Particle Impulse-Momentum: Example Problem 2

A 130 lb block rests on the slope shown below. A force P which increases with time ($P=10 \mathrm{lb}$) is applied to the block. Please determine the speed of the block up the slope at $\mathrm{t}=20$ seconds.

Important: You cannot just find the area under this P-t curve. You must draw a FBD to view all forces, and find $\mathrm{t}_{\text {start }}$.

Draw a FBD. YOU MUST FIND $t_{\text {start }}$ on this kind of problem.

When $P(t)=0, \quad F_{\text {stop }} \cong \mathbf{5 0} \mathrm{lb}, \quad$ friction $F \ll \mathbf{3 0} \mathrm{lb}$.
As $P(t)$ grows, $F_{\text {stop }}$ decreases, friction F grows.

When does the block begin to move? On the verge of motion....

Write the I-M Equation along the slope....
$+\quad \operatorname{miv}_{1}^{0}+\sum$ Impulses $=m \stackrel{\rightharpoonup}{v}_{2}$

