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Basic Theory

The string under tension is the simplest example of a
continuous structure, but the concepts presented here are
readily extensible to more complicated structures such as
beams, plates, and shells. That is, to all structures which are
relatively thin in at least one dimension with respect to the
others. Some very important and powerful concepts will be
introduced which apply to many other physical problems,
such as conduction in heat transfer, diffusion problems, and
problems in electromagnetism, to name a few.
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Key Concepts

1. Separation of variables in partial differential
equations

2. Eigenvalue problems in continuous systems.

3. Orthogonality of modes of vibration.

4. Expansion of the forced solution in terms of

the homogeneous solution.
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Tight String Model Derivation
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Figure 1. Geometry of tight string with fixed ends.

NENCRNEN

We will focus our attention on a string of length, L., with
fixed ends as shown in Figure 1.
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Free Body Diagram of String

Element
fix1) )
) T+ Ll
Ox
) 0-.
) 0o
0+ ﬁdx
T u(x,t) .
l >

- dx >

Figure 2. Free body diagram of string element.
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Applying Newton’ 2"¢ Law

For a string of density p(x) per unit length, we have by
summing the forces in the y-direction:

2
p(x)dx 2 = f(x,0)dx + (r(x) + a’dx) sin(e + aedx)
ot 0x 0x

—7(x)sind

= f(x,t)dx + (r(x) + de)(sin&cos(wdx)
0x 0x

+ sin(gedx)cosé’) —7(x)siné (1)
X
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For small ® and — dx ,

0x

sinf =0 =tanf = du

0x

2

sin( % ) = 2% e = 9 g
0x 0x 0x
and
cosf = cos(agdx) ~ |
o0x

Hence, neglecting higher order terms (containing dx?)
the equation of motion becomes

9 ou 9%u
ax( r(x)ax) - fEn = p)° Y )
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The equation of motion (the domain equation) plus the
initial values and the boundary values constitutes what 1s
known as the well-posed IBVP (initial boundary value
problem). The boundary values for a fixed string are:

u(0,¢) =u(L,t) =0 (3)

The 1nitial values are determined by the initial shape and
velocity distribution of the string:

u(x,0) = g(x) (4)

ou(x,0)
0t

and

= h(x) (5)
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Separation of Variables and
the Free-Vibration Problem

The free-vibration, or eigenvalue problem, given by
J ou d°u
—|T(x)— | = p(x)— 6
ax(()ax) P25 (6)

may be readily solved by the method of separation of
variables. Letting

u(x,t) =U(x)T(2), (7)
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we have
d dU d’T
I't)—|7t(x)— | = p(x)U(x)——= (8)
()dx( ( >dx) U

Dividing by p(x)U(x)1(t) we obtain

1 d dU 1 Jd°T ,
P(x)U(x) dx(T(X)dx) N 0 % =—w (9)

Where -w? is a constant. The reason for the negative sign
will become obvious shortly.
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The only way that a function of one variable, say x, can be
equal to a function of another variable, in this case ¢, if for
both functions be be equal to a constant. This being the
case, Equation (9) may be recast as two equations:

d_TM,T 0 (10)
dr’
j(r(x)dU)+,0(x)a)U 0, forOsx<L (D)
X

Equations (10) and (11) + the initial and boundary
values form the IBVP.
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Equation (10) implies the expected result — that the solution
will be harmonic in time. Had we chosen a positive
constant in Equation (9), the temporal solution would be
exponential in nature — this is clearly non-physical. Hence,
the temporal solution may be written

T(t) = Acoswt + Bsin wt (12)

For simplicity, we consider the case of a tight string under
constant tension (T = const.), and with constant mass
density per unit length (p = const.). Equation (11) becomes

2 2
d(2]+w2U=O, forO<sx<L (13)
dx C
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where T
C=." (14)
0

The constant ¢ 1s the speed of sound in the string. Equation (13)
has a general solution of the form

U(x)=Ccost+Dsin9x (15)
C C

To determine specific mode shape, we must apply the boundary
conditions:

u(0,6) =U(0)T(t) =0=U(0) =0 (16)
u(L,t) =U(L)T()=0=U(L)=0 (17)
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Equation (16) implies that

U(O)=C=O=>U(x)=Dsian (18)
C

From Equations (18) and (17), we have

U(L)=Dsin’ L =0 (19)
C
—sin? L =0 (20)
Hence, we must have ¢

ol =nmx,forn=123--- (21)

C
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Thus, we have that the natural frequencies occur in discrete

values given by
niac nir |T
L L \p

Furthermore, the overall motion 1s composed of a sum of
discrete modes of the form

U (x) = sin%rx (23)

where the the unknown constant, D, has been set to unity
because it 1s arbitrary.
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Hence, the total general solution is given by

u(x,t) = E(A cosw t+ B sinw t)sin%rx (24)

n=|

The unknown constants also occur discretely, and must
be determined from the initial conditions by applying
the principal of orthogonality of modes.
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Orthogonality Makes the World
Go Around!

From the 1nitial conditions, we have

nJit

u(x,0)=g(x) = ZIA” sSin Tx (25)

Multiplying (25) by sin mTJZ' x and integrating over the

Domain yields the unknown constant, A _, because of
the following relationship:
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mJt L for m = L
fLs1n—xsin—xdx =], HMEI_~s (26)
L 0 for m = n 2
where 0_ 1s the Kroneker delta. Thus, we obtain
2 L
— f 2(x) sin”” xdx (27)
L
Similarly, from Equation (5) we obtain
7 L
B,=——[h(x) sin ™" xdx (28)

LCU() L



MSISSOTURI Missourl UNIVERSITY OF SCIENCE AND TECHNOLOGY

Example: the Plucked Guitar
String

Consider the following example of a tight string with
initial conditions given by

—— 0O0=x=
> (29)
u(x,0) = . L .
1 X

and

1(x,0)=0 (30)
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The situation looks like the following:

Figure 3. Initial shape of a plucked guitar string.

From Equations (27) and (29) we have

L
2
An=g f@sinﬂxd)HfZH 1—— sin—xdx (31)
L L L L
2
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Evaluating the integrals yields

RH  nx | 0 for n even (32)
A, =——5sin— =] 8H "l
I o 5 2(—1)2 for n odd
ni
Thus,
SH =1 . nw . nx
U(X,t)=-—5 ) SIS xXCoSw,!
(5:1) T’ 2 > 2 L
or
00 1 n-1 .
u(x,t)=8—[j D ( 1)2 smﬂxcosa)t (33)
JU n=1351’l L
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Alternatively, the dummy index, n, may be shifted to avoid the
odd indicial notation:

= (=1)" .(2m+1)7z
E=(2m+1) 1n 3 xcos(

2m+1

u(x,t) = —H
T

)m
(34)



MSISSOTURI MissOoURl UNIVERSITY OF SCIENCE AND TECHNOLOGY

The Effect of Damping on the
Response of the Plucked String

Figure 4. FBD of string with damping and constant tension.
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The equation of motion tight string with constant tension and
density, but including distributed damping as shown in Figure
4 may be shown to be

9%u ou 9%u
——+ B =T = f(xt (35)
p ot* p o  ox° J(x0)

where {3 is the distributed viscous damping constant with units
Newton-seconds/meter?. We note that in Figure 4, the damping
force opposes the motion of the string, so results in a negative
applied force in Newton’s 2" law. We will seek a solution in
terms of the previously determined eigen function of the form

u(x,t) = 2177” (t)sin%rx (36)
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Substitution of (36) into (35) yields

o0
n=1

i By (M) ) lsin™ 2 b
77n+p77n+c(L)77151an pf(xt) (37)

where use has been made of Equation (14) and the dot
notation for derivatives with respect to time.

Multiplication of (37) by

. M
sSiIn——x
L

and integration with respect to x over (0,L) yields
form=n

1, +I/Z77 +cC (nzr) —fo(x t)sm—xdx (38)
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because the left hand side of Equation (37) vanishes
identically for m = n. In canonical form, (37) becomes

3} . 2 . NJT
i +28 wn +wn = Ej(f f(x,1) smfxdx (39)

nJir niw |T
W, =—C= (40)
T

AR @

where

and
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Plucked Guitar String with
Viscous Damping

As 1n the previous example which neglected damping,
f(x,t) =0, and the initial conditions are given by Equations
(29) and (30). The equation for the so-called modal
participation factor, Equation (39), becomes

. : 2

i, +26,0,0, + @1, =0 (42)
The solution may easily be shown to be

n,(t)=e""(A4 cosw,t+ B, sinw,t) (43)

where the coefficients A, and B, must be determined
from the initial conditions.
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The frequency of oscillation is effected by damping, and is
referred to as the damped natural frequency of oscillation,

and given by
2
Wy = 0,\1=-C; (44)

Hence, the general solution is given by

> ( _ : . NJT
u(x,t) =Y, (e nnf (An cosw,t + B, sin a)dt))smLx (45)
n=1

Application of the initial conditions yields the same
value for A, as given in Equation (32), but the 1nitial
velocity equation yields

B = s A (46)
1-&?
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Thus, the total solution may be written

S,

= (8H (-1)" _s, .
u(x,t) = E{ﬂz (2(n +)1)2e &n nf(cosa)dt+ msma)dt 47)

.n=22n + l)ﬂ’x}

sin
L

where the index has again been shifted to account for the odd-
only indices. In terms of the physical parameters, we note that

pL (43)

Cn
J1=-&7 \/4(2n+1)27r21;0—/3’2L2
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The Notes and Frequencies on a
Classical Guitar

Table 1. Notes and frequencies on the classical guitar
listed as: frequency (Hz)/string/fret.

Note 1st 2nd 3rd dth
A 1 1OV50 22032 4400145 880/1/17
B 123.75/5,.2 247.5/20 495/1/7 900/1/19
C 130v5/3 26002/ 1 S2VI1/8
D 146.667/4/0 293.334/2/3 586.663/1/10
E 82.5/6/0 165/4/2 330010 660/1/12
F 87.5/6/1 17543 3500171 TOO//13
G 97.778/6/3 195.556/30 391.11/1/3 782.224/1/15

The guitar provides an important application for the
plucked string model. The notes and their
corresponding frequencies are listed in Table 1.
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Equations (34) and (47) are simulated (see accompanying
simulations) using data for in the the ‘D’ string of an
acoustic guitar. The data used are as follows:

7=69.39N

0 =0.0019206 kg/m’
¢ =190.0 m/s

H =0.001m
L=0.648m

B=0.177 N -s/m°

The actual value of 3 for the D string is much less,
(about 0.00071 N-s/m?), but the above value was
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was used to keep the size of the resulting simulation down.
The D string on one of my classical guitars, although old
and rather dirty, rang perceptibly for about 13 seconds.
Hence, the resulting animation would be approximately 4
megabytes in size — far too large to download even from a
campus computer.

The next topic to address is the last case we will cover 1n
this study of the plucked string. We will examine how to
handle a particular case of forcing. The methods shown
will easily extend to other cases.
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The Plucked Guitar String with
Delayed Impulsive Forcing

fixt)

Figure 5. Plucked string with point force located at x = a.

The next case we will consider has an applied force within
the domain (0,L). The situation is identical to the previous
example, so we will start with Equation (39) and assume

f(x,t)=F,0(x-a)o(t - o) (49)
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Equation (49) describes an impulsive force of magnitude, F),
applied at a point x = a. This model 1s analogous to a piano
string struck by the hammer. In our example, it might model
the impact of a finger nail on the hand of a flamenco guitar
player as he percusssively strums through the D string. The
magnitude of the impulse, F,), has units of N-s. That this must
be the case 1s stems from the fact that the delta function is
related to the Heaviside step function as follows:

d
5(x—a)=d—xU(x—a) (50)

Hence, 0(x) has units of 1/m because U(x) is
dimensionless. A similar relationship exists for o(t-o):

(5(1—0()=th(t—a) (51)
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Thus, o(t) has units of 1/t. The 1/m unit gets cancelled out
during the integration process of Equation (38). The units
on the right and left-hand sides of Equations (38) and (39)
are m/s’>— acceleration. Hence, F, must have units consistent
with an impulse, that is, N-s. Upon integration and the
application of orthogonality, Equation (39), the modal
participation factor equation becomes

i, +28,0,1, + .1, =

,OZLIOL F,o(x-a)o(t-a) sin%rxdx (52)



1‘§50TURI Missourt UNIVERSITY OF SCIENCE AND TECHNOLOGY

Carrying out the spatial integration, we have by the
filtering property of the Dirac delta function

ij, +2C,w,7), +60,377n = iE) Sinﬂaé(t—a) (53)
oL L

Taking the Laplace transform of Equation (53), and
solving for the 1 (s), yields

2F, . nma _
T 0g6in T e™™

sy PL L (s +£,@, 1, (0)
o

+
S +§‘na)n)2 +w§ (S +§‘na)n)2 +a)§

1n,(0)+¢,w,n,(0) (54)
+ 2 2
(s +C na)n) + ),
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Taking the inverse Laplace transformation yields

2£y sin(nLﬂa)e_g”w”(t'“) sinw, (t —a)U(t - o)

1) =
n,() Lo,

n e—é'na)nt(nn (0)cosw,t + M, (0) + Q%% (0) . sin Cl)df) (55)

Wy

Applying the initial conditions, we have

u(x,0) = 277” (O)sm%x = L
1
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: JU
Multiplying Equation (56) by sin mT X ,we have form =n

S8H . nrx

0) = SIn ——
1,(0) 3 2SI (57)

which is the same result we obtained for A, in Equation
(32). That this 1s so should not be surprising since the two
systems have the same initial shape, which 1s not effected
by either the damping or the forcing in this case. The
applied impulse occurs at time ¢ = a > 0, so the response
due to this forcing does not exist at time ¢ = 0.
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The initial velocity is zero, so we have

u(x,0) = Enn(O)sm%rx 0=17,00)=0 (58)

The validity of Equation (58) stems from the fact that the
sine terms are all linearly independent — 1.e. you can’t get
any one of the terms in the series from a linear
combination of the others. Therefore, if the sum of all
terms vanishes, then each of the coefficients must vanish.
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Hence, we obtain the modal participation factor

n,(t) = szFa(; sin(’/lzra)e_énwn(t'“) sinw, (t —a)U(t - a)
d

8H -&,w,t

—5 5 €
2_2
n

g .
cosw t + J”— sin @ ,;t
1-¢&;

The total solution is thus

u(x,t) = i{ 2k sin(’/l[ira)e_é”‘w"(““) sinw, (t —a)U(t - a)

. (59)

. N
8Hsm2 - F * -
— a)l‘ . .
+ e """l cosaw  t + "n__smmw,t|\lsin—Xx
W’ ( g ] L™




