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ABSTRACT
The diverse range of active tectonics occurring in southern California, USA, offers an 

opportunity to explore processes of continental deformation and modification in response to 
the instability of the Pacific and Farallon plates. Here, we present a high-resolution receiver-
function image of the mantle transition zone (MTZ). Our result reveals significant lateral 
heterogeneities in the deep mantle beneath southern California. Both seismic tomography 
and MTZ discontinuity deflections reveal foundered lithospheric segments that have dropped 
into the MTZ beneath the western Transverse Ranges, the Peninsular Ranges, and part of the 
southern Sierra Nevada. Water dehydrated from these foundered materials may contribute 
to the observed MTZ thickening. Our observations, combined with previous tomography and 
geochemical results, indicate that lithospheric foundering of fossil arc roots provides a way for 
geochemical heterogeneities to be recycled into the underlying mantle, and suggest that the 
foundered materials can play a significant role in inducing lateral variations of MTZ structure.

INTRODUCTION
Abundant seismicity, and the availability of 

a wide range of other geological and geophysi-
cal data make southern California, USA (Fig. 1) 
one of the best-studied regions in the world with 
respect to crustal and mantle structure and dy-
namics. While the crust and shallow upper mantle 
in this area of California are comparatively well 
documented, structures at greater depths, espe-
cially the mantle transition zone (MTZ), have not 
been explored in great detail, leading to consider-
able uncertainties regarding mass exchange be-
tween the shallow and deep mantle layers. Several 
tectonic issues are still under debate, including 
the fate of the removed lithospheric root beneath 
the southern Sierra Nevada, the origin of the Isa-
bella anomaly (imaged as a high-velocity anom-
aly [HVA] in the upper mantle under the Great 
Valley), and the depth extent of the high-velocity 
mantle lithosphere beneath the Transverse Rang-
es (e.g., Humphreys and Hager, 1990; Saleeby 
et al., 2003; Zandt et al., 2004; Schmandt and 
Humphreys, 2010; Wang et al., 2013; Cox et al., 
2016; Jiang et al., 2018; Yu and Zhao, 2018).

Questions arise about where the removed 
lithospheric pieces now reside, and whether these 
foundered lithospheric segments have entered the 
MTZ or the lower mantle. The MTZ is bounded 
by the 410 km (d410) and 660 km (d660) discon-
tinuities, which represent phase transitions from 
olivine to wadsleyite and ringwoodite to bridg-
manite, respectively (Ringwood, 1975). Under 
normal temperature and anhydrous conditions, 
the depths of the d410 and d660 are sensitive to 
lateral temperature variations, and have positive 
and negative Clapeyron slopes, respectively (e.g., 
Ringwood, 1975; Bina and Helffrich, 1994). The 
existence of a cold subducted slab or upwelling 
hot material, would lead to a thicker or thinner 
MTZ, respectively (Ringwood, 1975). In addi-
tion, compositional or water content variations 
can also disturb the topography of the d410 and 
d660 (Litasov et al., 2005). Thus, the topography 
of the MTZ discontinuities can be used to infer 
physical properties of the MTZ.

There are significant discrepancies among 
pre-USArray seismic observatory (http://www.
usarray.org/) MTZ studies in southern California, 

most likely due to the low number of receiver 
functions (RFs) used in the studies (Gurrola 
and Minster, 1998; Ramesh et al., 2002; Lewis 
and Gurrola, 2004; Vinnik et al., 2010). On the 
other hand, more recent RF studies using USAr-
ray data are focused on the western or the entire 
United States with resolutions that are not high 
enough for identifying finer MTZ features in 
southern California (e.g., Tauzin et al., 2013; Gao 
and Liu, 2014b). In this study, we employed the 
RF method to conduct a comprehensive inves-
tigation of the MTZ structure beneath southern 
California with an unprecedented spatial resolu-
tion by taking full advantage of the dense seismic 
station coverage, which is among the highest in 
the world. The high-resolution RF observations, 
when combined with results of seismic tomogra-
phy studies, provide critical constraints on some 
of the aforementioned long-lasting questions 
about the deformation and lithospheric modifi-
cation occurring under southern California.

LATERAL VARIATIONS IN MTZ 
STRUCTURE

All the seismograms used in this study were 
selected by employing a signal-to-noise ratio–
based procedure and were band-pass filtered in 
the frequency band of 0.02–0.2 Hz (Gao and Liu, 
2014a). The filtered seismograms were  further 
converted into radial RFs using the frequency-
domain water-level deconvolution procedure 
(Ammon, 1991). Stacking of RFs in successive 
circular bins with a radius of 0.3° under the non-
plane-wave assumption (Gao and Liu, 2014a) 
revealed that robust  P-to-S conversions from 
either the d410 or the d660 are clearly identifi-
able in a total of 599 bins (see the GSA Data 
 Repository1 for details on the data and methods). 

1GSA Data Repository item 2020056, Figures DR1–DR8 and Table DR1 (results of receiver function stacking for each of the bins), is available online at http://
www.geosociety.org/datarepository/2020/, or on request from editing@geosociety.org.
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The  resulting MTZ discontinuity depths are ap-
parent, rather than true depths, due to our use 
of the one-dimensional (1-D) IASP91 (Interna-
tional Association of Seismology and Physics of 
the Earth’s Interior) Earth model (http://ds.iris.
edu/ds/products/emc-iasp91/) to moveout- 
correct the RFs. Accurately determined abso-
lute P- and S-wave velocity (Vp, Vs) models 
above the d660 are required to calculate the true 
depths. Because such high-resolution velocity 
models are not available for the study area, the 
apparent, rather than velocity- corrected, depths 
are discussed in the following.

The apparent depths of both the d410 and 
d660 are revealed to have remarkable lateral 
variations ranging from 399 to 444 km and from 
657 to 698 km, respectively (Fig. 2; Table DR1 
in the Data Repository), leading to substantial 
perturbations of the MTZ thickness from 223 to 
282 km, with a mean value of 247 ± 7 km. The 
average depth of the d410 is calculated to be 
429 ± 7 km, and that of the d660 is 677 ± 8 km, 
which are significantly deeper than the anticipat-
ed values of 410 km and 660 km, respectively, 
in the IASP91 Earth model, and are indicative 
of the overall slow velocities above the d410. 

The average Vp anomaly from the surface to the 
d410 is estimated to be −1.26% (Fig. 2D), if we 
assume the true d410 depth to be 410 km (see 
the Data Repository for details). The estimated 
magnitude of the velocity anomaly is consis-
tent with previous seismic tomographic results 
(e.g., Raikes, 1980; Humphreys et al., 1984; 
Zhao et al., 1996; Schmandt and Humphreys, 
2010). Significant depressions of the MTZ dis-
continuities have also been revealed by previ-
ous RF studies using a smaller number of RFs 
(Ramesh et al., 2002; Vinnik et al., 2010) or a 
lower spatial resolution (Gao and Liu, 2014b).

The cross-correlation coefficient (XCC) be-
tween the resulting apparent depths of d410 and 
d660 is 0.47 (Fig. DR2), which is much smaller 
than that (0.84) for the contiguous United States 
(Gao and Liu, 2014b). Considering the signifi-
cant low-velocity anomalies (LVAs) above the 
d410, the low XCC may suggest the existence 
of thermal or compositional (including water-
content) anomalies in the MTZ. The western 
Transverse Ranges, Peninsular Ranges, and part 
of the southern Sierra Nevada are characterized 
by significant MTZ thickening, which is further 
confirmed by RF stacking within each subarea 

(Fig. DR3) and results from a larger bin size 
of 0.5° (Fig. DR4). In contrast, most parts of 
the Great Valley, the Outer Borderland, and the 
Basin and Range Province are dominated by an 
obviously thinner-than-normal MTZ.

FOUNDERED LITHOSPHERIC 
MATERIALS IN THE MTZ

The resulting thicker-than-normal MTZ 
beneath the western Transverse Rang-
es (265 ± 8 km), the Peninsular Ranges 
(258 ± 4 km), and part of the southern Sierra 
Nevada (256 ± 3 km) is generally consistent 
with the distribution of the HVAs around the 
MTZ (Fig. 3; Fig. DR5) revealed by seismic 
tomography (e.g., Schmandt and Humphreys, 
2010; Yu and Zhao, 2018). While HVAs in the 
MTZ are usually interpreted as subducted oce-
anic slabs, the slabs of the latest subduction 
event of the Farallon plate are imaged at 300–
700 km depth beneath the central and eastern 
United States, which is outside our study area 
(e.g., Schmandt and Lin, 2014; Burdick et al., 
2017; Wang et al., 2019a). In addition, analysis 
of silica-rich glasses from the southern Sierra 
Nevada indicated that some of the trace elements 
are sourced from lower-crustal rocks, instead of 
having a subduction-related origin (Ducea and 
Saleeby, 1998). These observations, together 
with the absence of currently active subduc-
tion, suggest that the observed HVAs beneath 
southern California could represent foundered 
lithospheric segments dropped into the MTZ, 
rather than subducted oceanic slabs (Fig. 3).

Seismic experiments, numerical modeling, 
and xenolith studies support the loss of the 
crustal root beneath the southern Sierra Nevada 
since the Miocene, and its lithospheric mantle 
here is characterized by significant LVAs (e.g., 
Saleeby et al., 2003; Boyd et al., 2004; Gilbert 
et al., 2012; Yu and Zhao, 2018), indictive of 
lithospheric foundering (Fig. 3), which is es-
timated to have occurred at 3.5 Ma based on 
a sudden pulse of mafic potassic magmatism 
(Manley et al., 2000). The removed lithospher-
ic material beneath the southern Sierra Ne-
vada has been interpreted to have convectively 
 descended or foundered into the asthenosphere 
beneath the southern Great Valley, forming the 
high-velocity Isabella anomaly (e.g., Saleeby 
et al., 2003; Boyd et al., 2004; Zandt et al., 
2004; Gilbert et al., 2012; Jones et al., 2014), 
which extends from near the base of the crust 
to at least ∼300 km depth (Fig. 3A).  However, 
recent observations on the position (Wang 
et al., 2013; Jiang et al., 2018), geometry (Cox 
et al., 2016), and lithospheric anisotropy (Yu 
and Zhao, 2018) of the Isabella anomaly are 
more consistent with a fossil slab hypothesis 
for its origin, probably as a remnant of Miocene 
subduction termination that is still attached to 
the Monterey slab translating northward with 
the Pacific plate (Wang et al., 2013; Cox et al., 
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Figure 1. Topographic map showing the distribution of 476 broadband seismic stations (red 
triangles) in southern California, USA, used in this study. Black lines indicate major faults. 
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2016). The fact that the MTZ beneath the Isa-
bella anomaly has a thinner-than-normal thick-
ness (Fig. 3A), which indicates the existence 
of a high-temperature anomaly, suggests that 
the HVA, usually featured as a low-temperature 
anomaly, does not extend to the MTZ and is 
consistent with the hypothesis that the Isabella 
anomaly is a fossil slab existing in the upper 
mantle. In contrast, beneath the southern Sierra 
Nevada, the observed thicker-than-normal MTZ 
and the tomographically revealed HVAs suggest 
that the foundered cold lithosphere has sunk into 
the MTZ (Fig. 3D). The proposed downward 
movement of the foundered lithosphere is con-
sistent with the overwhelmingly negative radial 
anisotropy (indicative of a faster velocity in the 
vertical direction than in the horizontal direc-
tion) associated with the HVAs (Fig. 3).

A positive arrival at the depth of ∼740 km 
was observed in some areas, such as the southern 
 Sierra Nevada (Fig. 3A; see also Simmons and 

Gurrola, 2000), and could be associated with 
a garnet phase change (Simmons and Gurrola, 
2000). Geochemical studies indicate that gar-
net clinopyroxenite constitutes a significant 
component of the Sierran mantle lithosphere, 
and these garnet-rich rocks are of the order of 
0.2 g/cm3 denser than typical mantle peridotite 
(Saleeby et al., 2003). Thus, the discontinuity 
at ∼740 km may reflect that some of the foun-
dered lithospheric segments discussed above 
may have dropped into the lower mantle. The 
foundered lithosphere would have dropped 
down, leaving space for inflow of buoyant as-
thenosphere (Saleeby et al., 2003; Zandt et al., 
2004), which may have instigated the develop-
ment of a small-scale mantle convection system 
(Fig. 3D). Extensive MTZ thinning (Fig. 2) ob-
served beneath the Great Valley (240 ± 5 km) 
and the Outer Borderland (238 ± 7 km) is pos-
sibly associated with the upwelling branch of 
the convection  system (Fig. 3D).

CONTRIBUTION OF DEHYDRATED 
WATER TO MTZ THICKENING

The presence of water may also play a role in 
the observed deflections of the MTZ discontinu-
ities (e.g., van der Meijde et al., 2003; Cao and 
Levander, 2010) in addition to thermal anoma-
lies. Observational and experimental studies 
suggest that hydration of the MTZ decreases 
seismic velocities (Inoue et al., 1998; Cao and 
Levander, 2010) and increases MTZ thickness 
(Litasov et al., 2005). Small-scale heterogene-
ities of low-velocity bodies have recently been 
revealed in the MTZ based on RF images of the 
North American MTZ and interpreted as water-
enriched harzburgites (Wang et al., 2019b). In 
addition, regional and continental-scale tomo-
graphic studies commonly show LVAs either 
around the d410 or in the MTZ at places where 
significant MTZ thickening is observed beneath 
southern California (Fig. 3; Figs. DR5–DR7), 
suggesting possible contributions of an anom-
alously high amount of water to the observed 
MTZ thickening. The existence of an excessive 
amount of water-rich minerals in the MTZ is fur-
ther supported by the negative arrivals immedi-
ately atop the d410 (Bercovici and Karato, 2003) 
and the relatively smaller stacking amplitude of 
the d410 (Fig. DR8; van der Meijde et al., 2003), 
especially beneath the Peninsular Ranges. Ad-
ditionally, a discontinuity at a depth of ∼520 km 
(d520) may represent the phase transition from 
wadsleyite to ringwoodite (Fig. 3), which is fre-
quently observed in areas with a  hydrous MTZ 
(van der Meijde et al., 2003; Deuss and Wood-
house, 2001; Tauzin et al., 2013; Maguire et al., 
2018). Experimental and thermodynamic studies 
indicate that a sharp d520 would be preferential-
ly detected in colder- and more hydrated-than-
average regions (Inoue et al., 1998; Xu et al., 
2008). In addition, splitting of the d520 (Fig. 3) 
might be expected with an increased water con-
tent or the exsolution of calcium-perovskite in 
the MTZ (Deuss and Woodhouse, 2001; van 
der Meijde et al., 2003). Previous investiga-
tions suggested that 2.0 wt% of water can result 
in 25–45 km thickening of the MTZ (Cao and 
Levander, 2010). Thus, the maximum amount of 
water beneath southern California is ∼1.0 wt%, 
if the resulting MTZ thickening is dominantly 
attributed to water  effects. A plausible source 
of the water is  dehydration of the foundered 
lithospheric segments widely revealed in the 
upper mantle (Fig. 3D). The silica-rich glasses 
from the Sierra Nevada have been proposed to 
be associated with dehydration melting of horn-
blende-bearing areas along the edges of foun-
dered segments (Ducea and Saleeby, 1998). The 
lithosphere of these fossil arcs, such as under the 
Sierra Nevada and the Peninsular Ranges (e.g., 
 DePaolo, 1981), may have been saturated by hy-
drous  upwelling from the slab interface during 
the subduction of the Farallon plate. Numerical 
modeling and geochemical results show that the 
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Figure 2. Results of receiver function (RF) stacking and average P-wave seismic velocity (Vp) 
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lithosphere  altered from arc magmatism is likely 
to be 1%–5% denser than its surrounding mantle, 
and would possess a weak lower crust due to 
eclogitization with the aid of water dehydrated 
from the slab interface (e.g., Saleeby et al., 2003; 
Elkins-Tanton, 2005). Such a density contrast 
would be sufficient to drive gravitational insta-
bility (Elkins-Tanton, 2005; West et al., 2009).

CONCLUSIONS
This study reveals significant lateral het-

erogeneities in the deep mantle beneath south-
ern California. Both seismic tomography and 
MTZ discontinuity deflections reveal foundered 
lithospheric segments that have dropped into the 

MTZ beneath the western Transverse Ranges, 
the Peninsular Ranges, and part of the southern 
Sierra Nevada. Our observations provide new 
evidence to support the hypothesis that founder-
ing of a fossil arc lithosphere root may induce 
small-scale mantle convection, produce a het-
erogeneous and locally hydrous upper mantle, 
and lead to short-duration eruptive episodes of 
hydrous, alkali-rich magmas in southern Cali-
fornia (Elkins-Tanton and Grove, 2003).
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