Retrogressive Slump Blocks





Circular Failure Surfaces in Clays

More Planar Failure Surfaces in Sandy Mtls or bedrock



## Types of Buttress Fills



FORCES

Excessive Groundwater Pressures Can Build Up Behind Toe Buttresses

W-F

WENT

Dead Weight W Fs is lateral force of buttress resists exerted by landslide sliding thru

N = W cos X

Shear Strength S = (N-M) tan & + c'

where:

d = slope inclination

N = Normal Force on Potential

Slide Plane

\$ = Angle of Internal Friction of Soil

11 = Water Pressure = Ywh

c' = effective cohesion of Soil

What Can Happen ....

slide can shear thru . uppermost portion of buttress

In this portion of buttress
N is very small

Beware of Differential Settlement

Groundwater backing up

- Isodslide debris consolidating under load of toe buttress. Groundwater backs up underneath fill due to decreased permeability



Most Geotechnical Practioners recommed toe buttresses first, and tend to leave uphill portions of ancient landslide slip planes in-place. From a slope stability viewpoint, the toe area is inherently most stable, as the slip surfaces level out and turn uphill. Intercepting the slide plane and installing subdrainage is most critical where the slide plane is steeply inclined downslope. The effectiveness of the buttress is a function of overburden height and subdrainage. Highly cohesive soils better resist short-term earthquake loading.

will be subject to settlement



Amount of Near-Surface Groundwater Increases
Downslope due to aereal accretion. Weathered
Zone geneally increases downslope, mimicing
groundwater flow patterns, and vice versa



# LECTURE NOTES ON

# RECOMPACTED BUTTRESS FILLS

**VARIOUS ASPECTS OF** 

### PRESENTED BY:

J. DAVID ROGERS, Ph.D., G.E., C.E.G. PRINCIPAL-IN-CHARGE

ROGERS/PACIFIC, INC.
PLEASANT HILL, CALIFORNIA

For
INTERNATIONAL CONFERENCE OF BUILDING OFFICIALS
EXCAVATION AND GRADING
"INSPECTION AND CONTROL"

AUGUST 9-10, 1993 AND NOVEMBER 15-16, 1993 WHITTIER, CALIFORNIA

# DORMANT LANDSLIDE BUTTRESS FILL

DEAD WEIGHT OF FILL, W, RESISTS LATERAL PRESSURE OF THE ADJACENT SLOPE, PA





### GRADING TO STABILIZE LANDSLIDES

### 1. Elimination

One common way to repair landslides is to remove the entire landslide mass. Following removal, the excavated area may remain or the excavation may be filled with either the previously removed material or imported material. A typical cross-section where soils are removed, subdrainage installed, and removed materials placed back and compacted is shown on Figure 1.

Among the advantages of this landslide elimination are:

- The entire slide mass is removed and the stability is not dependent on an accurate calculation of forces
- Earthwork is often cheaper than structural systems
- Engineer and/or geologist can make observations during excavation to confirm limits of slippage, areas of subsurface seepage and other important considerations

Among the disadvantages of this approach are:

- Disrupts a large area
- Large excavation may be required which may have unstable temporary cut slopes. Temporary shoring may be needed which is often expensive and difficult to work around (soil nailing may be a good alternative to conventional temporary shoring)
- Large stockpile area is needed if excavated material is to be re-used. May be stability problems with stockpile itself or in underlying materials as a result of the stockpile weight
- May be costly to dispose of excavated material and purchase imported material
- Excavated soils may have high water content and need drying or addition of lime or cement to achieve adequate compaction
- Difficult to work during adverse weather conditions

A recent development has been the use of geogrids to re-create slopes steeper than 2:1 (horizontal to vertical). This is very useful where a slope is being reconstructed in a location where adjacent slopes have inclinations of 1½:1 or 1:1. More discussion of this technique, as well as other forms of mechanically stabilized embankments (MSE), will be presented by John Walkinshaw. An example of such a system is presented in Hermann & Burd (1988).