

3/20/14

Page 1 of 20

CpE 213: Digital Systems Design

Project 1: WIMP51 Modification

3/20/14

3/20/14

Page 2 of 20

Table of Contents
Introduction .. 3

Part 1: SUBB .. 3

Part 1a: Add/Sub Structure ... 3

Part 1b: Handling the Carry Bit ... 6

Part 1c: Write Enables and Timing .. 8

Part 1ci: Program Counter Write Enable .. 9

Part 1cii: AUX Write Enable... 10

Part 1ciii: ACC Write Enable .. 11

Part 1civ: Carry Write Enable .. 12

Part 1cv: Register Bank Input Enable .. 13

Part 1cvi: L_A_SEL ... 14

Part 1cvii: PC_ALU ... 15

Part 2: NOP .. 15

Conclusion: .. 17

Appendix A: Modified Instruction Set ... 18

Appendix B: Sample Codes ... 19

Check MOV, JZ, SJMP: ... 19

Check Logic Operators: ... 19

ADDC Check: ... 20

SUBB Check: .. 20

NOP Check: ... 20

3/20/14

Page 3 of 20

Introduction:

The Weekend Instructional Microprocessor, or WIMP51 for short (51 being a reference to the popular

8051 line of 8 bit microcontrollers), was created for use in undergraduate environments to help

introduce the concepts of computer organization. The original design was crafted in VHDL, a high-level

programming language, which physically changes how hardware operates. The original design, however,

was not made available to us, and had to be recreated. This was done using Quartus II Web Edition 9.1

sp2. Quartus, though capable of both VHDL and Verilog (another HDL), has a built in Block Editor that

allows the same creative process as using VHDL but by drawing connections visually rather than typing

them in. The processor was created with a restricted set of operations, all of which requiring 3 clock

cycles maximum to complete. The goal of this project was to give students a better understanding of the

inner workings of the WIMP51, as well as allowing them the ability to create new instructions for the

Microcontroller. The instructions I have chosen to add are the subtraction instructions SUBB A,#D ,

SUBB A,Rn , and NOP.

Part 1: SUBB

The subtraction commands are a useful portion of any Microcontroller instruction set, allowing for new

possibilities for creating counters and a more efficient way to perform subtraction. Binary subtraction in

its most basic form is binary addition where one of the two numbers has been modified using the twos

compliment. Though an external subtraction unit can be built, it was more efficient to use the pre-

existing network of adders located in the ALU to create a combination add/sub unit. The addition unit

already takes incoming data from the Auxiliary Register (AUX) and the Accumulator Register (ACC) and

adds them bit by bit. This data can be either from external memory (ADDC A,#D) or from a register

(ADDC A,Rn), thus the modifications for subtraction in that case were nonexistent. This left only three

major challenges in regards to creating the subtraction unit: Creating an adder structure that would be

able to switch between addition and subtraction yet would still allow for the other operations to pass

through untouched, handling how the carry in bit for the adder would impact the calculation, and

ensuring that the instruction code would activate the correct portions of the microcontroller at the right

time.

Part 1a: Add/Sub Structure

A common trick to create an ADD/SUB machine is to XOR one of the two inputs with a control signal.

When the control signal is low, it would add, and the input bits would be untouched, and when the

control signal is high, the XOR gate would invert the inputs creating the ones compliment of the input

signal performing the first step to subtraction.

rdua
Text Box

rdua
Text Box

3/20/14

Page 4 of 20

Figure 1 - Changes To Adder Structure (part 1)

rdua
Text Box

3/20/14

Page 5 of 20

Figure 2 - Changes to Adder Structure (part 2)

This solution fit well with the task at hand, so it was used as my implementation method. The control

signal is generated using the Instruction code pulled in to the Arithmetic Logic Unit (ALU) and is decoded

from it.

Figure 3 - Subtract Enable

This decoder takes the most significant nibble (half-byte), which is specific to my subtraction instructions

in our current instruction set, and checks if it matches the correct code. If the decoder outputs high, the

control turns on the subtraction unit and inverts the inputs. If the decoder output is low, the unit is to

act as if the subtraction unit wasn’t there and performs the addition instruction or any other instruction

generated in the ALU without interruption. The decoder output is passed through a 2 input AND gate

rdua
Text Box

rdua
Text Box

rdua
Text Box

3/20/14

Page 6 of 20

with the output from the Carry Multiplexer as explained in the next section and passed to the XOR gates

as a control signal.

Part 1b: Handling the Carry Bit

In general, binary subtraction is done by taking the twos compliment of one of the inputs and adding it

to the other. Generating the twos compliment is not a difficult task by hand, however in logical devices

it is much easier to take the ones compliment and add one to it. To do this, each bit of the input is

generally inverted and then the carry in bit of the addition machine is set to high to provide the one

needed to finish the conversion. In our system, however, we have a few extra instructions to maintain

the integrity of. The carry bit can be set or reset at any point by using the commands SETB C and CLR C,

thus we must take care of the situation where the addition of two numbers and the carry are needed.

To handle this situation, as well as one where the an error in the hardware could cause the carry bit to

be low before subtraction takes place, a simple two to one multiplexer is used.

Figure 4 - Detail of ENABLE/MUX Circuit

As shown above, the same control signal used to activate the XOR inversion from the previous section is

used as the switching mechanism for the multiplexer. When this is low, input one is routed to the output

of the multiplexer. This input comes from the carry bit register and is the same carry that can be set or

reset by the user’s code leaving that function intact as well as ensuring that if a user wished to add two

numbers and the carry bit that it would still be possible for them to do that. When the control signal is

high, a high signal is passed through the multiplexer, activating the AND gate and telling the XOR gates

rdua
Text Box

rdua
Text Box

3/20/14

Page 7 of 20

to perform an inversion. As shown in the above picture, a wire is bypassing the AND gate and connects

directly to the output of the multiplexer. This wire connects to the carry in bit of the 8 bit ripple adder,

again allowing for the existing structure and instructions to be used in user code.

Another significant portion of the SUBB Command is the fact that the carry is a part of the instruction

itself. The instruction definition is A - #D – CY, where A is the accumulator, #D is any data from the code

bank or register, and CY is the carry. The case where the carry flag is zero is fairly easy to handle, as only

one subtraction needed to be performed. The case where the carry is one however, is slightly more

difficult. To handle this case, a second adder was connected in the ALU and connected to the output of

the first adder. This second adder, which we will refer to as the carry adder, is set to always perform the

carry subtraction regardless of the instruction. From there, the carry adder was multiplexed with the

main adder using the subtract enable and carry flag high signals as a switch. This will allow basic

instructions such as add or logic operations to pass through unharmed, as well as satisfying the two

conditions for SUBB. The outputs of these multiplexors are connected to the multiplexors which handle

logic and addition selection, which make for an easy interface with the rest of the instruction set.

By definition, the carry for the SUBB command is set to one if the answer is negative, or set to zero if the

answer is positive. To account for these situations, the device has two multiplexors that control the

carry output. If the carry is high or low and the subtraction enable is on, we invert the carry, otherwise

the carry is passed through. Then we correct the carry based on the subtract enable and whether or not

the second adder is outputting a zero.

Finally, to handle the situation where a carry update could potentially damage the result of the

subtraction, we created a single buffer that stores a copy of the carry pulled in from the fetch cycle that

is used as a control signal so that any carry updates that occur in the middle of the instruction whether

via adder or hardware error will not impact the instruction.

Figure 5 - Carry Swap Select Changes. Added Carry_F.

rdua
Text Box

rdua
Text Box

3/20/14

Page 8 of 20

Part 1c: Write Enables and Timing

The most difficult of this project was making sure that the WIMP51 did not activate a portion of

hardware that was not meant to be used at that particular point in time. To do this, a chart was created

for each subset of instructions and each write enable was listed for each portion of the clock cycle. Using

this, it was clear which sections of the hardware I would need to modify. These portions were the Write

Enable for the Program Counter (PC), the AUX Write Enable, the ACC Write Enable, the Carry Write

Enable, and the Register Bank Input Enable.

Figure 6 - ENABLE Chart

Other structures that needed to be modified included the L_A_SEL block from the ALU and the portion

of the Program Counter ALU that handled two byte instructions.

rdua
Text Box

3/20/14

Page 9 of 20

Part 1ci: Program Counter Write Enable

The Program Counter Write Enable handles the conditions in which the PC needs to update. Each

instruction is moved into the Instruction Register during the Fetch Cycle, and thus the PC increments to

the next location at the start of the Decode Cycle. During some instructions it is necessary to keep the

PC_WE on for longer. These instructions are often followed by an additional byte of information needed

to perform the instruction and thus must have the PC incremented a second time in the execute cycle.

One of the subtraction commands is a two byte instruction, thus we must add a condition to keep the

PC open during the execute cycle in this case. To do this, the three most significant bits were passed

through a 3-to-8 decoder which then was passed through a three input AND gate with the fourth most

significant bit and the inversion of the fifth bit. This would ensure that the PC stayed open for the two

byte instruction but not the single byte instruction.

SUBB A,#D -> 10010100

SUBB A,Rn -> 10011nnn where n is the binary equivalent of the register number

As you can see, by including the fifth bit, a distinction between the two can be made.

Figure 7 - Detail of PC_WE

rdua
Text Box

3/20/14

Page 10 of 20

Part 1cii: AUX Write Enable

Though the write enable for the AUX is important to my instructions, the main point of it is to keep the

auxiliary register from updating when the SETB, CLR, and SWAP instructions are ran. This is determined

by passing the top three bits through a 3-to-8 decoder and check for condition 6. The instructions I have

added output condition 4 from this decoder, thus no changes were necessary.

Figure 8 - Detail of AUX_WE

rdua
Text Box

3/20/14

Page 11 of 20

Part 1ciii: ACC Write Enable

The ACC is a byte sized register that contains the result of the last instruction and is updated at the end

of the execute cycle to pull in the results from the ALU. The only instructions that should not update the

ACC are the two jump instructions, JZ and SJMP, the CLR and SETB instructions, and the move

instruction which copies ACC data into a register (MOV Rn,A). As this list is substantially shorter than the

instruction set, it was easier to tell the ACC_WE what shouldn’t be passed through than what should.

The problem here was not that the SUBB instruction shouldn’t update the ACC, but that the SJMP

instruction is blocked by its top three significant bits, which are shared with both SUBB functions. To

rectify this, the fourth bit was added to SJMPs portion of the ACC_WE.

Figure 9 - ACC_WE Note: Contains Logic for NOP

rdua
Text Box

3/20/14

Page 12 of 20

Part 1civ: Carry Write Enable

The Carry Write Enable tells the hardware what instructions are allowed to modify the carry register.

The SUBB instruction is significantly different in structure than the other instructions, thus the OR gate

that creates the control signal had to be increased, and a 6 input AND Gate added to decode the top

four bits of the instruction as well as the signal that the hardware is in the execute cycle. The 6th input of

the AND gate was tied to high so it would not interfere with the operation.

Figure 10 - Carry Write Enable

rdua
Text Box

3/20/14

Page 13 of 20

Part 1cv: Register Bank Input Enable

The Register Bank Input Enable (REG_IN) is a small decoder that checks for the presence of the first bit in

the second nibble that signifies that the instruction requires data from the register bank. When this

decoder activates, it allows the register bank to pass data to the AUX register for that instruction.

Though one of the SUBB instructions requires data from the register bank, it already follows this format,

thus no changes were needed.

Figure 11 - Register-to-Aux Enable (REG_IN)

rdua
Text Box

3/20/14

Page 14 of 20

Part 1cvi: L_A_SEL

The job of the L_A_SEL block is to decode the instruction to check if it is a logical operation or an

arithmetic operation. Like the other decoders, it converts the most significant four bits of the instruction

into condition signals. These signals are then passed to a priority encoder which gives priority to

different instructions. To ensure compatibility with my instruction, the output of the section which

handles addition was passed through an OR gate with another decoder AND gate for the four most

significant bits of my instruction.

Figure 12 - L_A_SEL Logic

rdua
Text Box

3/20/14

Page 15 of 20

Part 1cvii: PC_ALU

The PC ALU handles the incrementing of the PC during the decode cycle, the relative jump conditions,

and also includes the basic logic which contains the instructions related to how the two byte instructions

increment the PC. Similar to the REG_IN portion, this decodes the bottom five bits of the instruction and

the Execute cycle signal to determine if an extra increment is needed. Because the bottom five bits of

the two byte ADDC command are identical to the bottom five bits of the two byte SUBB command no

modifications were needed.

Figure 13 - PC_ALU Two Byte Decoder

Part 2: NOP

The NOP function, or No Operation, is commonly used in C and ASM programming to create delays of

known length or to enter a sleeping loop of low power consumption until an interrupt wakes it. This

function is important, simple, and easy to implement, making it an easy choice for most microcontroller

architectures. As the point of NOP is to do nothing but wait out a clock cycle, only edits in the enables

were made. The two places of major concern were the PC_ALU and ACC Write Enable, as these were the

places most likely to be impacted by an instruction. The PC_ALU was checked to ensure that if the NOP

command was passed through, the PC would increment as usual. It was found that depending on if the

ACC was empty or not the instruction would be passed through the PC_ALU differently. If the ACC was

not empty, the instruction would be passed through during the decode cycle only and would have a

regular increment. However, if the ACC was empty, it would be treated as a jump and move forward

extra spaces. This was dismissed as a problem as the PC is not enabled during the Execute cycle for the

NOP command as can be seen below.

rdua
Text Box

3/20/14

Page 16 of 20

Figure 14 - PC_WE

The ACC Write Enable was the final task in getting NOP to work correctly. To ensure that no data was

lost or changed in the ACC during a NOP command, the ACC_WE signal had to be modified so it would

not turn on during the NOP command. As the ACC_WE is set to have its logic tell it when not to be on,

this was a simple task. The ending NOR gate needed to be expanded and an additional AND gate that

detected the NOP instruction was added.

Figure 15 - ACC_WE

rdua
Text Box

rdua
Text Box

rdua
Text Box

3/20/14

Page 17 of 20

Conclusion:

The WIMP51 is an excellent tool to show undergraduate students the inner workings of a digital device.

On top of that, adding a new instruction is both a complicated yet rewarding task that forces one to

think about the outcome of making a small change. The two commands added in this project, SUBB and

NOP are both simple yet important in today’s market, showing that simplicity can often be practical as

well.

3/20/14

Page 18 of 20

Appendix A: Modified Instruction Set

MOV A,#D 01110100 dddddddd A<=D

ADDC A,#D 00110100 dddddddd C,A<=A+D+C

MOV Rn,A 11111nnn Rn<=A

MOV A,Rn 11101nnn A<=Rn

ADDC A,Rn 00111nnn C,A<=A+Rn+C

ORL A,Rn 01001nnn A<=A | Rn

ANL A,Rn 01011nnn A<=A & Rn

XRL A,Rn 01101nnn A<=A ^ Rn

SWAP A 11000100 A<= A(3-0) SWAP A(7-4)

CLR C 11000011 C<=0

SETB C 11010011 C<=1

SJMP REL 10000000 dddddddd PC<=PC+REL+1

JZ REL 01100000 dddddddd PC<=PC+REL+1 if Z

SUBB A,#D 10010100 dddddddd A<=A-D-CY

SUBB A,Rn 10011nnn A<=A-Rn-CY

NOP N/A 00000000 N/A

3/20/14

Page 19 of 20

Appendix B: Sample Codes

Check MOV, JZ, SJMP:

MOV A,#01 74

 01 ;A=1

JZ STOP 60 ;Ends program if A was not set

 09

MOV R0,A F8 ;R0=1

MOV A,#05 74

 05 ;A=5

MOV A,R0 E8 ;A=R0=1

MOV A,#00 74

 00 ;A=0

JZ STOP 60 ;Ends if A was set correctly

 01

MOV A,R0 E8 ;A=R0=1 if JZ failed.

STOP: SJMP STOP 80

 FE ;End

Check Logic Operators:

MOV A,#0FF 74

 FF ;A=FF

MOV R1,A F9 ;R1=A=FF

MOV A,#01 74

 01 ;A=01

ANL A,R1 59 ;A=01&FF=01

ORL A,R1 49 ;A=01&FF=FF

MOV A,#01 74

 01 ;A=01

XRL A,R1 69 ;A=01^FF=FE

SWAP A C4 ;A=EF

STOP: SJMP STOP 80

 FE ;End

Check CLR/SETB:

SETB C D3 ;Carry Light On

CLR C C3 ;Carry Light Off

STOP: SJMP STOP 80

 FE ;End

3/20/14

Page 20 of 20

ADDC Check:

MOV A,#02 74

 02 ;A=2

CLR C C3 ;C=0

ADDC A,#01 34

 01 ;A=2+1+0=3

MOV R0,A F8 ;R0=A=3

SETB C D3 ;C=1

ADDC A,R0 38 ;A=3+1+3=7

STOP: SJMP STOP 80

 FE ;End

SUBB Check:

MOV A,#06 74

 06 ;A=6

CLR C C3 ;C=0

SUBB A,#01 94

 01 ;A=6-1-0=5

MOV R0,A F8 ;R0=A=5

SETB C D3 ;C=1

SUBB A,R0 98 ;A=5-5-1=-1

STOP: SJMP STOP 80

 FE ;End

NOP Check:

MOV A,#01 74

 01 ;A=01

NOP 00 ;Checks for A=/=0 NOP

MOV A,#00 74 ;A=0

 00

NOP 00 ;Checks for A=0 NOP

 STOP: SJMP STOP 80

 FE ;END

