
Modal Analysis of a Tight String	


Daniel. S. Stutts	



Associate Professor of 	


Mechanical Engineering and 	



Engineering Mechanics	


	

Presented to ME211	



Monday, October 30, 2000	



See:  http://web.mst.edu/~stutts/ME_Classes.html	





Basic Theory	


The string under tension is the simplest example of a 	


continuous structure, but the concepts presented here are 
readily extensible to more complicated structures such as 
beams, plates, and shells.  That is, to all structures which are 
relatively thin in at least one dimension with respect to the 
others.  Some very important and powerful concepts will be 
introduced which apply to many other physical problems, 
such as conduction in heat transfer, diffusion problems, and 
problems in electromagnetism, to name a few.	





Key Concepts	


1.  Separation of variables in partial differential 

equations	


2.  Eigenvalue problems in continuous systems.	


3.  Orthogonality of modes of vibration.	


4.  Expansion of the forced solution in terms of 

the homogeneous solution.	





Tight String Model Derivation	



We will focus our attention on a string of length, L, with 
fixed ends as shown in Figure 1. 	



Figure 1. Geometry of tight string with fixed ends.	





Free Body Diagram of String 
Element	



Figure 2. Free body diagram of string element.	





Applying Newton’ 2nd Law	


For a string of density ρ(x) per unit length, we have by 
summing the forces in the y-direction:	
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Hence, neglecting higher order terms (containing dx2) 
the equation of motion becomes 	



and	
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The equation of motion (the domain equation) plus the 
initial values and the boundary values constitutes what is 
known as the well-posed IBVP (initial boundary value 
problem).  The boundary values for a fixed string are:	
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The initial values are determined by the initial shape and 
velocity distribution of the string:	
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Separation of Variables and ���
the Free-Vibration Problem	



The free-vibration, or eigenvalue problem, given by	
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may be readily solved by the method of separation of 
variables. Letting	
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we have	
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Dividing by ρ(x)U(x)T(t) we obtain	
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Where -ω2 is a constant.  The reason for the negative sign 
will become obvious shortly.	





The only way that a function of one variable, say x, can be 
equal to a function of another variable, in this case t, if for 
both functions be be equal to a constant.  This being the 
case, Equation (9) may be recast as two equations:	
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Equations (10) and (11) + the initial and boundary 
values form the IBVP.	





Equation (10) implies the expected result – that the solution 
will be harmonic in time.  Had we chosen a positive 
constant in Equation (9), the temporal solution would be 
exponential in nature – this is clearly non-physical. Hence, 
the temporal solution may be written	
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For simplicity, we consider the case of a tight string under 
constant tension (τ = const.), and with constant mass 
density per unit length (ρ = const.). Equation (11) becomes	
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where  	


ρ
τ
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The constant c is the speed of sound in the string. Equation (13) 
has a general solution of the form	
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To determine specific mode shape, we must apply the boundary 
conditions:	
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Equation (16) implies that	
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From Equations (18) and (17), we have	
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Hence, we must have 	
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Thus, we have that the natural frequencies occur in discrete 
values given by	
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Furthermore, the overall motion is composed of a sum of 
discrete modes of the form	
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where the the unknown constant, D, has been set to unity 
because it is arbitrary.	





Hence, the total general solution is given by	
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The unknown constants also occur discretely, and must 
be determined from the initial conditions by applying 
the principal of orthogonality of modes.	





Orthogonality Makes the World 
Go Around!	



From the initial conditions, we have	
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Multiplying (25) by 	

 x
L
mπsin and integrating over the	



Domain yields the unknown constant, An, because of 
the following relationship:	
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 where δmn is the Kroneker delta. Thus, we obtain	
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Similarly, from Equation (5) we obtain	



∫=
L

n
n xdx

L
nxh

L
B

0
sin)(2 π

ω
(28)	





Example: the Plucked Guitar 
String	



Consider the following example of a tight string with 
initial conditions given by	
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and	
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The situation looks like the following:	



Figure 3. Initial shape of a plucked guitar string.	



From Equations (27) and (29) we have	
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Evaluating the integrals yields	
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Thus,	
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Alternatively, the dummy index, n, may be shifted to avoid the 
odd indicial notation:	
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The Effect of Damping on the 
Response of the Plucked String	



Figure 4. FBD of string with damping and constant tension.	
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The equation of motion tight string with constant tension and 
density, but including distributed damping as shown in Figure 
4 may be shown to be	



where β is the distributed viscous damping constant with units 
Newton-seconds/meter2. We note that in Figure 4, the damping 
force opposes the motion of the string, so results in a negative 
applied force in Newton’s 2nd law.  We will seek a solution in 
terms of the previously determined eigen function of the form	
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Substitution of (36) into (35) yields	
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where use has been made of Equation (14) and the dot 
notation for derivatives with respect to time. 
Multiplication of (37) by 	
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and integration with respect to x over (0,L) yields 
for m = n	
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because the left hand side of Equation (37) vanishes 
identically for m ≠ n. In canonical form, (37) becomes	
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Plucked Guitar String with 
Viscous Damping	



As in the previous example which neglected damping, 
f(x,t) = 0, and the initial conditions are given by Equations 
(29) and (30).  The equation for the so-called modal 
participation factor, Equation (39), becomes	
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The solution may easily be shown to be 	
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where the coefficients An and Bn must be determined 
from the initial conditions.	





The frequency of oscillation is effected by damping, and is 
referred to as the damped natural frequency of oscillation, 
and given by	
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Hence, the general solution is given by	
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Application  of the initial conditions yields the same 
value for An as given in Equation (32), but the initial 
velocity equation yields	
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Thus, the total solution may be written	
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where the index has again been shifted to account for the odd-
only indices.  In terms of the physical parameters, we note that	
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The Notes and Frequencies on a 
Classical Guitar	



Table 1. Notes and frequencies on the classical guitar 
listed as: frequency (Hz)/string/fret.	



The guitar provides an important application for the 
plucked string model.   The notes and their 
corresponding frequencies are listed in Table 1.	





Equations (34) and (47) are simulated (see accompanying 
simulations) using data for in the the ‘D’ string of an 
acoustic guitar.   The data used are as follows:	
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The actual value of β for the D string is much less, 
(about 0.00071 N-s/m2), but the above value was	





was used to keep the size of the resulting simulation down.  
The D string on one of my classical guitars, although old 
and rather dirty, rang perceptibly for about 13 seconds. 
Hence, the resulting animation would be approximately 4 
megabytes in size – far too large to download even from a 
campus computer.  	


	


The next topic to address is the last case we will cover in 
this study of the plucked string.  We will examine how to 
handle a particular case of forcing.  The methods shown 
will easily extend to other cases.	





The Plucked Guitar String with 
Delayed Impulsive Forcing	



Figure 5. Plucked string with point force located at x = a.	



The next case we will consider has an applied force within 
the domain (0,L).  The situation is identical to the previous 
example, so we will start with Equation (39) and assume	
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Equation (49) describes an impulsive force of magnitude, F0, 
applied at a point x = a.  This model is analogous to a piano 
string struck by the hammer.  In our example, it might model 
the impact of a finger nail on the hand of a flamenco guitar 
player as he percusssively strums through the D string.  The 
magnitude of the impulse, F0, has units of N-s.  That this must 
be the case is stems from the fact that the delta function is 
related to the Heaviside step function as follows:	
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Hence, δ(x) has units of 1/m because U(x) is 
dimensionless.  A similar relationship exists for δ(t-α):	



)()( ααδ −=− tU
dt
dt (51)	





Thus, δ(t) has units of 1/t.  The 1/m unit gets cancelled out 
during  the integration process of Equation (38).  The units 
on the right and left-hand sides of Equations (38) and (39) 
are m/s2– acceleration. Hence, F0 must have units consistent 
with an impulse, that is, N-s.  Upon integration and the 
application of orthogonality, Equation (39), the modal 
participation factor equation becomes	
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Carrying out the spatial integration, we have by the 
filtering property of the Dirac delta function	
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Taking the Laplace transform of Equation (53), and 
solving for the ηn(s), yields	
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Taking the inverse Laplace transformation yields	
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Applying the initial conditions, we have	
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Multiplying Equation (56) by  	

 x
L
mπsin , we have for m = n	



(57)	

2
sin8)0( 22

π
π

η
n

n
H

n =

which is the same result we obtained for An in Equation 
(32).  That this is so should not be surprising since the two 
systems have the same initial shape, which is not effected 
by either the damping or the forcing in this case.  The 
applied impulse occurs at time t = α > 0, so the response 
due to this forcing does not exist at time t = 0.	





The initial velocity is zero, so we have	
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The validity of Equation (58) stems from the fact that the 
sine terms are all linearly independent – i.e. you can’t get 
any one of the terms in the series from a linear 
combination of the others. Therefore, if the sum of all 
terms vanishes, then each of the coefficients must vanish.	
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Hence, we obtain the modal participation factor	



The total solution is thus	
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