Why probability. Reason about uncertainty.

\[p(\text{wall} = 2m \mid \text{sonar} = 1.2m) = ? \]
\[p(\text{cat} = \text{true} \mid \text{whisker} = \text{true}, \text{fur} = \text{true}, \text{legs} = 4) = ? \]

- Conditional probability has a weakness.

 We require the "probability measure."

Suppose \(X_0, X_1, X_2, \ldots, X_n \) boolean. \(2^n \) worlds

It's impractical to store complete probability measure

Idea: given a variable \(X \) there is usually few variables that affect \(X \) let's call them \(Zs \)

Any other variable is irrelevant to knowing \(X \) if we are given \(Zs \)

Formally: \(p(X \mid Zs) = p(X \mid Y, Zs) \) Independence

\(X \) is conditionally independent of \(Y \) given \(Zs \)

\(\text{e.i. } x \in \text{domain}(X), y, y' \in \text{domain}(Y), z \in \text{domain}(Z) \)

\[p(X = x \mid Z = z) = p(X = x \mid Y = y \land Z = z) \]
\[= p(X = x \mid Y = y' \land Z = z) \]

Side Note: \(X \) and \(Y \) are unconditionally independent when:

\[p(X, Y) = p(X) \cdot p(Y) \]

\[\prod^n p(X_i \mid X_1, \ldots, X_{i-1}) = \prod^n p(X_i \mid X_1, \ldots, X_{i-1}) \]
Why:

\[
P(X_0, X_1, X_2, X_3 \ldots X_n) = \prod_{i=0}^{n} P(X_i | X_1, \ldots, X_{i-1})
\]
by the chain rule.

Joint probability distribution.

• Suppose for variable \(X \), \(X \) depends on \(\text{parents}(X) \).

• Let's order the variables so that for every \(X \), \(\text{parents}(X) \) are predecessors of \(X \).

\[
X_j \quad \text{parents}(X_j) \subseteq (X_0, X_1, \ldots, X_{j-1})
\]

\[
P(X_0, X_1, X_2, \ldots, X_n) = \prod_{i=0}^{n} P(X_i | \text{parents}(X_i))
\]

Example: Domain of student Bob:

Bob attends class, Bob reviews his notes, Bob answers to the test, Bob's Grades.

Variables: \(A, R, T, G \)

\[
P(A, R, T, G)
\]

- \(A \) is independent \(\quad \) \(\text{parents}(A) = \{ \} \)
- \(R \) is independent \(\quad \) \(\text{parents}(R) = \{ \} \)
- \(T \) is dependent on \(A \) and \(R \) \(\quad \) \(\text{parents}(T) = \{ A, R \} \)
- \(G \) is dependent on \(T \) \(\quad \) \(\text{parents}(G) = \{ T \} \)

\[
P(A, R, T, G) = P(A) \cdot P(R | A) \cdot P(T | A, R) \cdot P(G | A, R, T)
\]

\[
= P(A) \cdot P(R) \cdot P(T | A, R) \cdot P(G | T) \quad \text{easier to store and to obtain.}
\]

\[
P(A \mid \text{Grade} = A)
\]

\[
P(R \mid \text{Grade} = A \land A = \text{Low})
\]

Bayesian Network / Belief Network:

- A Directed Acyclic Graph: represent our assumptions of variable dependency
• A Directed Acyclic Graph: represent our assumptions of variable dependency
 - Nodes are labeled by variables
 - There is an arc from every member of parents (X) to X
 - A domain for each variable.
 - A set of conditional probability tables,
 \(p(X \mid \text{parents}(X)) \)

Example: Alexa, Google Home, "flu-app"

- Listen to "Achoo" sound: depends on sneezing.
- Sneezing could be cause by allergies and flu.
- The flu causes fever.
- Allergies are dependent on pollen.
- Both pollen and flu are dependent on seasons.

Bayesian Network:

\[
P(S, F, V, L, A, Z, U) = \prod \begin{cases} p(S) & p(V \mid F) \\ p(L \mid S) & p(A \mid L) \\ p(F \mid S) & p(Z \mid A, F) \\ p(U \mid Z) \end{cases}
\]

Computing new probabilities
\[\equiv \text{Probabilistic Inference} \equiv \]

\[P(\text{flu} = \text{true} \mid \text{sneeze} = \text{true}) = ? \]
\[P(\text{season} = \text{winter} \mid \text{pollen} = \text{true}) = ? \]
\[P(\text{flu} = \text{true} \mid \text{fever} = \text{false} \land \text{allergies} = \text{false}) = ? \]
Example #2: Smart house:
- Fire alarm: external camera;
 - Fire alarm can be tampered, ring when there is a fire
 - Fire produces smoke
 - When fire alarm rings, people leave the building.
 - When people leave the building, you see people in the doorbell camera.

Belief/Bayesian Network:

\[
\begin{align*}
\text{P(Tampering)} &= 0.02 \\
\text{P(Fire)} &= 0.01 \\
\text{P(Alarm|Tampering, Fire)} &= \begin{bmatrix} 0.5 & 0.85 \\ 0.99 & 0.0001 \end{bmatrix} \\
\text{P(Smoke|Fire)} &= 0.9 \\
\text{P(Leaving|Alarm)} &= 0.88 \\
\text{P(Crowd|Leaving)} &= 0.78
\end{align*}
\]

The camera detects a crowd at the door: Crowd = true

\[
\begin{align*}
\text{P(fire|Crowd)} &= 0.23 \\
\text{P(Tampering|Crowd)} &= 0.39 \\
\text{P(Smoke|Crowd)} &= 0.21
\end{align*}
\]

- Suppose Smoke = true
 \[
 \begin{align*}
 \text{P(fire|Smoke)} &= 0.476 \\
 \text{P(Tampering|Smoke)} &= 0.02
 \end{align*}
 \]

- Suppose Crowd = true but Smoke = false
 \[
 \begin{align*}
 \text{P(fire|crowd=true \land smoke=false)} &= 0.029 \\
 \text{P(Tampering|crowd=true \land smoke=false)} &= 0.50
 \end{align*}
 \]

Effects of observation on a belief network.
Effects of observation on a belief network:

- Observe a variable \(Y \); which probabilities change:
 - The descendants of \(Y \) change
 - The ancestors of \(Y \) change.