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1 Derivation of Equivalent Viscous Damping
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Figure 1. Forced mass-spring-damper system.

The energy lost per cycle in a damper in a harmonically forced system may be expressed as

Wd =

∮
Fddx (1)

where Fd represents the damping force. The simplest case mathematically is that of viscous damping,
where Fd = Cẋ. Letting the steady-state solution be expressed as

x = X sin(ωt− φ) (2)

we have
ẋ = ωX cos(ωt− φ) (3)

Hence,

Wd =

∮
Cẋdx =

∮
Cẋ2dt (4)

where we recall that dx = ẋdt. Substitution of (2) into (4) yields

Wd = Cω2X2

∫ 2π
ω

0
cos2(ωt− φ)dt = πCωX2 (5)

The relationship between damper force, displacement, and energy dissipated, is more easily assuming
forcing at the resonance frequency.

At resonance, we have ω = ωn =
√

K
M , and noting that C = 2ζ

√
KM , we have from Equation (5)

Wd(ωn) = 2ζπKX2 (6)

We may recast (??) as

ẋ = ±ωX
√

1− sin2(ωt− φ) = ±ω
√
X2 − x2 (7)
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Thus, we may express the damping force as

Fd = Cẋ = ±Cω
√
X2 − x2 (8)

Rearranging (8), we have (
Fd
CωX

)2

+
( x
X

)2
= 1 (9)

The ellipse expressed by Equation (9) may be represented graphically, as shown in Figure 2. Other loss
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Figure 2. Viscous damper dissipated energy ellipse at resonace.

mechanisms may be modeled as equivalent viscous dissipation by equating the work done in one cycle to
that done by a viscous damper

Wd = πCeqωX
2 (10)

Hence, the equivalent viscous damping constant is defined as

Ceq =
Wd

πωX2
(11)

1.1 Equivalent Viscous Damping for Coulomb Friction
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Figure 3. Simple Coulomb friction model.

The resistance force, Fc, in the case of Coulomb friction dissipates Wc/4 = FcX in energy over each
quarter cycle as shown in Figure 4, hence, equating the total dissipative work per cycle to that done by
a viscous damper, we have

Wc = 4FcX = πCcωX
2 (12)

Hence, the equivalent viscous damping constant for Coulomb friction is given by

Cc =
4Fc
πωX

(13)
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Figure 4. Normalized viscous and Coulomb friction resistance force, and displacement over one period.

The equation of motion for the equivalent viscously damped case is given by

Mẍ+ Ccẋ+Kx = F0 sinωt (14)

Hence, the steady-state magnitude may be written

|X| = F0√
(K −Mω2)2 + C2

cω
2

(15)

Substitution of (13) into (15) yields

|X| =

√
F 2
0 −

(
4Fc
π

)2
K −Mω2

=
F0

K

√
1−

(
4Fc
πF0

)2
1−

(
ω
ωn

)2 (16)

Note that unlike the viscous damping case, the amplitude grows unbounded as ω → ωn. In addition, for
real (physically meaningful) solutions, we must have

4Fc
πF0

≤ 1 (17)

1.2 Quadratic Damping

Another form of damping that may be encountered in various shock absorbers yields a force proportional
to the square of the difference in the velocities of the ends of the damper. The quadratic damping force,
shown in Figure 5, may be modeled as

Fd = αq sgn(v) v2 (18)

where

sgn(v) =


−1 for v > 0
0 for v = 0
1 for v < 0

(19)

and where v = ẋ, and αq is a constant. Hence, the energy dissipated in one cycle is given by

Wd =

∮
αqẋ

2dx = αq sgn(ẋ)

∮
ẋ3dt (20)
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Figure 5. Force due to quadratic damping

Assuming a linear steady state response of the same form as that given by Equation (2), we obtain an
equation analogous to Equation (5), but where we must use the symmetry of the force and eliminate the
sgn function by integrating over a quarter of the period, and multiplying quadrupling the result

Wd = 4αqω
3X3

∫ π
2ω

0
cos3(ωt− φ)dt =

8

3
αqω

2X3 (21)

Equating the dissipated quadratic damping energy to that dissipated by a linear viscous damper, as
done for Coulomb damping in Equation (12), yields

Cq =
8

3

αqωX

π
(22)

The assumption of a linear response is very likely invalid for large displacements, but assuming reasonably
linear behavior, the equation of motion may be written as

Mẍ+ Cqẋ+Kx = F0 sinωt (23)

and may be solved to yield an expression for the amplitude identical to Equation (16), with the exception
that Cc is replace by Cq. However, when the expression for Cq, given by (22) is substituted, the equation
for the amplitude becomes

|X| = F0√
(K −Mω2)2 +

64α2
qω

4|X|2
9π2

(24)

Equation (24) reveals that the steady-state amplitude is a function of itself! Squaring both sides of
Equation (24), and rearranging yields a quartic equation in |X|, for which only positive real-valued
solutions are valid:

64α2
qω

4

9π2
|X|4 +

(
K −Mω2

)2 |X|2 − F 2
0 = 0 (25)

Solving for |X| yields:

|X| = 3π

8
√

2αqω2

√√√√√256F 2
0α

2
q

9π2
ω4 + (K −Mω2)4 − (K −Mω2)2 (26)
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Figure 6. Amplitude of quadratically-damped harmonic response.

While not immediately apparent, limω→0 |X| = F0/K, which is the same result one obtains in the
linear viscous damping case given by Equation (15). The peak amplitude and its location is strongly
dependent upon αq and F0, and of the four extrema, only two are positive, and only one of the positive
extrema corresponds to a maximum value of |X|; the forcing frequency at the maximum value of |X| is
given by

ωmax =
1

3Mπ

√
9K2M2π2 + 32α2F 2 − 8

√
9F 2K2M2π2α2 + 16F 4α4

M K
(27)

Plotting |X| with α = 1, K = F = 10000, and M = 1, as shown in Figure 6, reveals a maximum amplitude
at ω ≈ 66.2 rad/s.
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1.3 Material (Hysteretic) Damping
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Figure 7. Stress-strain curve for hysteretic damping model.

The energy dissipated in metals over a cycle of deformation has been found to be independent of
frequency over a wide range of frequencies, and proportional to the square of the amplitude of vibration.
This behavior forms the basis of the so-called material damping or hysteric damping model; the resulting
stress-strain curve forms a tilted ellipse with average slope equal to Young’s modulus as shown in Figure
7. The energy dissipated over a cycle is given by

Wh = αhX
2 (28)

Hence,

Ceq = Ch =
αh
πω

(29)
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