Binary subtraction in
its most basic form is binary addition where one of the two numbers has been modified using the twos
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Figure 1 - Changes To Adder Structure (part 1)
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L e e e = I

Figure 2 - Changes to Adder Structure (part 2)

This solution fit well with the task at hand, so it was used as my implementation method. The control
signal is generated using the Instruction code pulled in to the Arithmetic Logic Unit (ALU) and is decoded

from it.
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with the output from the Carry Multiplexer as explained in the next section and passed to the XOR gates
as a control signal.

Part 1b: Handling the Carry Bit
In general, binary subtraction is done by taking the twos compliment of one of the inputs and adding it
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to perform an inversion. As shown in the above picture, a wire is bypassing the AND gate and connects
directly to the output of the multiplexer. This wire connects to the carry in bit of the 8 bit ripple adder,
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Part 1c: Write Enables and Timing

The most difficult of this project was making sure that the WIMP51 did not activate a portion of
hardware that was not meant to be used at that particular point in time. To do this, a chart was created
for each subset of instructions and each write enable was listed for each portion of the clock cycle. Using
this, it was clear which sections of the hardware | would need to modify. These portions were the Write
Enable for the Program Counter (PC), the AUX Write Enable, the ACC Write Enable, the Carry Write
Enable, and the Register Bank Input Enable.

Figure 6 - ENABLE Chart

Other structures that needed to be modified included the L_A_SEL block from the ALU and the portion
of the Program Counter ALU that handled two byte instructions.
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Part 1ci: Program Counter Write Enable
The Program Counter Write Enable handles the conditions in which the PC needs to update. Each
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Part 1ciii: ACC Write Enable
The ACC is a byte sized register that contains the result of the last instruction and is updated at the end
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Part 1civ: Carll
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Part 1cvii: PC_ALU
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Part 2: NOP

The NOP function, or No Operation, is commonly used in C and ASM programming to create delays of
known length or to enter a sleeping loop of low power consumption until an interrupt wakes it. This
function is important, simple, and easy to implement, making it an easy choice for most microcontroller
architectures. As the point of NOP is to do nothing but wait out a clock cycle, only edits in the enables
were made. The two places of major concern were the PC_ALU and ACC Write Enable, as these were the
places most likely to be impacted by an instruction. The PC_ALU was checked to ensure that if the NOP
command was passed through, the PC would increment as usual. It was found that depending on if the
ACC was empty or not the instruction would be passed through the PC_ALU differently. If the ACC was
not empty, the instruction would be passed through during the decode cycle only and would have a
regular increment. However, if the ACC was empty, it would be treated as a jump and move forward
extra spaces. This was dismissed as a problem as the PC is not enabled during the Execute cycle for the
NOP command as can be seen below.
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Conclusion:
The WIMP51 is an excellent tool to show undergraduate students the inner workings of a digital device.

On top of that, adding a new instruction is both a complicated yet rewarding task that forces one to
think about the outcome of making a small change. The two commands added in this project, SUBB and
NOP are both simple yet important in today’s market, showing that simplicity can often be practical as

well.



Appendix A: Modified Instruction Set

MOV
ADDC
MOV
MOV
ADDC
ORL
ANL
XRL
SWAP
CLR
SETB
SIMP
1z
SUBB
SUBB
NOP

A#D
A#D
Rn,A
A,Rn
A,Rn
A,Rn
A,Rn
A,Rn
A

C

C
REL
REL
A#D
A,Rn
N/A

01110100
00110100
11111nnn
11101nnn
00111nnn
01001nnn
01011nnn
01101nnn
11000100
11000011
11010011
10000000
01100000
10010100
10011nnn
00000000

dddddddd
dddddddd

dddddddd
dddddddd
dddddddd
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A<=D
C,A<=A+D+C
Rn<=A

A<=Rn
C,A<=A+Rn+C
A<=A | Rn

A<=A & Rn
A<=A"Rn

A<= A(3-0) SWAP A(7-4)
C<=0

Ck=1
PC<=PC+REL+1
PC<=PC+REL+1ifZ
A<=A-D-CY
A<=A-Rn-CY

N/A
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Appendix B: Sample Codes

Check MOV, JZ, SJMP:
MOV A#01 74
01 ;A=1
1z STOP 60 ;Ends program if A was not set
09
MOV RO,A F8 ;RO=1
MOV  A,#05 74
05 ;A=5
MOV  A,RO E8 ;A=R0=1
MOV  A,#00 74
00 ;A=0
1z STOP 60 ;Ends if A was set correctly
01
MOV  A,RO E8 ;A=R0=1 if JZ failed.
STOP: SJIMP STOP 80
FE  ;End
Check Logic Operators:
MOV  A#OFF 74
FF ;A=FF
MOV R1,A F9 ;R1=A=FF
MOV  A#01 74
01 ;A=01
ANL AR1 59 ;A=01&FF=01
ORL AR1 49 ;A=01&FF=FF
MOV  A#01 74
01 ;A=01
XRL AR1 69 ;A=01"FF=FE
SWAP A c4 ;A=EF
STOP: SIMP STOP 80
FE ;End
Check CLR/SETB:
SETB C D3 ;Carry Light On
CLR C C3 ;Carry Light Off
STOP: SIMP STOP 80

FE ;End



ADDC Check:

MOV

CLR
ADDC

MOV
SETB
ADDC
STOP:

SUBB Check:

MOV

CLR
SUBB

MOV
SETB
SUBB
STOP:

A,#02

C
A,#01

RO,A
C

A,RO
SIMP

A,#06

A#01

RO,A

A,RO
SIMP

NOP Check:

MOV

NOP
MOV

NOP

A,#01

A,#00

STOP

STOP

STOP: SIMP STOP

74
02
C3
34
01
F8
D3
38
80
FE

74
06
c3
94
01
F8
D3
98
80
FE

74
01
00
74
00
00
80
FE

;A=2
;C=0

;A=2+1+0=3
;R0=A=3
;C=1
;A=3+143=7

;End

;A=6

;C=0
;A=6-1-0=5
;RO=A=5
;C=1
;A=5-5-1=-1

;End

:A=01

;:Checks for A=/=0 NOP
;A=0

;Checks for A=0 NOP

;END
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