Network Layer

Abusayeed Saifullah

CS 5600 Computer Networks

These slides are adapted from Kurose and Ross
count to infinity problem in DVR

bad news: A down again.

- why does bad news propagate slowly?
 - **Answer:** no router ever has a value more than 1 higher than the minimum of all neighbors

- how will you solve count-to-infinity problem when hop-count=cost?
 - **Answer:** set any distance > n as invalid

- How will you solve the problem if link delay is the cost?
Comparison of LS and DV algorithms

message complexity
- **LS**: with n nodes $O(n^3)$ msgs sent
- **DV**: exchange between neighbors only
 - convergence time varies

speed of convergence
- **LS**: $O(n^2)$ algorithm requires $O(n^3)$ msgs
 - may have oscillations
- **DV**: convergence time varies
 - may be routing loops
 - count-to-infinity problem
1. introduction
2. virtual circuit and datagram networks
3. routing algorithms
 - naive protocol: flooding, random
 - link state routing
 - distance vector routing
 - hierarchical routing
 - broadcast routing
 - multicast routing
 - routing in mobile hosts
 - routing in ad hoc networks
4. IP: Internet Protocol
 - datagram format
 - IPv4 addressing
 - ICMP
 - IPv6
5. routing in the Internet
 - RIP
 - OSPF
 - BGP
Hierarchical routing

our routing study thus far - idealization
- all routers identical
- network “flat”
... not true in practice

scale: with 600 million destinations:
- can’t store all dest’s in routing tables!
- routing table exchange would swamp links!

administrative autonomy
- internet = network of networks
- each network admin may want to control routing in its own network
Hierarchical routing

- aggregate routers into regions, “autonomous systems” (AS)
- routers in same AS run same routing protocol
 - “intra-AS” routing protocol
 - routers in different AS can run different intra-AS routing protocol
- **gateway router:**
 - at “edge” of its own AS
 - has link to router in another AS
Interconnected AS

- forwarding table configured by both intra- and inter-AS routing algorithm
 - intra-AS sets entries for internal dests
 - inter-AS & intra-AS sets entries for external dests
Inter-AS tasks

- Suppose router in AS1 receives datagram destined outside of AS1:
 - Router should forward packet to gateway router, but which one?

AS1 must:

1. Learn which dests are reachable through AS2, which through AS3
2. Propagate this reachability info to all routers in AS1

job of inter-AS routing!
Example: setting forwarding table in router 1d

- Suppose AS1 learns (via inter-AS protocol) that subnet x reachable via AS3 (gateway 1c), but not via AS2
 - Inter-AS protocol propagates reachability info to all internal routers

- Router 1d determines from intra-AS routing info that its interface I is on the least cost path to 1c
 - Installs forwarding table entry \((x, I)\)
Example: choosing among multiple ASes

- now suppose AS1 learns from inter-AS protocol that subnet x is reachable from AS3 and from AS2.
- to configure forwarding table, router 1d must determine which gateway it should forward packets towards for dest x
 - this is also job of inter-AS routing protocol!
Example: choosing among multiple ASes

- now suppose AS1 learns from inter-AS protocol that subnet x is reachable from AS3 \textit{and} from AS2.
- to configure forwarding table, router 1d must determine towards which gateway it should forward packets for dest x
 - this is also job of inter-AS routing protocol!
- \textit{hot potato routing: send} packet towards closest of two routers.

<table>
<thead>
<tr>
<th>learn from inter-AS protocol that subnet x is reachable via multiple gateways</th>
<th>use routing info from intra-AS protocol to determine costs of least-cost paths to each of the gateways</th>
<th>hot potato routing: choose the gateway that has the smallest least cost</th>
<th>determine from forwarding table the interface I that leads to least-cost gateway. Enter (x,I) in forwarding table</th>
</tr>
</thead>
</table>
1. introduction
2. virtual circuit and datagram networks
3. routing algorithms
 - naive protocol: flooding, random
 - link state routing
 - distance vector routing
 - hierarchical routing
 - broadcast routing
 - multicast routing
 - routing in mobile hosts
 - routing in ad hoc networks
4. IP: Internet Protocol
 - datagram format
 - IPv4 addressing
 - ICMP
 - IPv6
5. routing in the Internet
 - RIP
 - OSPF
 - BGP
Broadcast routing

- deliver packets from source to all other nodes
- source duplication → **N-way unicast** → inefficient:

- source duplication: how does source determine recipient addresses?
Broadcast Techniques

- *flooding*: when node receives broadcast packet, sends copy to all neighbors
 - problems: cycles & broadcast storm
- *controlled flooding*: node only broadcasts pkt if it hasn’t broadcast same packet before
 - node keeps track of packet ids already broadcasted
 - or reverse path forwarding (RPF): only forward packet if it arrived on shortest path between node and source

Can we broadcast where no redundant packets are received by any node?
Broadcast Techniques

- **flooding**: when node receives broadcast packet, sends copy to all neighbors
 - problems: cycles & broadcast storm

- **controlled flooding**: node only broadcasts pkt if it hasn’t broadcast same packet before
 - node keeps track of packet ids already broadcasted
 - or reverse path forwarding (RPF): only forward packet if it arrived on shortest path between node and source

- **spanning tree**:
 - no redundant packets received by any node. Why?
Spanning tree

- first construct a spanning tree
- nodes then forward/make copies only along spanning tree

(a) broadcast initiated at A
(b) broadcast initiated at D
Spanning tree construction

- How will we construct a spanning tree?
Spanning tree construction

- How will we construct a spanning tree?
 - Depth-first search (DFS)
 - Center-based approach (CBA)
Spanning tree construction: CBA

- center node
- each node sends unicast join message to center node
 - message forwarded until it arrives at a node already belonging to spanning tree

(a) stepwise construction of spanning tree (center: E)

(b) constructed spanning tree
Spanning tree construction

- Now consider each link has an associated cost.
- How will we construct a spanning tree?
Spanning tree construction

- Now consider each link has an associated cost.
- How will we construct a spanning tree?

- Construct a minimum spanning tree. How?