Machine Learning
 \[\downarrow\]

- Supervised Learning
 \[\downarrow\]

- Basic Models — Decision Trees
 \[\downarrow\]

- linear and non-linear classifiers

Example: Movie Recommendation System

<table>
<thead>
<tr>
<th>Explosives</th>
<th>Romance</th>
<th>Subtitles</th>
<th>Animated</th>
<th>Likes?</th>
</tr>
</thead>
<tbody>
<tr>
<td>e1</td>
<td>T</td>
<td>T</td>
<td>T</td>
<td>No</td>
</tr>
<tr>
<td>e2</td>
<td>F</td>
<td>T</td>
<td>F</td>
<td>Yes</td>
</tr>
<tr>
<td>e3</td>
<td>F</td>
<td>F</td>
<td>T</td>
<td>No</td>
</tr>
<tr>
<td>e4</td>
<td>T</td>
<td>F</td>
<td>T</td>
<td>No</td>
</tr>
<tr>
<td>e5</td>
<td>T</td>
<td>T</td>
<td>F</td>
<td>Yes</td>
</tr>
<tr>
<td>e6</td>
<td>T</td>
<td>F</td>
<td>T</td>
<td>No</td>
</tr>
</tbody>
</table>

- Decision Tree:
 - Binary Tree
 - Internal Nodes are labeled by tests.
 - Arcs are labeled by True/False.
 - Leaves are labeled by output values.

```
if ( Subtitles ) then
  return No
else if ( Romance ) then
  return Yes
else return No.
```

A decision tree can represent any discern function.

- How to generate trees?
- Which trees should be preferred?

Bias: Prefer smaller trees over larger trees.
Searching for trees:

Given examples E
if all examples show same output. Y
return Y
else
pick a test to split data
• one that decides evenly
• split gives smallest error.

split examples e⁺ e⁻
repeat recursively on (e⁺)
repeat recursively on (e⁻)

Example:

<table>
<thead>
<tr>
<th>Explosives</th>
<th>Romance</th>
<th>Subtitles</th>
<th>Animated</th>
<th>Likes?</th>
</tr>
</thead>
<tbody>
<tr>
<td>e1 T</td>
<td>T</td>
<td>T</td>
<td>T</td>
<td>No</td>
</tr>
<tr>
<td>e2 F</td>
<td>T</td>
<td>F</td>
<td>F</td>
<td>Yes</td>
</tr>
<tr>
<td>e3 F</td>
<td>F</td>
<td>T</td>
<td>F</td>
<td>No</td>
</tr>
<tr>
<td>e4 T</td>
<td>F</td>
<td>T</td>
<td>T</td>
<td>No</td>
</tr>
<tr>
<td>e5 T</td>
<td>T</td>
<td>F</td>
<td>T</td>
<td>Yes</td>
</tr>
<tr>
<td>e6 T</td>
<td>F</td>
<td>T</td>
<td>F</td>
<td>No</td>
</tr>
</tbody>
</table>

Research
- How to split data?
- How to compact Trees.
- How to handle over-fitting
 - pruning tree when examples are small