INVESTIGATION OF LEVEE PERFORMANCE IN HURRICANE KATRINA: Levee Failures Along the Inner Harbor Navigation Channel

J. David Rogers, Ph.D., P.E., R.G., C.E.G., C.HG.
Member, National Science Foundation Independent Levee Investigation Team and Karl F. Hasselmann Chair in Geological Engineering
University of Missouri-Rolla
Historic Background
New Orleans
Inner Harbor
Navigation Channel
(Industrial Canal)
The 6-mile long **Industrial Canal** runs between the Mississippi River and Lake Pontchartrain.

- It was excavated by centrifugal dredges, beginning in May 1918.
- Funded by $6 million bond passed in 1914.
- Work commenced in May 1918. Berths off the Mississippi River allowed private frontage to be leased for exclusive use of industrial clients.
- A series of diagonal slips were envisioned; as was an 18 month construction schedule.
Historic drainage channels around the IHNC

- The IHNC severed open channel flow draining into Bayou Bienvenue
- New drainage canals, siphons, and pumping stations had to be constructed
Original Intent

- The lower third of the IHNC was intended to provide private wharf frontage for industrial warehouses, as shown here.
- During the first 25 years, only one tenant purchased space, on the west side of the IHNC.
The Big Florida Avenue Siphon

- A reinforced concrete siphon structure capable of conveying 2,000 cfs was constructed beneath the IHNC along Florida Ave. to convey drainage to Bayou Bienvenue.

- Stippled areas contain hydraulic fill on “made ground”, elevated above surrounding area.
The IHNC was dredged as a trapezoidal channel with a single lock, in two sequences of excavation, undertaken between 1918-23. In Section III the channel was 330 feet wide, with a maximum depth of 30 feet over 150 feet. Side cast hydraulic fill formed levees on either side of the excavation.
Construction of the IHNC lock structure in 1919-23 proved troublesome, requiring 6 sheetpile bulkheads with raker braces and 6 rows of dewatering wells, with 5 monitoring wells along the centerline.

Most of the problems were with two sequences of “running sands”
A series of borings were advanced in vicinity of the newly dredged IHNC using a 10-inch diameter steel pipe driven in 3-foot increments. This shows locations of those early borings.
Soundings made in the early 1920s along the eastern side of Section III of the IHNC show hydraulic fill over blue clay over extensive deposits of “humus” (from ASCE-WPA, 1937)
After 5 years of construction costing $20 million the IHNC was officially opened on May 5, 1923.
The GIWW was cut in 1944, during WW2. The excavation of diagonal slips shown here occurred during the mid-1950s, before the MRGO was excavated in 1960-64.
Aerial oblique view of the **Inner Harbor Navigation Canal** between 1960-64, after the entry to the Mississippi River-Gulf Outlet Channel had been enlarged (upper right), connecting to the inner harbor area.
Originally envisioned in 1923 to provide deep draft access to the IHNC.

500 ft wide channel, excavated by dredging in 1960-64

“Funnel feature” at western end of Lake Borgne created by intersection of the GIWW and the MRGO.

This gore point is 6 miles east of the Inner Harbor Navigation Channel (Industrial Canal)
Around 6 AM on August 29th the 9 ft storm surge swept into the IGWW-MRGO confluence, engulfing the Entergy Power Plant near the Paris Ave./I-510 Bridge with waves up to 17 ft high.
Two kinds of overtopping-induced damage

Velocity-induced scour at toe of back slope, at flow transition. Accelerates when vegetation stripped off, depending on cohesion of embankment materials.

Scalloping and notching on the fetch side of the levee, due to wave pounding; and piping fomented by emergent seepage at the toe of the back slope.

Note: damage at back slope toe looks similar for both modes.
The IHNC crossed thick sequences of point bar sands adjacent to the Mississippi River, then historic marshes (lowland backswamp), crossed the Gentilly-Sauvage distributary ridge, and thence into backswamps, before connecting to Lake Pontchartrain.
Typical cross section through the sandy bank levees of the Mississippi River, illustrating how the river’s main channel lies above the surrounding flood plain, which were poorly drained swamp lands prior to reclamation.

There is significant hydraulic sorting of materials deposited on either side of these levees, as sketched below.
Block diagram of the geology underlying New Orleans. The principal feature dividing New Orleans is the abandoned **Metairie-Gentilly distributary**, which extends to a depth of -50 ft MGL and separates geologic regimes on either side.
Block diagram illustrating relationships between subaerial and subaqueous deltaic environments in relation to a single distributary lobe.

The IHNC area of New Orleans is underlain by fresh water cypress swamps, peat, and interdistributary sediments.
The ground surface along the IHNC right-of-way is underlain by Yazoo sandy loam (point bar sands), Yazoo clay, *Sharkey clay (swamp)*, and the Yazoo Loam (distributary ridge)
The units lying beneath the IHNC channel vary from the west to the east side.
Detail showing thickness of surficial peat in vicinity of the IHNC. Thickness varies from 0 to 12 feet along Section III, between Claiborne and Florida Avenues.
The entire delta is slowly subsiding. If new sources of sediment do not replenish the swamp, the young cypress shoots cannot germinate in water > 2 feet deep; and Cypress forests die off all at once, becoming a treeless, grassy marsh, with a forest of dead tree trunks.
Marsh deposits are typified by fibrous peats; from three principal environments: 1) Fresh water marshes; 2) floating marsh - roots and grass sitting on an ooze of fresh water (shown above); and 3) saltwater marshes along the coast. The New Orleans marsh tends to be grassy marsh on a flat area that is “building down”, underlain by soft organic clays. Note: smectite clays flocculate during brackish water intrusions.
Depositional Environment Keys

- Cypress wood = fresh water swamp
- Fibrous peaty mts = marshes
- Fat Clays with organics; usually lacustrine. A pure fat clay has high w/c and consistency of peanut butter
- Interdistributary clays; paludal environments; lakes. Silt lenses when water shallow and wind swept waves
- Lean clays CL LL<50, silty and w/c <60%
- Fat clays CH LL>50 no silt and w/c >70%
OVERVIEW: East Side IHNC Failures During Hurricane Katrina
Polluted and run-down industrial leases along east side of the IHNC were demolished and cleaned up in 2001-03, leaving exposed shell fill.

Same area after re-flooding by Hurricane Rita in late September 2005.
The Lower Ninth Ward was flooded by overtopping of the levees along the IHNC in 1947 and 1965.

The levee was heightened using rolled fill after both floods.

Sheetpiles added after Hurricane Camille in 1969.
ING 4727 was built in 1990 as a dry cargo cover-top barge with a steel hull. It was 200 feet long, 35 feet wide, and 12 ft high, with a cargo volume of 84,659 ft³ (1877 tons). It was being leased to Lafarge North America and was tied up along the MRGO-IGWW channel.
Damage to concrete flood wall where ING 4727 Barge collided with it, along the south side of the IHNC adjacent to the Lower Ninth Ward
Evidence of sustained overtopping of concrete flood wall along the IHNC in the Lower Ninth Ward. Scour holes usually limited to 1.5X height of the free fall (7.5 ft). This scour trench deepened to the north, as elevations dropped.
Overtopping-induced failure of the flood wall on the west side of the IHNC, north of Florida Ave. This breach was only 65 feet wide.
ANALYSES:
East Side IHNC
North Breach
East Side IHNC North Breach
East Side IHNC North Breach, near Florida Ave. bridge and pumping station, during inflow. Note narrow chasm defined by this failure and dramatic flexure of the sheetpiles.
East Side IHNC North Breach, after de-watering. Note tunnel-like geometry of this narrow breach.
Undrained shear strength vs depth at the East IHNC North Breach

Blue lines shows profile of CPT-1, with NGI tip corrections for the three units encountered.

Green line shows strength profile selected by the NSF team.

Red lines shows strength profile used by the IPET team; which allows a rotational stability failure sometime between 5:30 and 6:00 AM.
Critical stability conditions for East IHNC North Breach occur when the storm surge reaches +14 feet (MSL), which was not achieved until 9 AM. Note that the presumed failure surface passes through the marsh layer.
The storm surge caused by Katrina began three days before it made landfall, seen here as the gradual increase at left, about 0.32 ft/hr. Around midnight on August 29th, the rate increased 4X, to about 1.2 ft/hr. These rates and levels were used in our seepage analyses.
East Bank IHNC North Breach

Cross section used for limit equilibrium and coupled seepage analyses. Upper plot shows pore pressure versus horizontal distance and time for this section.
Hydraulic gradients for the north breach on IHNC. Storm surge at +14.4ft (MSL). Maximum exit gradient on the upper levee toe is $i_o \approx 1.0$, and $i_o \approx 1.5$ to 2.5 in the lower toe area. The distal toe value could have been worse, depending on k value of backfill used on Jourdan Ave. drainage canal.
Post Failure Analyses of East Side IHNC South Breach

Possible failure modes:

- Overtopping scour trench-induced flood wall failure; and
- Underseepage, piping and uplift induced translational stability failure
- Multiple failure modes likely competed with one another
ANALYSES:
Stability of Flood Wall East IHNC South Breach
Plaxis soft soil constitutive modeling of 7.5 ft deep scour trench and 4.5 ft gap – deformed mesh – true scale (max displacement of embankment crest = 1.2 ft)
Shear strains predicted by the Plaxis model, assuming a 7.5 ft deep scour trench and 4.5 ft wall gap – using “best estimates” of c and phi – Factor of Safety = 1.10. Underseepage-induced pore pressure trapped along base of less pervious clay stratum, overlying the more pervious marsh deposits.
Leaning wall with 8.5 ft of gap – deformed mesh – true scale (max displacement = 1.71 ft)
Leaning wall with 8.5 ft of gap. Predicted shear strains using “best estimates” of c and phi. Factor of Safety now = 1.15

Wall becoming more stable with increasing rotation

Water el. +14ft
Coupled Seepage Analyses of Embankment along East IHNC South Breach
Geologic cross-section showing projections of borings and tentative stratigraphic correlations for the 800 ft long IHNC East Bank-South Breach, adjacent to the Lower Ninth Ward
The porous and highly conductive nature of the backswamp deposits was revealed during post-Katrina drilling and sampling operations.

Highly conductive in horizontal plane, especially, parallel to original surface drainage.
Anisotropy of backswamp deposits

- Sudden die-off of organics creates highly anisotropic fabric; preferentially layered
Drainage swales in the backswamps are subject to sieving of fines by runoff. This causes hydraulic conductivity to increase along the runoff path, as opposed to other seepage paths, within the plane of sediment accretion.
<table>
<thead>
<tr>
<th>MATERIAL</th>
<th>γ (pcf)</th>
<th>φ</th>
<th>c (psf)</th>
<th>Kh (ft/hr)</th>
<th>Kh (cm/s)</th>
<th>Kv/Kh</th>
<th>θ*</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fill</td>
<td>105</td>
<td>0</td>
<td>900</td>
<td>1.17E-04</td>
<td>9.91E-07</td>
<td>1</td>
<td>0.35</td>
</tr>
<tr>
<td>Upper CH</td>
<td>95</td>
<td>0</td>
<td>800</td>
<td>2.00E-04</td>
<td>1.69E-06</td>
<td>0.333</td>
<td>0.35</td>
</tr>
<tr>
<td>Upper Marsh</td>
<td>85</td>
<td>28</td>
<td>0</td>
<td>1.10E+00</td>
<td>9.31E-03</td>
<td>0.25</td>
<td>0.5</td>
</tr>
<tr>
<td>OC Grey CH</td>
<td>95</td>
<td>0</td>
<td>500</td>
<td>2.00E-04</td>
<td>1.69E-06</td>
<td>0.333</td>
<td>0.35</td>
</tr>
<tr>
<td>NC Grey CH</td>
<td>95</td>
<td>0</td>
<td>Su/p: 0.28</td>
<td>2.00E-04</td>
<td>1.69E-06</td>
<td>0.333</td>
<td>0.35</td>
</tr>
<tr>
<td>Lower Marsh</td>
<td>85</td>
<td>28</td>
<td>0</td>
<td>1.10E+00</td>
<td>9.31E-03</td>
<td>0.25</td>
<td>0.5</td>
</tr>
<tr>
<td>Silt</td>
<td>110</td>
<td>0</td>
<td>600</td>
<td>1.17E-04</td>
<td>9.91E-07</td>
<td>0.333</td>
<td>0.41</td>
</tr>
<tr>
<td>Lean Clay</td>
<td>100</td>
<td>0</td>
<td>600</td>
<td>2.00E-04</td>
<td>1.69E-06</td>
<td>0.333</td>
<td>0.38</td>
</tr>
<tr>
<td>Sands</td>
<td>120</td>
<td>30</td>
<td>0</td>
<td>1.00E+00</td>
<td>8.5E-03</td>
<td>0.5</td>
<td>0.42</td>
</tr>
<tr>
<td>Gaps</td>
<td>100</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>10</td>
<td>1</td>
</tr>
</tbody>
</table>

* Fredlund et al, Green and Corey, Van Genuchten

Geotechnical cross-section for conventional limit equilibrium and coupled seepage analyses of the east bank IHNC south breach.
Surge peaked at 9 AM

The horizontal permeability in the pervious marsh deposits likely varies between 1×10^{-3} and 1×10^{-6} cm/sec., locally (with the marsh stratum), depending on a number of factors.
Finite difference mesh for seepage analyses for east bank IHNC south breach.

Pressure contours for the south breach on IHNC with storm surge at 14.4ft (MSL).
Hydraulic gradients for the south breach on IHNC east bank; storm surge at 14.4ft (MSL). Maximum exit gradient at the levee toe is \(i_o \approx 0.8 \) to 1.0, at threshold for hydraulic piping.

- This may help to explain the persistent wet spot noted on the backfill of the Jourdan Avenue conduit backfill for weeks afterward.
Aerial view of the south breach at the east bank of the IHNC (at the west end of the Ninth Ward), showing the ‘wet spot’ along the inboard side and the crevasse splay generated by reverse drainage flow. [Photograph by U.S. Army Corps of Engineers]
Slope Stability Analysis of East IHNC South Breach Embankment
Geometry and input parameters for FEM (PLAXIS) stability analyses for Lower Ninth Ward, IHNC East Bank, South Breach.
Finite difference mesh for seepage analyses for east bank IHNC south breach.

Pressure contours for the south breach on IHNC with storm surge at 14.4ft (MSL).
Normalized shear strain contours (shear strain divided by strain to failure) for a storm surge at Elev. + 14 feet (MSL) on the east IHNC south breech; gapping at outboard toe of floodwall is fully developed.

Note competing failure surfaces
Estimated range in pore pressures at the top of the lower marsh unit assuming a range of horizontal hydraulic conductivity (k) in the marsh units, varying between 10^{-3} and 10^{-6} cm/sec.
Estimated range in pore pressures at top of lower marsh unit if the flood wall developed a gap; assuming a range of horizontal hydraulic conductivity (k) in the marsh units, varying between 10^{-3} and 10^{-6} cm/sec.
Increase of pore pressure at top of lower marsh unit if the gap on water side of flood wall opened around 7:30 AM. This would have hastened the build-up of pore pressure at this location.
Slope stability – shallow failure mode (in upper marsh) – FS=1.091

Limit equilibrium analyses
Deep failure mode (in lower marsh) with wall gap– FS=0.985

Deeper slope failure most likely, with k values as low as 3×10^{-5} cm/sec; with wall gap forming around 7:30 AM, at a water level of 13 ft (MSL).

This would appear to be the best explanation for a massive translational failure, 800 feet long.
Calculated Factors of Safety for three modes based on SLOPE/W analyses of the East Bank IHNC South Breach site for various surge levels; showing the best-estimated path to failure.