Real-Time Wireless Sensor-Actuator Networks

Abusayeed Saifullah

Department of Computer Science
Roadmap

- Real-time transmission scheduling theory for WSAN
 - Dynamic priority
 - Fixed priority
 - End-to-end delay analysis
 - Priority assignment
- Scheduling-control co-design for WSAN
- CapNet: real-time WSAN for data center power capping
- WSAN over TV White Spaces
Wireless Data Center Power Management

Power infrastructure in an enterprise data center costs hundreds of millions USD.

Power capping: regulate the power consumption of a cluster of servers.
Wireless Data Center Power Management

Power infrastructure in an enterprise data center costs hundreds of millions USD.

Power capping: regulate the power consumption of a cluster of servers.

Management using low-cost wireless

- **Reduced cost**: for 100,000 servers, only 5.4%-8% of the wire solution cost
- Simple, flexible, easily manageable
Power Capping

- **Cap**: circuit breaker’s capacity for a cluster of servers
- **Using nameplate power rating**: less servers per cluster

Oversubscription: put more servers on a circuit

Aggregate power: rarely exceeds the cap

Power capping: brings the aggregate power consumption back to cap
Power Capping Real-Time Requirement

- **Trip time**: allowed time duration above the cap
- If oversubscription duration > trip time → circuit breaker trips
 - Server shutdowns
 - Power outage

Power capping must be done within trip time (deadline)
Designing Wireless Capping Protocol

- A naive protocol will repeatedly
 - Collect power consumption data from each server
 - Determine aggregate consumption; do capping if it exceeds cap
Designing Wireless Capping Protocol

A naive protocol will repeatedly
- Collect power consumption data from each server
- Determine aggregate consumption; do capping if it exceeds cap

![Graph showing power consumption over time](image)

Power capping is a rare event!

Interferes with wireless in other clusters/applications!

We design a distributed event-driven protocol
- Global cap to local cap \rightarrow local detection \rightarrow servers generate alarms
- Aggregation is done only upon detection of a potential event
CapNet Design and Implementation

- **CapNet**: Wireless Sensor Network for Power Capping
 - Employs conflict-free, event driven protocol

- Operates in 3 phases
 - Local detection → alarm
 - Aggregation upon k alarms: increase k to suppress false alarms
 - Triggers capping, if the alarms are true

![Flowchart](image-url)
CapNet Design and Implementation

- **CapNet**: Wireless Sensor Network for Power Capping
 - Employs conflict-free, event driven protocol

- Operates in 3 phases
 - Local detection \rightarrow alarm
 - Aggregation upon k alarms: increase k to suppress false alarms
 - Triggers capping, if the alarm is true

implemented in TinyOS on TelosB platform.
Power Consumption in a Data Center

180×180 matrix

\[[i,j] : \text{correlation between i-th and j-th server} \]

Microsoft Data Center clusters running Web-Search, Email, Map-Reduce, cloud apps

- Strong synchrony among the servers in the same cluster
 - Cluster exceeds cap → many servers exceed local cap → fast alarm
 - CapNet benefits from correlation → a practical approach!
Experiment

- Deployed in Microsoft data center experimental facility
- TelosB to Server through serial
Real-Time Performance (480 servers)

\[\text{Capping latency} = \text{Network latency} + \text{OS latency} + \text{Hardware latency} \]

\[110-350 \text{ms} \]

\[\text{Slack} = \text{Trip time-capping latency} \]

94% transmission suppression compared to the naive protocol!

CapNet meets the real-time requirements in capping.
Roadmap

- Real-time transmission scheduling theory for WSAN
 - Dynamic priority
 - Fixed priority
 - End-to-end delay analysis
 - Priority assignment

- Scheduling-control co-design for WSAN

- CapNet: real-time WSAN for data center power capping

- WSAN over TV White Spaces
WSAN over TV White Space

- WSAN scalability challenge
 - Smart city \rightarrow hundreds of thousands of nodes
 - Clinical monitoring in large medical systems

- Approach: WSAN over white spaces
Sensor Networking over White Space

White Spaces: unused UHF/VHF band between 50-698 MHz

Advantage
- Long transmission range
- Wall penetration

Challenge
- Energy, real-time requirements
- Exploit bandwidth and data rate

Spectrum inside a data center
Sensor Networking over White Space

White Spaces: unused UHF/VHF band between 50-698 MHz

Advantage
- Long transmission range
- Wall penetration

Challenge
- Energy, real-time requirements
- Exploit bandwidth and data rate

More than 60% spectra are white spaces

$<$

-85dBm
Sensor Networking over White Space

White Spaces: unused UHF/VHF band between 50-698 MHz

Advantage
- Long transmission range
- Wall penetration

Challenge
- Energy, real-time requirements
 - Exploit bandwidth and data rate

![Bar chart showing spectrum availability](image)

Spectrum availability based on counties in USA
Sensor Networking over White Space

White Spaces: unused UHF/VHF band between 50-698 MHz

Advantage
- Long transmission range
- Wall penetration

Challenge
- Energy, real-time requirements
- Exploit bandwidth and data rate

For sensor network applications that involve
- Wide-area sensing: Large civil infrastructure, oil field
- Wall/obstacle penetration: Hospital, industry sensor network
Conclusion

- **Real-time wireless sensor-actuator network is a reality.**
 - Enables cyber-physical systems in industry, home, hospital

- **Our contributions and research impacts**
 - Real-time wireless scheduling theory for WSAN
 - Scheduling-control co-design for wireless control
 - CapNet: the first real-time WSAN for data center power capping

- **Vision: large-scale wireless cyber-physical systems**
 - Scalable real-time network architecture and protocols
 - Wide-area sensor networking over White Spaces