How to compare? How to choose?
- Speed
- Space
- Memory req.

How to compare speed?
- Run on a timer.

Select possible inputs and use them to time outputs

benchmark, empirical testing.

But *analytical testing*

- Represent each program as a mathematical object
- Use math to compare such objects,

Represent performance by a "runtime function".
Function of what? The input.
Factors
- Input size
- Input quality

"Runtime function" a function from input size to time,

$T(n)$ Comparing Programs.
\[T_A(n) \quad \text{versus} \quad T_B(n) \]

\[T_A(n) = 123n^2 + 70 \quad \quad T_B(n) = \frac{1}{6}n^3 + 2 \]

- NOT interested in comparing functions for a particular input size.

- Interested in what happens as the input becomes larger and larger \(\rightarrow \) "rate of growth" of functions.

The Mathematics of the Growth of Functions.

- **Big-O (Donald Knuth)**

DEF: Given two functions \(f(x) \) and \(g(x) \) we say that \(f(x) \) is \(O(g(x)) \) if there exist constants \(C \) and \(n_0 \) such that for every \(n > n_0 \)

\[f(n) \leq C \cdot g(n) \]

English Interpretation.

- \(f(x) \) is \(O(g(x)) \) means that, ignoring constant factor, for sufficiently large values \(g(x) \) is larger or equal to \(f(x) \).
• $f(x)$ is $O(g(x))$ means that the rate-of-growth of $g(x)$ is greater than or equal to the rate-of-growth of $f(x)$

• n^2 is $O(3n^2 + n)$ \[C = 1 \quad n_0 = 1 \]
 \[n^2 \leq 3n^2 + n \quad \text{for any } n > 1 \]

• $3n^2 + n$ is $O(n^2)$
 \[C = 4 \quad n_0 = 1 \]
 \[3n^2 + n \leq 4 \cdot n^2 \]
 \[3n^2 + n \leq 3n^2 + n^2 \]
 \[n \leq n^2 \]

<<Ignoring Constant Factors>>

DEF Big-Θ

if $f(x)$ is $O(g(x))$ AND $g(x)$ is $O(f(x))$ then $f(x)$ is $\Theta(g(x))$
and $g(x)$ is $\Theta(f(x))$

Big-Θ means $g(x)$ and $f(x)$ have the same rate-of-growth.

$3n^2 + 6n + 7$ is $O(9n^2 + 27n + 5)$ too cumbersome

• The complexity hierarchy:

 n^3 is $O(n^3)$
 n^2 is $O(n^2)$
 $n!$ is $O(n!)$
 2^n is $O(2^n)$
 \vdots
 n^2 is $O(n^2)$

functions are not compared directly; instead, they are placed in hierarchy

- **Basic Rules:**

 R1) if \(T_1(x) \) is \(O(f(x)) \) and \(T_2(x) \) is \(O(g(x)) \) then
 \[
 T_1(x) + T_2(x) \leq O(f(x) + g(x))
 \]

 R2) if \(T_1(x) \) is \(O(f(x)) \) and \(T_2(x) \) is \(O(g(x)) \) then
 \[
 T_1(x) \cdot T_2(x) \leq O(f(x) \cdot g(x))
 \]

 R3) if \(T_1(x) \) is \(O(f(x)) \) and \(T_2(x) \) is \(O(g(x)) \) then
 \[
 T_1(x) + T_2(x) \leq O(\max(f(x), g(x)))
 \]

 \[
 2n \quad \text{is} \quad O(n) \quad \max(n, n^2)
 \]

 \[
 3n^2 \quad \text{is} \quad O(n^2) \quad 2n + 3n^2 \quad \text{is} \quad O(n^2)
 \]

 R4) A polynomial of degree \(k \) is \(O(n^k) \)