Work-Energy (WE) Equation for Particles

An overview of problems that are easy using the Work-Energy equation compared to the $F = ma$ method.

And, problems that are hard with either method.

First: Problems that are easy using the Work-Energy equation.

1. Smooth rod.

If friction (μ) present, difficult with both WE and $F=ma$.

Slider FBD
Cont’d: Problems that are easy using the Work-Energy equation.

2. Crate released from rest.

Spring Constant: $k = 2000 \text{ N/m}$

If friction (μ) present, difficult with both WE and F=ma.
Cont’d: Problems that are **easy** using the Work-Energy equation.

3. If friction (μ) present, manageable with WE.

Block FBD:

- $F_{\text{spring}} = ks$
- mg
- N

Easy
Cont’d: Problems that are easy using the Work-Energy equation.

4. \(v_2 = ? \)

Smooth rod

If friction (\(\mu \)) present, difficult with both WE and F=ma.

Spring constant: \(k \)
Unstretched length = \(L_0 \)
Neglect the mass of the spring.

Slider FBD

\[F_{spring} = ks \]