

Lecture 5 SUBSURFACE DRAINAGE

J. David Rogers, Ph.D., P.E., P.G.

Karl F. Hasselmann Chair in Geological Engineering
Missouri University of Science & Technology
for the course

GE 441 Geotechnical Construction Practice

Part 1

FUNDAMENTAL **CONCEPTS OF** SHALLOW SUBSURFACE **FLOW**

Groundwater Terminology

Copyright © 2005 Pearson Prentice Hall, Inc.

Theoretical movement of groundwater through uniformly permeable material

A. Gaining stream

B. Losing stream (connected)

C. Losing stream (disconnected)

Gaining and losing streams

Hydraulic gradient - linear approximation

Hydraulic gradient = $\frac{h_1 - h_2}{d}$

Darcy's Law is useful for providing approximations of groundwater flow

$$Q = K A \frac{h_1 - h_2}{L}$$

■ Where <u>h₁ - h₂</u>

L
is the *hydraulic gradient*

Interflow

Springs

- Springs occur where the ground water table intersects the Earth's surface
- Natural outflow of groundwater
- Can be caused by an aquitard, creating a localized zone of saturation, which is called a perched water table
- Ephemeral springs present the greatest engineering challenge, because they can be very difficult to detect

Springs resulting from a perched water table

Perched water tables are common to the Ozarks, much of the Midwest, and the Appalachian Mountains/Piedmont areas

