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a b s t r a c t

An ab initio molecular potential model is employed in this paper to show its excellent predictability for the
transport properties of a polyatomic gas from molecular dynamics simulations. A quantum mechanical
treatment of molecular vibrational energies is included in the Green and Kubo integral formulas for the
calculation of the thermal conductivity by the Metropolis Monte Carlo method. Using CO2 gas as an
example, the fluid transport properties in the temperature range of 300–1000 K are calculated without
using any experimental data. The accuracy of the calculated transport properties is significantly improved
by the present model, especially for the thermal conductivity. The average deviations of the calculated
results from the experimental data for self-diffusion coefficient, shear viscosity, thermal conductivity are,
respectively, 2.32%, 0.71% and 2.30%.

© 2010 Elsevier B.V. All rights reserved.

1. Introduction

To successfully predict transport properties of real fluids from
molecular simulation, the most critical problem is to develop an
accurate interaction potential model. For polyatomic molecules,
a widely used potential model is to represent the intermolecular
interactions by multi-center Lennard–Jones plus either quadrupole
or dipole moments. The parameters in this potential model were
normally adjusted or optimized to experimental vapor–liquid equi-
libria data [1–4]. These potential models usually predict static
thermodynamic properties more accurately than transport prop-
erties. To get better transport properties predictions, transport
properties need to be used directly in the parameterization of
the molecular potential [5]. Therefore, the predictions of transport
properties by these potential models strongly depend on the exis-
tence and accuracy of the experimental data. In the last decades,
with the increasing computing power, accurate determinations of
intermolecular potential of polyatomic molecules by ab initio meth-
ods become feasible. As an example, it was found from the ab initio
calculation [6] that the CO2 molecule is a linear molecule with the
C–O bond length r0 = 1.162 Å which agrees with the experimen-
tal result [7]. Based on the linear molecular structure, a number
of potential surfaces have been proposed for CO2–CO2 interaction
[8–10]. They were all determined by ab initio methods and validated
by comparing with experimental second virial coefficients. The
accurate ab initio potentials make it possible to predict a variety of
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physical properties of fluids without using any experimental data.
Once the accurate intermolecular potential is available, appropriate
molecular simulation techniques should be employed to calculate
the required fluid transport properties. There exist two standard
methodologies, i.e., equilibrium molecular dynamics (EMD) which
is based on the Einstein relations or Green–Kubo integral formu-
las [11–13] and non-equilibrium molecular dynamics (NEMD) in
which the transport properties are measured by creating a flow
in the fluid under study [14]. A lot of researchers prefer using
NEMD because NEMD simulations were considered to be more effi-
cient [15–18]. However, NEMD simulations are normally able to
provide only one transport property at once [14], whereas EMD
is a multi-property method. The thermodynamic properties and
transport properties such as self-diffusion coefficient, viscosity and
thermal conductivity can be all obtained from the output of a sin-
gle equilibrium run. Moreover, when an anisotropic potential is
used for the calculations of transport properties of a polyatomic gas,
the molecular model is much more complicated than the isotropic
Lennard–Jones molecular model. In this case, the overall efficiency
of non-equilibrium methods is not necessary to be higher than the
equilibrium simulations allowing for the need to extrapolate the
non-equilibrium simulation results to thermodynamic equilibrium
[19]. Therefore, EMD simulations are used in this work.

Although both ab initio potential of CO2 molecules and molecu-
lar simulation techniques exist, most of the researchers only used
the ab initio potential to validate phase equilibrium properties of
carbon dioxide [9,20,21]. The amount of calculations of transport
properties such as viscosity and thermal conductivity based on the
ab initio potential is scarce. On the other hand, there are several
calculations of CO2 transport properties based on potential models
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optimized to experimental data [3,18,22]. However, the deviations
between the simulated results and experimental data still reached
10% for self-diffusion coefficient [22], 5% for shear viscosity and 10%
for thermal conductivity at low temperature and high densities [3].
A deviation of up to 30% was even found for thermal conductivities
at relatively high temperature and low densities [18]. The large
deviations are mainly caused by not sufficient accurate potential
and inappropriate treatment of molecular vibrations. The purpose
of the present work is to use CO2 gas as an example to demonstrate
that if quantum effects of molecular vibrations are treated appro-
priately, the self-diffusion coefficient, shear viscosity and thermal
conductivity of a polyatomic gas in a wide range of temperature can
all be accurately determined from EMD simulations by employing
an ab initio potential. The three transport properties of CO2 gas at
1 atm and in the temperature range of 300–1000 K are calculated
in this work. In this range of temperatures, accurate experimen-
tal data are available and can be used to validate the calculation
method and the ab initio potential employed in the work.

The ab initio potential surfaces proposed for carbon dioxide all
treated CO2 molecules as linear rigid rotors. Hence, in this work
we assume the structure of CO2 is unaffected by the interaction
between molecules. The self-diffusion coefficient and shear viscos-
ity measure the transports of mass and momentum in the fluid.
The influence of vibrational motions can be neglected in those
calculations since the transfer of vibrational energy to rotational
and translational degrees of freedom is extremely slow [9] and the
vibrational energy can be considered as frozen in the molecule in
the simulation. The thermal conductivity, however, measures the
transport of energy through the fluid. Hence, the vibrational energy
must be considered in the calculation of thermal conductivity.

Based on the above assumptions, the MD simulations are car-
ried out in the microcanonical ensemble. The statistical errors in
the calculations of the time correlation functions are inversely pro-
portional to the square root of the simulation length. To obtain a
relative precision of less than 1% in the time correlation function,
it is necessary to conduct a run of 104 correlation time [23]. An
estimation based on the preliminary results in this work shows
the correlation time for a CO2 gas in the temperature range of
300–1000 K is in the order of 102 ps. Hence, long simulations up
to the order of 10 �s are required to obtain accurate results. To
save the total computational cost, the original ab initio potential
is employed with a small modification so that large time step
sizes can be used without causing the energy conservation prob-
lem.

This paper is organized as follows. The following section pro-
vides the theoretical background of Green–Kubo formula. In Section
3, the modified ab initio intermolecular potential and force are pre-
sented. In Section 4, we describe the MC method used for initializing
the MD simulations. The results of the MD simulations compared to
experimental results are given in Section 5. Finally, the conclusions
are drawn in Section 6.

2. Theoretical background

In the time-correlation function theory, the three trans-
port properties considered can be all calculated by either the
Green–Kubo integral formulas or the Einstein–Helfand relations
in equilibrium simulations. It can be proven [24] that the
Einstein–Helfand relations are equivalent to the Green–Kubo
formulas. However, due to the periodic boundary conditions
(PBCs) used in MD simulations, the original expressions of the
Einstein–Helfand relations cannot be applied directly. Also, addi-
tional terms must be included allowing for discontinuous particle
trajectories in a finite-system simulation with PBCs [25]. Hence, in
this work we use the Green–Kubo formulas.

The Green–Kubo formula for self-diffusion coefficient D can be
expressed as [14]

D = 1
3

∫ ∞

0

dt〈�vi(t) · �vi(0)〉, (1)

where �vi is the translational velocity of ith molecule; t is the time;
and 〈· · ·〉 denotes ensemble average. To improve statistical accuracy,
the velocity time correlation function is computed by averaging
over 1000 molecules in the simulation.

The shear viscosity � given by the Green–Kubo formula is [14]

� = V

kBT

∫ ∞

0

dt〈P˛ˇ(t) · P˛ˇ(0)〉, (2)

where

P˛ˇ = 1
V

⎛⎝∑
i

mvi˛viˇ +
∑

i

∑
j>i

rij˛ fijˇ

⎞⎠ . (3)

In Eqs. (2) and (3), the subscript ˛ and ˇ denote the vector compo-
nent. Due to the PBCs used in the simulation, the minimum-image
convention is employed to find all interacting pairs. Since the vis-
cosity is a multi-particle property, no additional averaging over
the N particles is possible to improve the statistical accuracy. The
viscosity, therefore, requires much longer simulations than the self-
diffusion coefficient to get accurate results.

The Green–Kubo formula relates the thermal conductivity �T

to the time autocorrelation function of the energy current via the
following relation [14]

�T = V

kBT2

∫ ∞

0

dt〈J˛(t)J˛(0)〉. (4)

Here, J˛ is a component of the energy current, i.e., the time deriva-
tive of

ıE = 1
V

∑
i

ri˛(Ei − 〈Ei〉). (5)

It is shown in the Appendix A that J˛ can be expressed as

J˛ = 1
V

⎛⎝∑
i

vi˛Ei +
∑

i

∑
j>i

rij˛

dEij

dt

⎞⎠ , (6)

where Ei is the energy of the molecule i which contains the transla-
tional, rotational, vibrational and intermolecular potential energies

Ei = 1
2

mv2
i + 1

2
Iu2

i + EVi + 1
2

∑
j /= i

Uij, (7)

and dEij/dt represents the time rate of the change of the energy
in the molecule i due to the interactions between molecule i and
molecule j which can be expressed as

dEij

dt
= 1

2
(�vi + �vj) · �Fij + 1

2
(�ui · �G⊥

ij − �uj · �G⊥
ji ). (8)

In Eq. (7), I and m are, respectively, the moment of inertia and mass
of the CO2 molecule; EVi and Uij are, respectively, the vibrational
energy of the molecule i and the intermolecular potential energy
between the molecule i and molecule j. The vibrational energies
in Eq. (7) cannot be neglected especially for polyatomic molecules
like CO2 which contain low-lying vibrational states. In Eq. (8), �ui is
the rotational velocity of the molecule i which is defined as �̇ei the
time derivative of the unit vector along the molecular axis. �G⊥

ij
can

be determined from the intermolecular forces by Eq. (9)

�Gij =
∑

a

dia
�fija, (9)
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where dia is the distance of the site a in the molecule i relative to the
center of mass. �fija is the force acting on the site a in the molecule
i due to the interaction between the molecule i and molecule j.
�G⊥

ij
is the component of �Gij perpendicular to �ei, i.e., the axis of the

molecule i. Each time autocorrelation function is averaged over the
autocorrelation functions of the energy currents in three directions,
i.e., Jx, Jy, and Jz to reduce the statistical uncertainty of the calculated
thermal conductivity.

Due to the interactions among molecules in the system, the
translational, rotational and intermolecular potential energies all
vary with time. However, the vibrational energies are assumed
as frozen in the molecules so that they have no influence on the
molecular interactions.

3. Intermolecular potential

The intermolecular potential employed in the work was pro-
posed by Bukowski et al. (BUK) [8]. The BUK potential was
computed using the many-body symmetry-adapted perturbation
theory (SAPT) and a large 5s3p2d1f basis set. In addition to BUK
potential, there are two more ab initio potentials proposed for the
carbon dioxide dimer which were proved to have good qualities.
One is Steinebrunner et al. potential based on the MP2 level of
theory including corrections for basis set superposition error [9].
Strictly speaking, the Steinebrunner et al. potential is not a pure ab
initio potential because the original ab initio potential was scaled
by a parameter of 1.16 in order to obtain a good agreement with
experimental second virial coefficients. In this work, we would like
to predict the transport properties without any experimental data.
Hence, the scaled Steinebrunner et al. potential is not employed
here. The other potential was proposed by Bock et al. [10]. Bock
et al.’s potential was calculated with the supermolecular approach
on MP2 level of theory including full counterpoise corrections. The
shapes of Bock et al. potential and the BUK potential are practi-
cally the same. They both used a site–site representation of the
intermolecular potential, but in different analytical forms. From
our preliminary tests, the application of the Bock et al.’s poten-
tial is more time-consuming in the calculations of intermolecular
potentials and forces than that of the BUK potential. To save com-
putational time, the BUK potential is employed in this work.

The site–site fit BUK potential reads

UBUK =
∑
a ∈ A

∑
b ∈ B

[
exp(˛ab − ˇabrab) + f1(ıab

1 rab)
qaqb

rab
− f6(ıab

6 rab)
Cab

6

r6
ab

− f8(ıab
8 rab)

Cab
8

r8
ab

]
,(10)

where

fn[x] = 1 − e−x

n∑
k=0

xk

k!
. (11)

Here, sites a belong to monomer A, sites b belong to monomer B
and rab is the distance between a and b. Each monomer contained
five sites, with three corresponding to the centers of the atoms in
CO2 and the remaining two on the C–O bonds 0.8456 Å away from
the C atom. Parameters ˛ab, ˇab, ıab

n , qa, and Cab
n are given in Ref.

[8].
Fig. 1 shows the shapes of the BUK potential for the parallel

configuration and the slipped parallel configuration. Although the
potential always tends to approach to zero at large intermolecular
distances, it could be either a positive or a negative value around
zero depending on the relative orientations of two molecules as
shown in Fig. 1. Hence, a truncation and shifted procedure is not
applicable to the BUK potential no matter the cut-off criterion is
based on distance or energy. Hence, the original BUK potential is

Fig. 1. The shapes of the original and modified BUK intermolecular potential for
parallel configuration and slipped parallel configuration.

modified as follows

UAB =
{

UBUK ·
[

1 − e(rAB−rcut)
2/−2.0

]
rAB ≤ rcut

0 rAB > rcut

, (12)

where rAB is the intermolecular distance and rcut is the cut-off dis-
tance. Both rAB and rcut are in atomic units. In this work, we set
rcut = 12 Å. With such a large cut-off distance, the use of an Ewald
sum to treat long range Coulomb interactions is not necessary
[9,21] which is assisted by the fact that CO2 molecules are nei-
ther charged nor have a permanent dipole moment. The modified
potential makes the intermolecular potential go smoothly to zero
at the cut-off distance.

The modified potential also ensures the continuity of the inter-
molecular forces near the cut-off distance. In addition to the forces
acting on five sites of each molecule, there is one more force acting
on the center of mass of the molecule as shown below

�F(�rAB) = UBUK ·
[
−(rAB − rcut)e(rAB−rcut)

2/−2.0 �rAB

rAB

]
, (13)

In a CO2 molecule, the center of mass happens to be the carbon
atom. Hence, this additional force is actually acting on the carbon
atom. Using the modified potential, the forces and torques acting
on molecules both go smoothly to zero at the cut-off distance. Thus,
the problems in energy conservation and numerical instability in
the equations of motion are both eliminated by the modified poten-
tial. A simple test of the modified potential shows the second virial
coefficient calculated from the modified BUK potential at 300 K is
only 0.4% higher than that calculated from the original truncated
BUK potential. Hence, the macroscopic properties calculated from
the modified BUK potential will not significantly deviate from the
corresponding properties from the original potential.

4. Initialization and equilibration

Before attempting to compute proper simulation averages, the
system must be equilibrated to both configuration and velocity
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distributions appropriate to a gas at the desired temperature and
pressure. To save the simulation time for the equilibration process,
the configuration of centers of mass and molecular orientations, the
translational and rotational velocities should all be initialized at the
desired temperature and pressure so that they can relax quickly to
the appropriate configuration and velocity distributions.

4.1. The initial configuration and initial energies

The volume of the cubic simulation box is initialized by the ideal
gas law

V = NkBT

P
, (14)

where P and T are the desired pressure and temperature of the
gas; N = 4096 is the number of molecules in the system which has
the same value in all simulations in this work. The center of mass
coordinates �r is initialized randomly inside the simulation box. The
molecular orientations are initialized as random vectors with uni-
form solid angle.

The initial translational and rotational velocities are given by the
Maxwell–Boltzmann distribution at a given temperature. Differ-
ent from translational and rotational motions, the quantum effects
of molecular vibrational motions cannot be neglected. The CO2
molecule has four vibrational modes. The corresponding vibra-
tional energy eigen values can be determined by solving the
rovibrational Schrödinger equation of the molecule. To solve the
rovibrational Schrödinger equation, it is necessary to calculate the
intramolecular potential energy surface (PES) by ab initio method.
An accurate CO2 intramolecular PES has been calculated by Leonard
et al. [26] using the coupled-cluster singles and doubles excitation
with perturbative treatment of triple excitations method and the
multi-reference configuration interaction method. Based on this
result, the calculated vibrational energy eigen values correspond-
ing to the 1st excited states of the symmetric stretching mode, the
asymmetric stretching mode and the doubly degenerated bending
mode are 1387.9 cm−1, 2348.8 cm−1 and 667 cm−1, respectively.
Although the energy differences between any two neighboring
energy states of each vibrational mode are not exactly constant
due to the aharmonic component of the intramolecular poten-
tial and the Fermi resonance between different vibrational modes,
we can still assume the vibrational energies of each mode are
equally spaced without causing too much error in the calculations
of thermal properties of CO2 gas. Based on the quantum harmonic
oscillator assumption, the vibrational energy of each molecule can
be calculated by Eq. (15)

EV =
4∑

j=1

(
nj + 1

2

)
Evj, (15)

where nj means the vibrational energy level of jth vibrational mode;
Evj is the fundamental vibrational transition energy of mode j.

The average population distribution of vibrational energies
fulfills the Boltzmann distribution. At a given temperature, the
molecular vibrational energies are initialized by the Metropolis MC
method [27]. At the beginning of the initialization, all molecules
are on their ground vibrational energy states. Then, the Metropo-
lis scheme is applied to each vibrational mode of each molecule in
the system so that the molecules may be excited to higher energy
states or decay to lower energy states. After tens of trial transitions,
the average vibrational energy per molecule in the system started to
fluctuate around a constant value as shown in Fig. 2. The fluctuating
average vibrational energies correspond to different distributions
of vibrational energies in the molecules. The average of these dis-
tributions is the Boltzmann distribution at the given temperature.
Two thousands of these distributions are used to initialize the vibra-

Fig. 2. The average vibrational energy per molecule vs. the number of trail transi-
tions at 300 K, 600 K and 900 K.

tional energies of the molecules in the system. Hence, each MD
simulation actually starts with 2000 different initial vibrational
energy distributions but with the same initial configuration and
initial translational and rotational velocities. Once the vibrational
energies are initialized, they do not change during the simulation.
Therefore, 2000 time correlation functions of the energy current
corresponding to 2000 different initial vibrational energy distribu-
tions are obtained from each MD simulation. These time correlation
functions calculated from different initial states are then averaged
to determine the final time autocorrelation function at the given
temperature.

4.2. Equilibration

To equilibrate the system to the desired temperature and pres-
sure, the system is coupled to a constant temperature and pressure
bath using the approach proposed by Berendsen et al. [28]. At each

Fig. 3. Translational, rotational kinetic temperatures and pressure vs. time when
the equilibrium temperature and pressure are 300 K and 1 atm.
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Fig. 4. The calculated and theoretical energy distributions at 300 K, 600 K, and 900 K
for (a) translational energies and (b) rotational energies.

Fig. 5. The correlation times vs. temperature.

Fig. 6. (a) Normalized velocity correlation functions for selected temperatures. (b)
The time integrals of the correlation functions for selected temperatures.

time step, translational velocities are scaled by a factor

� =
[

1 + �t

�T

(
T0

T
− 1
)]1/2

, (16)

where T0 is the desired temperature varying from 300 K to 1000 K; T
is the current translational temperature; �t is the time step; and �T

is a preset time constant. The energy exchanges between the trans-
lational motion and rotational motion are fast. Hence, the scale
factor can force both translational and rotational kinetic temper-
atures to the desired temperature. Simultaneously, the molecular
center of mass coordinates is scaled by a factor of �, and the volume
of the simulation box is scaled by a factor of �3 where

� =
[

1 + �t

�p
ˇT (P − P0)

]1/3

. (17)

Here, P0 is the desired pressure which is equal to 1 atm in this
work; P is the instantaneous pressure; �p is a time constant; and ˇT

is the isothermal compressibility. Since ˇT ≈ 1/P0 for a gas, Eq. (17)
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Table 1
The calculated and experimental values [32,33] of self-diffusion coefficient and shear viscosity of CO2 gas at 1 atm and in the temperature range of 300–1000 K. The deviations
(%) are determined by |calculated value − experimental value|/experimental value × 100. The experimental self-diffusion coefficients are obtained by linear interpolation of
experimental data in Ref. [33]. Statistical uncertainty of the simulation results is 0.1% for self-diffusion coefficient and 1% for both shear viscosity and thermal conductivity.

Self-diffusion coefficient D (cm2/s) Shear viscosity � (�Pa s) Thermal conductivity �T (W/m K)

Calculated Experimental % Deviation Calculated Experimental % Deviation Calculated Experimental % Deviation

300 K 0.1142 0.1192 4.19 15.34 15.13 1.39 0.01646 0.01679 1.97
400 K 0.2028 0.2063 1.70 19.79 19.70 0.46 0.02445 0.02514 2.74
500 K 0.3116 0.3103 0.42 23.91 24.02 0.46 0.03237 0.03350 3.37
600 K 0.4358 0.4299 1.37 28.51 28.00 1.82 0.04041 0.04156 2.77
700 K 0.5771 0.5640 2.32 31.90 31.68 0.69 0.04851 0.04930 1.60
800 K 0.7310 0.7123 2.63 35.06 35.09 0.09 0.05536 0.05671 2.38
900 K 0.8976 0.8725 2.88 38.18 38.27 0.24 0.06185 0.06380 3.06
1000 K 1.0770 1.0448 3.06 41.04 41.26 0.53 0.07034 0.07057 0.57

can be rewritten as

� =
[

1 + �t

�p

(
P

P0
− 1
)]1/3

. (18)

In the simulations, the time constants �T and �p are set to be
100 ps and 30 ps, respectively. At 1 atm, the long range correction
to the pressure of CO2 gas is negligible. Thanks to all these meth-
ods we use in the initialization and equilibration, the system is well
equilibrated in 500 ps. After the system reaches the thermal equi-
librium at the desired temperature and pressure, the coupling to
the external bath is turned off and the MD simulation is carried
out in a microcanonical ensemble. The translational temperature,
the rotational kinetic temperature, and the pressure of the system
all fluctuate around the desired values during the simulation as
shown in Fig. 3. The energy exchange between the translational
and rotational motions is evident. Fig. 4(a) and (b) depicts the dis-
tributions of translational energy and rotational energy obtained
from simulations and the corresponding Boltzmann energy distri-
butions at the desired temperature. The good agreement between
the calculated results and the theoretical results proves the system
is in thermodynamic equilibrium.

5. Simulation details and results

We carried out MD simulations in microcanonical ensembles
for pure CO2 gas in the temperature range of 300–1000 K to cal-
culate the self-diffusion coefficients, shear viscosity and thermal
conductivity. The equations of molecular translational motions are
integrated by the Verlet leap-frog algorithm. The Singer leap-frog
algorithm [29] which constrains the bond length to be a constant is
applied to integrate the equations of molecular rotational motions.
The modified BUK potential is used for molecular interactions. Com-
pared to the standard LJ potential, the BUK potential has a much
more complex form. Therefore, the calculations of forces and poten-
tials are much more time-consuming. To ensure the time step size
does not significantly influence the results for the macroscopic
properties of the system, the total energy of the system should be
kept constant within two parts in 105 [30]. Thanks to the modified
BUK potential, a time step of 12.5 fs can be used for low tempera-
tures up to 500 K and a 10-fs time step is appropriate for the gas
temperature up to 800 K. For higher temperatures, smaller step size
of 8.5 fs should be chosen to assure the energy conservation.

The correlation time tc for the three properties of interest can
be calculated by Eq. (14) [23]

tc =
∫ ∞

0
dt 〈A(0)A(t)〉2

〈A2(0)〉2
, (19)

where A = �vi for self-diffusion coefficient; A = P˛ˇ for shear viscos-
ity; and A = J˛ for thermal conductivity. Fig. 5 shows the relation
between the correlation times and temperature. It can be seen from

Fig. 5 that the velocity correlation times are close to the energy cur-
rent correlation times and are about 50% higher than the correlation
time of off-diagonal element of pressure tensor in the tempera-
ture range from 300 K to 1000 K. The correlation times of CO2 gas
are generally on the order of 100 ps. The total simulation length of

Fig. 7. (a) Normalized correlation functions of off-diagonal elements of pressure
tensors for selected temperatures. (b) The time integrals of the correlation functions
for selected temperatures.
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Fig. 8. (a) Normalized correlation functions of energy current at 300 K, 600 K and
900 K. (b) The time integral of the autocorrelation functions for selected tempera-
tures.

order 10 �s, therefore, must be run in order to reduce the statisti-
cal errors to less than 1%. If the time step is 10 fs, the total number
of steps is about 109. This means a very computational demanding
simulation is required. As suggested by Hess and Evans [31], the
ensemble average can also be obtained from shorter parallel runs
starting from statistically independent initial states. Hence, at each
temperature, the long simulation is divided into 100 shorter paral-
lel runs which are independently initialized and equilibrated at the
given temperature by the method described in Section 4. Depend-
ing on the temperature of the system (300–1000 K), the length of
each parallel run varies between 60 ns and 140 ns to assure low
statistical errors. The final time correlation functions are obtained
by averaging the time correlation functions calculated from shorter
parallel runs.

Figs. 6(a), 7(a) and 8(a) depict, respectively, the calculated
normalized correlation functions of the velocity, the off-diagonal
element of pressure tensor and the energy current at 300 K, 600 K
and 900 K. The self-diffusion coefficients D, shear viscosities � and
thermal conductivities �T are determined by the time integrals of
the corresponding correlation functions. The results are depicted,
respectively, in Figs. 6(b), 7(b) and 8(b). After 10tc, no significant

contribution to time integrals of correlation functions is observed
and the integrals fluctuate around a constant. We evaluate the three
transport properties by the averages of those fluctuating values
between 10tc and 30tc at each temperature. The statistical errors
are obtained from the mean-square deviation of the time correla-
tion functions. Due to the large statistics in the calculations, the
statistical error of the self-diffusion coefficient D is less than 0.1%,
while the shear viscosity � and thermal conductivity �T has a statis-
tical error of about 1%. The magnitude of the statistical errors can
be further reduced by longer simulations if larger computational
resources are available.

The results of all transport properties between 300 K and 1000 K
are summarized in Table 1. The experimental data [32,33] at differ-
ent temperatures are also included in Table 1 to compare with the
calculated results. The uncertainty of the experimental data was
estimated to be 5% for self-diffusion coefficients and 0.9% for shear
viscosity [32]. The accuracy of the experimental thermal conductiv-
ity of carbon dioxide is estimated to be ±1% near room temperature
and ±2% at the higher temperatures [33]. From Table 1 we can see
the average deviations between the calculated and experimental
values for self-diffusion coefficient and shear viscosity are 2.32%,
and 0.71%, respectively. The excellent agreement indicates the lin-
ear rigid rotor assumption of the CO2 molecule is valid even at
1000 K. As shown in Table 1, the calculated thermal conductiv-
ities underestimate the experimental values by 2.30% averagely.
The deviation can be further reduced if the aharmonic vibrations
of molecules are taken into account. Compared to the calculated
CO2 thermal conductivities from other authors who obtained a
deviation of 35% without considering the vibrational energies and
a deviation of 22% with a classical treatment of the vibrational
motions [18], our quantum mechanical treatment of the vibrational
energies greatly improves the accuracy of the calculated thermal
conductivity. Overall, excellent agreements are achieved for all the
three transport properties of interest.

6. Conclusions

The EMD and the time correlation theory are employed in this
work to determine the transport properties of CO2 gas. The calcu-
lations demonstrate a procedure of determination of self-diffusion
coefficient, shear viscosity and thermal conductivity of a poly-
atomic gas without using any experimental data. All the parameters
used in the calculations such as the C–O bond length, moment of
inertia, intermolecular potential and vibrational energy eigen val-
ues are determined by ab initio method. In order to take into account
the quantum effects of molecular vibrations, a MC method is used
to initialize the vibrational energies at the given temperature. The
good agreement of calculated values with the experimental data
validates the rigid rotor and frozen vibrational energy assumptions
we made at the beginning of the calculations. Since the vibrational
energies do not vary with time in the simulation after they are ini-
tialized, the vibrational contribution to the thermal conductivity
might be reduced to a simpler form by separating the terms involv-
ing the vibrational energies from those involving other energies
which vary continuously with time. If this simplification can be
achieved, a more efficient calculation of the thermal conductivity
will be possible.

The present method can be readily extended to the calcula-
tions of transport properties of other gases or gas mixtures which
contain monatomic, diatomic or polyatomic molecules at different
temperatures as long as the accurate intermolecular potentials are
available.

List of symbols
dia the distance of the site a in the molecule i relative to the

center of mass
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D self-diffusion coefficient
�e the unit vectors along the molecular axis
Ep total potential energy of the system
Ei the energy of the molecule i
EVi vibrational energy of the molecule i
Evj the fundamental vibrational transition energy of mode j
�fijˇ a component of the force acting on the molecule i due to

the molecule j
�Fij intermolecular force due to the interaction between the

molecule i and the molecule j
�G �e × �G is the torque acting on the molecule
�G⊥ the component of �G perpendicular to �e
� reduced Planck constant
I moment of inertia
J˛ a component of the energy current
kB Boltzmann constant
m the mass of molecule
nj the vibrational energy level of jth vibrational mode
N number of molecules
P pressure
P0 the desired pressure
rab distance between nuclei a and b
r0 C–O bond length
rAB the distance between centers of mass of molecule A and

molecule B
rcut cut-off distance
rij˛ a component of the distance vector from the molecule j

to i
t time
T temperature
T0 the desired temperature
ui rotational velocity of the molecule i
UBUK BUK intermolecular potential
UAB modified BUK potential
�i˛ a component of translational velocity of molecule i
V volume

Greek letters
ˇT isothermal compressibility
� shear viscosity
� scale factor of velocity
�T thermal conductivity
� scale factor of intermolecular distance
P˛ˇ off-diagonal element of pressure tensor
�T time constant for temperature relaxation
�p time constant for pressure relaxation
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Appendix A.

Derivation of the expression for the energy current

J˛ = d

dt

[
1
V

∑
i

ri˛(Ei − 〈Ei〉)
]

. (A1)

In a constant NVE ensemble, volume V and average energy 〈Ei〉 are
both constant.

J˛ = 1
V

(∑
i

vi˛(Ei − 〈Ei〉) +
∑

i

ri˛
dEi

dt

)

= 1
V

(∑
i

vi˛Ei +
∑

i

ri˛
dEi

dt

)
. (A2)

The total momentum of the system is kept constant during the sim-
ulation. The initial value of the total momentum is set to zero so that∑

ivi˛ = 0. Hence, the term
∑

ivi˛〈Ei〉 vanishes. The time derivative
of Ei is

dEi

dt
= m�vi · d�vi

dt
+ I �ui · d�ui

dt
+ dEVi

dt

+ 1
2

∑
j /= i

[
∂Uij

∂�rij

· ∂�rij

∂t
+ ∂Uij

∂�ei

· ∂�ei

∂t
+ ∂Uij

∂�ej

· ∂�ej

∂t

]
= �vi ·

∑
j /= i

�Fij

+ �ui ·
∑
j /= i

�G⊥
ij + 1

2

∑
j /= i

[−�Fij · (�vi − �vj) − �Gij · �ui − �Gji · �uj]

= 1
2

∑
j /= i

[�Fij · (�vi + �vj) + �G⊥
ij · �ui − �G⊥

ji · �uj], (A3)

where dEVi/dt = 0 because the vibrational energy is assumed as
frozen in the molecule. The intermolecular potential Uij is not only
a function of �rij , the distance between the centers of mass, but
also a function of molecular orientations �ei and �ej . Therefore, the
chain rule is used to determine the time derivative of Uij. Note
�Gij · �ui = �G⊥

ij
· �ui since �ui is perpendicular to the molecular axis �ei,

and �G⊥
ij

is the component of �Gij perpendicular to �ei. Therefore, the
second summation in Eq. (A2) is

∑
i

ri˛
dEi

dt
=
∑

i

ri˛

⎛⎝1
2

∑
j /= i

[�Fij · (�vi + �vj) + �G⊥
ij · �ui − �G⊥

ji · �uj]

⎞⎠
= 1

4

∑
i

∑
j /= i

ri˛[�Fij · (�vi + �vj) + �G⊥
ij · �ui − �G⊥

ji · �uj]

+ 1
4

∑
j

∑
i /= j

rj˛[�Fji · (�vi + �vj) + �G⊥
ji · �uj − �G⊥

ij · �ui]

= 1
4

∑
i

∑
j /= i

rij˛[�Fij · (�vi + �vj) + �G⊥
ij · �ui − �G⊥

ji · �uj]

= 1
2

∑
i

∑
j>i

rij˛[�Fij · (�vi + �vj) + �G⊥
ij · �ui − �G⊥

ji · �uj], (A4)

where �Fij = −�Fji according to Newton’s third law and rij˛ = ri˛ − rj˛.

Note �G⊥
ij

/= − �G⊥
ji

. Comparing Eq. (A4) to the second term of Eq. (6),
one gets

dEij

dt
= 1

2
(�vi + �vj) · �Fij + 1

2
(�ui · �G⊥

ij − �uj · �G⊥
ji ). (A5)
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