MAC Sublayer

Abusayeed Saifullah

CS 5600 Computer Networks

These slides are adapted from Kurose and Ross
Multiple access links

two types of “links”:

- **point-to-point**
 - PPP for dial-up access
 - point-to-point link between Ethernet switch, host

- **broadcast (shared wire or medium)**
 - old-fashioned Ethernet
 - 802.11 wireless LAN
 - 802.15.4

shared wire (e.g., cabled Ethernet)

shared RF (e.g., 802.11 WiFi)

shared RF (satellite)

humans at a cocktail party (shared air, acoustical)
Interference

- shared broadcast channel
- **Interference**: Reception at a node A from a desired sender B can be interfered by an unexpected transmission
- **Collision**: if node receives two or more signals at the same time

- a and c: conflicting for half-duplex radio
- b and e: conflicting for half-duplex radio
- d and e: conflicting
- c and d: can interfere each other

Need to avoid/minimize interference and collision.

But nodes do not have global knowledge. They only have local information.
Handling interference and collision

- Schedule conflicting links in different times
 - Let not the fighting guys see each other

- How?
 - Needs a judicious assignment of times to all contenders
Handling interference and collision

- Schedule conflicting links on different channels
 - Make the fighting guys happy with their own resource

Issues
- Limited # of channels
- Channel assignment
Handling interference and collision

- Transmission power control
 - If the audience can hear your lower voice, no need to shout.
Handling interference and collision

- Check before you transmit: collision avoidance
- Collision detection
- Be random on what you cannot predict
- Recovery
 - Capture effect
 - Retransmission
 - Retry
 - Detour
media access control (MAC) protocol

- determines how nodes share the medium
 - allocates resources: time, channel
- handles interference/collision
 - avoidance
 - detection
 - recovery
- communication about channel sharing must use channel itself!
 - no out-of-band channel for coordination
An ideal MAC protocol

given: broadcast channel of rate R bps

desiderata:
1. when one node wants to transmit, it can send at rate R.
2. when M nodes want to transmit, each can send at average rate R/M
3. fully decentralized:
 • no special node to coordinate transmissions
 • no synchronization of clocks, slots
4. no collision, no interference
5. simple
MAC protocols: taxonomy

three broad classes:

- **resource partitioning**
 - divide resource into smaller “pieces” (time slots, frequency, code)
 - allocate piece to node for exclusive use

- **random access**
 - resource not divided, allow collisions
 - “recover” from collisions

- **“taking turns”**
 - nodes take turns, but nodes with more to send can take longer turns
Resource partitioning MAC protocols

- **time division multiple access (TDMA):** partition the time

- **frequency division multiple access (FDMA):** partition the channel spectrum
TDMA protocol

- access to channel in "rounds"
- each station gets fixed length slot (length = pkt trans time) in each round
- unused slots go idle
- example: 6-station LAN, 1, 3, 4 have pkt, slots 2, 5, 6 idle
TDMA

❖ **Advantage:** collision free

❖ **Disadvantage:**
 - Unused slot at a node goes useless while another node could use it

Station 3 has another packet but cannot send it until the next turn comes while stations 2, 5, 6 are wasting slots.

❖ TDMA requires time synchronization

❖ Why is time synchronization a headache
 - Extra communication
 - Synchronization error. Why?
 - Does not scale
TDMA

When is TDMA good?

When is TDMA bad?
TDMA

When is TDMA good?
- Huge traffic
- Predictable traffic
- Smaller network (in hop-count and # of nodes)

When is TDMA bad?
- Light traffic
- Random/unpredictable traffic
- Too large a network (in hop-count and # of nodes)
FDMA (freq. division multiple access)

- channel spectrum divided into frequency bands
- each station assigned fixed frequency band
- unused transmission time in frequency bands go idle
- example: 6-station LAN, 1,3,4 have pkt, frequency bands 2,5,6 idle
Random access protocols

- when node has packet to send
 - transmit at full channel data rate R.
 - no *a priori* coordination among nodes

- two or more transmitting nodes \rightarrow “collision”,

- random access MAC protocol specifies:
 - how to detect collisions
 - how to recover from collisions (e.g., via delayed retransmissions)

- examples of random access MAC protocols:
 - slotted ALOHA
 - ALOHA
 - CSMA, CSMA/CD, CSMA/CA
Slotted ALOHA

assumptions:
- all frames same size
- time divided into equal size slots (time to transmit 1 frame)
- nodes start to transmit only slot beginning
- nodes are synchronized
- if 2 or more nodes transmit in slot, all nodes detect collision

operation:
- when node obtains fresh frame, transmits in next slot
 - *if no collision:* node can send new frame in next slot
 - *if collision:* node retransmits frame in each subsequent slot with prob. p until success
Pros:
- Single active node can continuously transmit at full rate of channel
- Highly decentralized:
 - Only slots in nodes need to be in sync
 - Local decision to transmit
- Simple

Cons:
- Collisions, wasting slots
- Idle slots
- Nodes may be able to detect collision in less than time to transmit packet
- Clock synchronization

Slotted ALOHA

Node 1
1 1 1

Node 2
2 2 2

Node 3
3 3 3

Key:
- C = Collision slot
- E = Empty slot
- S = Successful slot
Slotted ALOHA: efficiency

efficiency: long-run fraction of successful slots (many nodes, all with many frames to send)

- *suppose*: N nodes with many frames to send, each transmits in slot with probability p
- prob that given node has success in a slot = $p(1-p)^{N-1}$
- prob that *any* node has a success = $Np(1-p)^{N-1}$

- max efficiency: find p^* that maximizes $Np(1-p)^{N-1}$
- for many nodes, take limit of $Np^*(1-p^*)^{N-1}$ as N goes to infinity, gives:
 \[\text{max efficiency} = \frac{1}{e} = .37 \]

at best: channel used for useful transmissions 37% of time!