Problem 1
Derive the recurrence equation of the following sorting algorithm, providing a thorough explanation on the process used. Solve the equation using the Recursion-tree method.

RecSort(A, start, end){
 if (start == end){
 return A;
 }
 MinIndex = start;
 MinValue = A[start];
 for (i = start; i <= end; i++){
 if (MinValue < A[i]){
 MinValue = A[i];
 MinIndex = i;
 }
 }
 App = A[start];
 A[start] = MinValue;
 A[MinIndex] = App;
 return RecSort(A, start+1, end);
}

Algorithms 2500 – Section 1A
Homework 1
Due date: 09/17/2014

Student: ________________________________

Grading criteria

<table>
<thead>
<tr>
<th>Category of assessment</th>
<th>1 - Inadequate</th>
<th>2 – Needs Improvement</th>
<th>3 - Adequate</th>
<th>4 - Excellent</th>
</tr>
</thead>
<tbody>
<tr>
<td>Logic</td>
<td>The student’s argument fails to address the statement of the Problem.</td>
<td>The student understands what needs to be done, but cannot find adequate statements which would logically do the problem.</td>
<td>The student understands the statement of the problem but fails to complete the argument to form a correct solution.</td>
<td>The student provides a logically sound solution</td>
</tr>
<tr>
<td>Performance</td>
<td>0-5</td>
<td>5-6.5</td>
<td>6.5-8.5</td>
<td>8.5-10</td>
</tr>
<tr>
<td>Problem 1</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Problem 2</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Problem 2

Solve the following recurrence using the Master theorem and the Recursion-tree method. Provide a detailed explanation of the application of each method.

\[
T(n) = \begin{cases}
11T\left(\frac{n}{11}\right) + \mathcal{O}(n) & \text{if } n > 1 \\
\mathcal{O}(1) & \text{if } n = 1
\end{cases}
\]