3/20/14
Page 1 of 20

CpE 213: Digital Systems Design
Project 1: WIMP51 Modification

3/20/14

3/20/14

Page 2 of 20

Table of Contents
INEFOAUCTION .ttt sttt et e bt e bt e s bt e sat e et e et e e bt e beesbeesaeeeateembeesbeesaeesane e 3
PArT 1 SUBB ...ttt ettt sttt et e b e e h e e s b e e s a et et e e bt e b e e beesbe e she e et e e beenbeenheenane e 3
Part 12: Add/SUD STrUCTUIE c..eiiiieeeie ettt ettt e et e s st e e s e sttt e s s saba e e s s sabbeesssabbeesssaraeas 3
Part 1b: Handling the Carry Bitcooociiiiiiie ettt e e e e e s s e e e s sbee e s e sbae e e enareeas 6
Part 1c: Write ENables and TimiNgccuueii i ceiee et esiree sttt sttt e st e s e sree e s e e e e s s sabee e s snreeeeenareeas 8
Part 1ci: Program Counter Write ENADIEveiiieiieie ettt e e 9
Part 1cii: AUX WIIte ENADIE...c.eiiiiiieeee ettt ettt st s e 10
Part 1ciii: ACCWIEE EN@DIEoiiiiiiie ettt ettt s 11
Part 1Civ: Carry WIit€ ENADIEccoeeiiee ettt s rbee e e st e e e e sabe e e e e bee e e e nareeas 12
Part 1cv: Register Bank INput ENAbIe.......ooeieiiiiicee e 13
PAIt LOVET LA SEL et eeseeeeeee e s eeeeeee e s st esesee e s eeeseesesseeeseeseeseseeseeseseesesesesseseesaeeeeenesseneees 14
o T o o VT o G Y I N 15
PArt 20 INOP...ceeee e et e s e e s s e s ree s 15
CONCIUSTON ..ttt ettt b e s bt s bt e sat e e a bt e bt e bt e sbeesae e sabeeab e e bt e bt e abeesmeeeabeenbeenbeesheesanenas 17
Appendix A: Modified INSTFUCLION SEL....coiiiiiicie e e e e s aaaeeeas 18
ApPendix B: SAMPIE COUES .ooiiuriiiiiiiiiie ittt ettt et e e et e e e st e e e e satae e e eabaeesseataeeesassseeeesnssaeessssaeenan 19
CheCK MOV, JZ, SIMIP: ...ttt ettt st sttt et b e s be e smeesaneen e e reesneesnne e 19
(0 o =Tol oY =d o 0] oY1 = o) 3 PR 19
ADDC CRECK: .ttt ettt ettt h e s at e st e bt e bt e s bt e sb et eat e e a b e e bt e bt e eheeeabeeab e et e e bt e bt e aneeeateearean 20
SUBB CRECK: ...ttt ettt ettt st et e b e b e s e st e s bt e bt e b e e s b e e smeesateene e reesaeesane e 20

NOP CRECK: .ttt bbb 20

3/20/14
Page 3 of 20

Introduction:

The Weekend Instructional Microprocessor, or WIMP51 for short (51 being a reference to the popular
8051 line of 8 bit microcontrollers), was created for use in undergraduate environments to help
introduce the concepts of computer organization. The original design was crafted in VHDL, a high-level
programming language, which physically changes how hardware operates. The original design, however,
was not made available to us, and had to be recreated. This was done using Quartus Il Web Edition 9.1
sp2. Quartus, though capable of both VHDL and Verilog (another HDL), has a built in Block Editor that
allows the same creative process as using VHDL but by drawing connections visually rather than typing
them in. The processor was created with a restricted set of operations, all of which requiring 3 clock
cycles maximum to complete. The goal of this project was to give students a better understanding of the
inner workings of the WIMP51, as well as allowing them the ability to create new instructions for the
Microcontroller. The instructions | have chosen to add are the subtraction instructions SUBB A,#D ,
SUBB A,Rn, and NOP.

Part 1: SUBB

The subtraction commands are a useful portion of any Microcontroller instruction set, allowing for new
possibilities for creating counters and a more efficient way to perform subtraction. Binary subtraction in
its most basic form is binary addition where one of the two numbers has been modified using the twos

compliment. Thoug pre-
existing network of on unit
already takes incom CC) and
adds them bit by bit ster
(ADDC A,Rn), thus t y three
major challenges in vould be
able to switch betw to pass
through untouched and
ensuring that the in t the right
time.

Part 1a: Add/Sub Structure

A common ontrol signal.
When the ¢ d when the
control sign 1t of the input

signal perfo

rdua
Text Box

rdua
Text Box

3/20/14
Page 4 of 20

Figure 1 - Changes To Adder Structure (part 1)

rdua
Text Box

3/20/14
Page 5 of 20

L e e e = I

Figure 2 - Changes to Adder Structure (part 2)

This solution fit well with the task at hand, so it was used as my implementation method. The control
signal is generated using the Instruction code pulled in to the Arithmetic Logic Unit (ALU) and is decoded

from it.
g " A AR
i " A AR
................. [EUT [Subtract_Enable
i " A AR
i — AR
Figure 3 - Subtract Enable
ThlS decoder t-.l oc tha vanck cicnificant nibhla [Whalf bhatka) aauhich ic crnacific o nav cuilbhtvact: N instructions
in our current uts high, the
control turns @ e unit is to
act as if the su r instruction

generated int AND gate

rdua
Text Box

rdua
Text Box

rdua
Text Box

3/20/14
Page 6 of 20

with the output from the Carry Multiplexer as explained in the next section and passed to the XOR gates
as a control signal.

Part 1b: Handling the Carry Bit
In general, binary subtraction is done by taking the twos compliment of one of the inputs and adding it

to the oth er in logical devices
it is much t of the input is
generally provide the one
needed tq uctions to maintain
the integr is SETB C and CLR C,
thus we b carry are needed.
To handlg use the carry bit to
be low be
- 'SUBTRA

IR7

IRG

IR5

IR4

inst61

: '_',_ OUTPUT I_0
ke 2 2_1_MUX
2 =

Figure 4 - Detail of EN

As shown above, evious section is
used as the switc ted to the output
of the multiplexe t can be set or
reset by the user’ hed to add two
numbers and the ontrol signal is
high, a high signa the XOR gates

rdua
Text Box

rdua
Text Box

3/20/14
Page 7 of 20

to perform an inversion. As shown in the above picture, a wire is bypassing the AND gate and connects
directly to the output of the multiplexer. This wire connects to the carry in bit of the 8 bit ripple adder,

again allowing for the ex

Another significant porti
itself. The instruction de
bank or register, and CY
one subtraction needed
difficult. To handle this d
the first adder. This seco
carry subtraction regard
main adder using the su
instructions such as add
conditions for SUBB. The
logic and addition select

By definition, the carry f
answer is positive. To ac
carry output. If the carry
the carry is passed throu
the second adder is outg

Finally, to handle the sit
subtraction, we created

is used as a control signg

ruction
the code
le, as only
more
butput of
rform the
ith the

ic

e two

th handle
et.

zero if the
bl the
therwise
her or not

cycle that
whether

via adder or hardware error will not impact the instruction.

Figure 5 - Carry Swap Select Changes. Added Carry_F.

rdua
Text Box

rdua
Text Box

3/20/14
Page 8 of 20

Part 1c: Write Enables and Timing

The most difficult of this project was making sure that the WIMP51 did not activate a portion of
hardware that was not meant to be used at that particular point in time. To do this, a chart was created
for each subset of instructions and each write enable was listed for each portion of the clock cycle. Using
this, it was clear which sections of the hardware | would need to modify. These portions were the Write
Enable for the Program Counter (PC), the AUX Write Enable, the ACC Write Enable, the Carry Write
Enable, and the Register Bank Input Enable.

Figure 6 - ENABLE Chart

Other structures that needed to be modified included the L_A_SEL block from the ALU and the portion
of the Program Counter ALU that handled two byte instructions.

rdua
Text Box

3/20/14
Page 9 of 20

Part 1ci: Program Counter Write Enable
The Program Counter Write Enable handles the conditions in which the PC needs to update. Each

instruction is moved intptlotectenation Dasickar dicias £ha Catol Lol slsbsiotba Dl tsto
the next location at the the
PC_WE on for longer. Tk peded
to perform the instructi cle.
One of the subtraction ¢ the
PC open during the exe(d
through a 3-to-8 decodé nost
significant bit and the in WO

byte instruction but not]

SUBB A,#D -> 10010100
SUBB A,Rn ->10011nnn

As you can see, by inclu

e —
- {TRE
©FiRE

Lec
Dec
L Dec
Lec

Dec
Dec
Diec
Dec

Figure 7 - Detail of PC_WE

rdua
Text Box

Part 1cii: AUX Write Enable
Though the write enable for the AUX is important to my instructions, the main point of it is to keep the

auxiliary regis

tor fraom nindatinag whon tho SETR CIR and S\AM/AD inctriuctinne aro ra

3/20/14
Page 10 of 20

n. This is determined

by passing th
added output

CIIR_B

R_5

he instructions | have

Figure 8 - Detail

of AUX_WE

rdua
Text Box

Part 1ciii: ACC Write Enable
The ACC is a byte sized register that contains the result of the last instruction and is updated at the end

of the execute cycle—*

+ln

lic £

il

Alll Tl

+

b

tlhat ol

Il

3/20/14

Page 11 of 20

+

ACC are the two ju
instruction which ¢
instruction set, it w
The problem here
instruction is block
rectify this, the fou

date the

than the
ould.

NP

s.To

Figure 9 - ACC_WE Note: Contains Logic for NOP

rdua
Text Box

3/20/14
Page 12 of 20

Part 1civ: Carll

The Carry Write sister.
The SUBB instru DR gate
that creates the e top
four bits of the i " input of
the AND gate w

Figure 10 - Carry Write Enable

rdua
Text Box

Part 1cv: Regis
The Register Ban
the second nibbl
decoder activate
Though one of th
thus no changes

3/20/14
Page 13 of 20

ecks for the presence of the first bit in
rom the register bank. When this

UX register for that instruction.

er bank, it already follows this format,

Figure 11 - Register-

o-Aux Enable (REG_IN)

rdua
Text Box

Part 1cvi: L_A_SEL

3/20/14
Page 14 of 20

The job of the L_A|
arithmetic operatic
into condition sign
different instructio
handles addition W
significant bits of n

W7 ———2
(45 ——
5 ——
[L b

peration or an

bits of the instruction
es priority to

e section which

or the four most

Figure 12 - L_A_SEL Logic

—’_/

inst12

rdua
Text Box

3/20/14
Page 15 of 20

Part 1cvii: PC_ALU

The PC ALU har 5,
and also include ions
increment the | and
the Execute cyg f
the two byte Al o

modifications W

inst
ingt’

|
P L

ing23

Figure 13 - PC_ALUTWO BYte DECOUET

Part 2: NOP

The NOP function, or No Operation, is commonly used in C and ASM programming to create delays of
known length or to enter a sleeping loop of low power consumption until an interrupt wakes it. This
function is important, simple, and easy to implement, making it an easy choice for most microcontroller
architectures. As the point of NOP is to do nothing but wait out a clock cycle, only edits in the enables
were made. The two places of major concern were the PC_ALU and ACC Write Enable, as these were the
places most likely to be impacted by an instruction. The PC_ALU was checked to ensure that if the NOP
command was passed through, the PC would increment as usual. It was found that depending on if the
ACC was empty or not the instruction would be passed through the PC_ALU differently. If the ACC was
not empty, the instruction would be passed through during the decode cycle only and would have a
regular increment. However, if the ACC was empty, it would be treated as a jump and move forward
extra spaces. This was dismissed as a problem as the PC is not enabled during the Execute cycle for the
NOP command as can be seen below.

rdua
Text Box

3/20/14

DA

Q

A7 [
i S 111 S
i e S 11 S

16 of 20

SUTEIT R

Figure 14 - PC_WE

The ACC Write Enahleawas the final tack in oetting NOP ta wark carrectlv Ta

ensure that no data was

lost or changed in
not turn on during
this was a simple t

be modified so it would
tell it when not to be on,
dditional AND gate that

detected the NOP frrrstroctiomweasauueu:

Figure 15 - ACC_WE

rdua
Text Box

rdua
Text Box

rdua
Text Box

3/20/14
Page 17 of 20

Conclusion:
The WIMP51 is an excellent tool to show undergraduate students the inner workings of a digital device.

On top of that, adding a new instruction is both a complicated yet rewarding task that forces one to
think about the outcome of making a small change. The two commands added in this project, SUBB and
NOP are both simple yet important in today’s market, showing that simplicity can often be practical as

well.

Appendix A: Modified Instruction Set

MOV
ADDC
MOV
MOV
ADDC
ORL
ANL
XRL
SWAP
CLR
SETB
SIMP
1z
SUBB
SUBB
NOP

A#D
A#D
Rn,A
A,Rn
A,Rn
A,Rn
A,Rn
A,Rn
A

C

C
REL
REL
A#D
A,Rn
N/A

01110100
00110100
11111nnn
11101nnn
00111nnn
01001nnn
01011nnn
01101nnn
11000100
11000011
11010011
10000000
01100000
10010100
10011nnn
00000000

dddddddd
dddddddd

dddddddd
dddddddd
dddddddd

3/20/14
Page 18 of 20

A<=D
C,A<=A+D+C
Rn<=A

A<=Rn
C,A<=A+Rn+C
A<=A | Rn

A<=A & Rn
A<=A"Rn

A<= A(3-0) SWAP A(7-4)
C<=0

Ck=1
PC<=PC+REL+1
PC<=PC+REL+1ifZ
A<=A-D-CY
A<=A-Rn-CY

N/A

3/20/14
Page 19 of 20

Appendix B: Sample Codes

Check MOV, JZ, SJMP:
MOV A#01 74
01 ;A=1
1z STOP 60 ;Ends program if A was not set
09
MOV RO,A F8 ;RO=1
MOV A,#05 74
05 ;A=5
MOV A,RO E8 ;A=R0=1
MOV A,#00 74
00 ;A=0
1z STOP 60 ;Ends if A was set correctly
01
MOV A,RO E8 ;A=R0=1 if JZ failed.
STOP: SJIMP STOP 80
FE ;End
Check Logic Operators:
MOV A#OFF 74
FF ;A=FF
MOV R1,A F9 ;R1=A=FF
MOV A#01 74
01 ;A=01
ANL AR1 59 ;A=01&FF=01
ORL AR1 49 ;A=01&FF=FF
MOV A#01 74
01 ;A=01
XRL AR1 69 ;A=01"FF=FE
SWAP A c4 ;A=EF
STOP: SIMP STOP 80
FE ;End
Check CLR/SETB:
SETB C D3 ;Carry Light On
CLR C C3 ;Carry Light Off
STOP: SIMP STOP 80

FE ;End

ADDC Check:

MOV

CLR
ADDC

MOV
SETB
ADDC
STOP:

SUBB Check:

MOV

CLR
SUBB

MOV
SETB
SUBB
STOP:

A,#02

C
A,#01

RO,A
C

A,RO
SIMP

A,#06

A#01

RO,A

A,RO
SIMP

NOP Check:

MOV

NOP
MOV

NOP

A,#01

A,#00

STOP

STOP

STOP: SIMP STOP

74
02
C3
34
01
F8
D3
38
80
FE

74
06
c3
94
01
F8
D3
98
80
FE

74
01
00
74
00
00
80
FE

;A=2
;C=0

;A=2+1+0=3
;R0=A=3
;C=1
;A=3+143=7

;End

;A=6

;C=0
;A=6-1-0=5
;RO=A=5
;C=1
;A=5-5-1=-1

;End

:A=01

;:Checks for A=/=0 NOP
;A=0

;Checks for A=0 NOP

;END

3/20/14
Page 20 of 20

