Common Sources of Cations

Group I(see note below)**

Ag ⁺ Pb ²⁺	Photography, jewelry, silverware, batteries, plating, dental amalgam
	Batteries, pigments, solder, bullets, radiation shielding, fishing sinkers
Hg_2^{2+}	Batteries, fungicides, thermometers, switches, dental amalgam, pigments

Group II**

Hg ²⁺ Pb ²⁺	Batteries, fungicides, thermometers, switches, dental amalgam, pigments
Pb^{2+}	Batteries, pigments, solder, bullets, radiation shielding, fishing sinkers
Bi^{3+}	Low melting alloys-Wood's metal, Pepto-Bismol, thermoelectric devices
Cu^{2+}	Electrical wiring, plumbing, brass/bronze, pigments, fungicides
Cd^{2+}	Plating, batteries, photovoltaic cells, pigments
. 2.	

Insecticides, herbicides, rodenticides, hardening of Pb and Cu alloys As^{3+} Lead battery alloys, bearing alloys, thermoelectric devices Plating of cans, solder, bronze, bearing alloys, toothpaste Sb^{3+} Sn^{2+}

Plating of cans, solder, bronze, bearing alloys Sn^{4+}

Group III**

Co ²⁺	Alnico magnets, catalysts
Ni^{2+}	Stainless steel, nichrome wire, coinage, plating, hydrogenation catalysts
Fe^{2+}	Steel, iron, (converted to Fe ³⁺ on exposure to air)
Fe^{3+}	Steel, iron, pigments, rust
N 15 2+	Ctarl dura call la ettanica

Steel, dry cell batteries Mn²

Lightweight alloys, abrasives, furnace bricks, dyeing, catalysts, batteries Al^{3+}

Stainless steel, nichrome wire, plating Cr^{3+}

Galvanizing, brass, batteries, calamine lotion, sunblock Zn^{2+}

Group IV**

Ba^{2+}	Drilling muds for oil wells, digestive tract X-Rays
Ca^{2+}	Cement, wallboard, lime, limestone, hardening of Pb alloys
Mg^{2+} Na^{+}	Lightweight alloys, dolomite, firebricks, milk of magnesia, epsom salts
Na^+	Table salt, seawater, lye, gunpowder, (traces in just about everything)
K^{+}	Fertilizer, seawater, table salt substitutes
NH_4^+	Fertilizer, explosives, dry cell batteries

^{**} Group (I, II, III, IV) refers to qualitative analysis grouping based on solubility behavior and NOT to group in the periodic table.