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a b s t r a c t

An efficient method is presented to calculate the intra-molecular potential energies and electrical dipole
moments of CO2 molecules at the electronic ground state by solving the Kohn–Sham (KS) equation for a
total of 101992 nuclear configurations. The projector-augmented wave (PAW) exchange-correlation
potential functionals and plane wave (PW) basis functions were used in solving the KS equation. The cal-
culated intra-molecular potential function was then included in the pure vibrational Schrödinger equa-
tion to determine the vibrational energy eigen values and eigen functions. The vibrational wave
functions combined with the calculated dipole moment function were used to determine the transition
dipole moments. The calculated results were compared with the experimental data.

� 2008 Elsevier Inc. All rights reserved.

1. Introduction

Two important problems in the study of infrared absorption
spectrum are to determine vibrational energy levels and molecular
transition dipole moments. To obtain these results, it is necessary
to calculate the intra-molecular potential energy surface (PES)
and molecular dipole moment surface (DMS) by ab initio methods.
The ab initio calculations of PESs and DMSs of tri-atomic molecules
were implemented in several papers [1–7] by the coupled-cluster
singles and doubles excitation with perturbative treatment of tri-
ple excitations [CCSD(T)] [8] method and the multi-reference con-
figuration interaction (MRCI) method. Localized basis sets such as
augmented correlation-consistent polarized quadruple zeta (aug-
cc-pVQZ) functions were used in these calculations. Using these
methods and basis sets, the potential energies and dipole moments
were usually evaluated at 102–103 different nuclear configurations
that are close to the molecular equilibrium structures. The data
were then fitted by polynomial expansions in displacement coordi-
nates, and used in the calculations of molecular properties. In some
calculations [2], the coefficients in polynomial expansions needed
to be optimized in order to accurately reproduce the experimental
values of fundamental transition energies. Generally, the CCSD(T)
and MRCI methods combined with localized basis sets gives accu-
rate calculated results. But the method is very computationally
demanding.

In this paper, density functional theory (DFT) was used to deter-
mine the electronic ground state potential energy of the CO2 mol-
ecule. Using DFT, the many-electron Schrödinger equation could be

transformed to an effective one electron Schrödinger equation, i.e.,
Kohn–Sham (KS) equation. There are two critical problems in solv-
ing the KS equation; one is to find appropriate exchange-correla-
tion functionals, and the other is to choose appropriate basis
functions. In the calculations, projector-augmented wave (PAW)
potentials [9,10] and plane wave (PW) basis sets were used. DFT
method with PW basis sets has several advantages over CCSD(T)
method with localized basis functions. These include:

(i) In DFT, the ground-state electronic energy and dipole
moment are uniquely determined by the ground-state
charge density which is a function of only three variables.
Compared to methods such as CCSD(T), DFT reduces the
computational cost so that more configurations of small
molecules can be evaluated and rather larger molecules
are able to be handled.

(ii) The KS equations take on a very simple form if PW basis func-
tions are used. The well-developed numerical schemes for
the Fourier transforms can be used to evaluate the Hamilto-
nian matrix elements so that much computational time is
saved.

(iii) Compared to localized basis sets, no basis-set corrections to
forces are needed for PW basis sets because PW basis sets
do not depend on nuclear positions. Hence, the PW basis
sets allow for relatively simple calculations of forces in
the determinations of molecular equilibrium geometries.

(iv) The same PW basis sets can be used for all atomic species
[11].

Due to the high efficiency of the calculation method we use, in-
tra-molecular potential energies and molecular dipole moments
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were evaluated at more than 105 different nuclear configurations
so that the PES and MDS could be constructed without interpola-
tions or fitting to polynomial expansions. However, there are some
problems we need to consider in the calculations if we want to
implement PW basis functions to an aperiodic system like an iso-
lated molecule [12]. The problems will be discussed Section 2.
Appropriate parameters should be selected to make a compromise
between computational time and accuracy.

By solving the KS equation, both the intra-molecular PES and
molecular MDS were obtained. The calculated potential energy
function was included in the vibrational Schrödinger equation. To
efficiently solving the vibrational Schrödinger equation, we split
the four-variable potential energy function into four one-variable
potential functions that correspond to the potential functions of
four vibrational normal modes of CO2 and one perturbation func-
tion. The four one-dimensional Schrödinger equations were then
obtained by the separation of variables. The solutions of these
Schrödinger equations were used as the 0th order results. The per-
turbation function was then included to obtain the real vibrational
energy eigen values and wave functions. These results combined
with calculated dipole moment functions were used to calculate
the molecular transition dipole moments. The calculated results
were compared with the experimental values. The details are
shown in Section 3.

2. Potential and dipole moment surfaces

In the first step, we calculate the intra-molecular potential en-
ergy and molecular dipole moment as a function of CO2 nuclear
configurations. Using the density functional theory, the Born–
Oppenheimer potential energy at each nuclear configuration can
be determined by solving an effective one electron Schrödinger
equation (i.e., KS equation [13]) asbHKSwKS

i ð1Þ ¼ eKS
i wKS

i ð1Þ ð1aÞ

where
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where: fRg
*

denotes the nuclear configuration of the molecule R
*

center

is the center of the molecule. Note Eq. (1) is written in atomic units.
R
*

center is the center of the molecule. Note Eq. (1) is written in atomic
units.

The first three terms in the Hamiltonian of the KS equation, i.e.,
the electronic kinetic energy, the electron–nuclear attraction po-
tential, and the electron–electron repulsive potential all have ex-
plicit forms. However, the last potential term vxc, i.e., the
exchange-correlation potential is unknown. Some approximations
must be made to obtain an appropriate vxc. In our calculations, we
used a PAW potential (pseudopotentials were used to represent
the core electrons), which is supplied by the Vienna Ab Initio Sim-
ulation Package (VASP) [14,15].

Now the problem turns to how to select the basis functions. The
basis functions should be chosen so that the wave function wKS

i sat-
isfies proper boundary conditions. In our calculations the CO2 mol-

ecule was placed in the center of a cubic supercell of side L as
shown in Fig. 1. In order to use PW functions as basis functions,
periodic boundary conditions (PBC’s) were applied. So the one elec-
tron wave function can be written as

wðr
*
Þ ¼
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K
*
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ei K
*
� r
*

ð3Þ

where K
*

� l
*

¼ 2pm, m is an integer, K
*

is a wave vector, and l
*

is a lat-
tice vector. The PW functions have a big advantage in solving KS
equations because the Hamiltonian matrix elements now become

[16] bH
K
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, where Vc is the volume of

the cubic supercell which is used as the normalization factor. In
Eq. (1), we know
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One can see that the second part of Eq. (4b) is the Fourier transform
of an effective potential which can be easily evaluated by the well-
developed numerical schemes.

In the implementation, the PW basis functions must be trun-
cated at some wave number K

*

. This wave number should be high
enough to account for some fast oscillating components of the
electronic wave functions. In the calculation, cut-off energy was
used to control the number of basis functions, and the relation is
shown in the following equation:

�h2K2

2me
¼

�h2 2p
L

� �2ðN2
x þ N2

y þ N2
z Þ

2me
< Ecut ð5Þ

where Ni is the number of basis functions in i-direction. From Eq. (5)
one can see the number of basis functions is determined by both the
supercell size L and cut-off energy Ecut. A large L or Ecut corresponds
to a large number of basis functions. A large number of basis func-
tions correspond to a high accuracy and computational cost. Hence,
one must pick the appropriate supercell size and cut-off energy to
make a compromise between accuracy and computation cost.

2.1. Choose appropriate supercell size

Although the PBC’s with PW basis functions could save much
computational time, this method brings one problem in the calcu-
lations of isolated molecules. As shown in Fig. 1, there exist spuri-
ous interactions of aperiodic charge density with its images in the
neighboring supercells. The potential energy E(L) calculated in a fi-
nite cubic supercell with side L differs from the potential energy
calculated in the limit E0 = E(L ?1). To estimate E0 from the calcu-
lated E(L), one needs to know the asymptotic dependence of E on L.

Fig. 1. A CO2 molecule in a cubic supercell with PBC’s.
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It was proved [12] that the asymptotic behavior of an isolated neu-
tral molecule without dipole moment in a cubic supercell can be
determined by the quadrupole–quadrupole interaction, which
has a functional dependence of L�5. We calculated the equilibrium
C–O separation re and the minimal potential energy Umin of the
molecule at different supercell sizes. The calculations were per-
formed using the program VASP. The cut-off energy was chosen
as 1000 eV. The results were shown in Fig. 2, where one can see
that both Umin and re converge very fast with the supercell size.
The calculated re is 1.162 Å which is very close to the experimental
value [17] 1.160 Å.

However, a CO2 molecule only has zero dipole moment at sym-
metric linear configurations. When the molecule deviates from its
equilibrium configuration, it could have dipole moment. In this case,
the asymptotic dependence of potential energy on supercell size

is dominated by a dipole-dependent term 2p
3Vc

R
cell d3r r

*
qðr

*
Þ

��� ���2. The

absence of this dipolar term could lead to a O(L�3) convergence
[12]. Fig. 3 shows the potential energy of asymmetric stretching a
CO2 molecule by 0.15 Å from equilibrium as a function of supercell
size. The calculations were performed both with and without the
dipolar term, and the results are shown in Fig. 3. One can see the
two curves converge to the same value; but the calculation with
the dipolar term converges faster than the one without the dipolar
term. So, to get a result with the same accuracy, we need to use a
relatively larger supercell size if we do not include the dipolar term.
However, larger supercell size means more computational time. To
save the computational time, we always include the dipolar term
in our calculations.

From the above analysis, to make a compromise between com-
putation time and accuracy, we chose a cubic supercell size of 10 Å
in our calculations. The dipolar potential term is always included.

2.2. Choose appropriate cut-off energy

We fix the supercell size at 10 Å and change the cut-off energy
from 700 to 1300 eV. The minimal potential energy of a CO2 mol-
ecule and the dipole moment at the nuclear configuration of asym-
metric stretching the molecule by 0.2 Å from equilibrium were
calculated. The results were shown in Fig. 4. The molecule has big-
ger dipole moments and lower potential energies at larger cut-off
energies. Note the values only change a little (less than 0.1%) after
1000 eV and hence 1000 eV was chosen as the cut-off energy in our
calculations.

One can see the PW basis functions only depends on supercell
sizes. They do not depend on atomic species in the molecule or nu-

clear positions. The convergence properties with respect to super-
cell size and cutoff energy can be easily tested by the above
calculations. The computational cost of the test procedure is very
small compared to later calculations of PES and MDS. Once the
appropriate supercell size and cutoff energy are chosen, one could
keep these parameters constant and calculate potential energies
and dipole moments at different configurations with a good accu-
racy and efficiency.

By placing the CO2 molecule at the center of a cubic supercell of
side 10 Å, choosing the cut-off energy at 1000 eV, and including the
dipolar potential term, we calculated the intra-molecular potential
and molecular dipole moment at 101992 different nuclear config-
urations. The details of these configurations are shown in Table 1.
The calculated potential energy and dipole moment surfaces will
be used in the next section to determine the vibrational energy lev-
els and transition dipole moments.

Fig. 2. re and Umin vs. supercell size.

Fig. 3. Potential energy of stretching a CO2 with and without dipole-dependent
term.

Fig. 4. Umin and dipole moment vs. Ecut.

Table 1
Values of r, x, y, and z used in the calculations

Variation (Å) Increment (Å) Number of points

r 2.10–2.58 0.008 61
x 0–0.172 0.004 44
y or z 0–0.37 0.01 38
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3. Vibrational levels and transition dipole moment

Using the coordinate system as shown in Fig. 5, the pure vibra-
tional Schrödinger equation of a CO2 molecule can be expressed asbHvw ¼ Ew ð6aÞ

where

bHv ¼ �
�h2

2lO

o2

or2 �
�h2

2lC

o2

ox2 þ
o2

oy2 þ
o2

oz2

 !
þ Uðr; x; y; zÞ ð6bÞ

In Eq. (6), r represents the distance between two O atoms; x, y and z
are the three components of the vector starting from the middle
point of the two O atoms and ending at the C atom; U is the poten-
tial term; lO and lC are, respectively, the reduced mass of O atom
and C atom and they are given by the following equation:

lO ¼
mO

2
; lC ¼

mC � 2mO

mC þ 2mO
ð7Þ

The potential energy term depends on four variables. However, y
and z are actually equivalent due to the symmetry of the CO2 mol-
ecule. So in the construction of potential and dipole moment sur-
face, to save computational time, we fixed the z to be 0 and
changed the values of the other three variables. After we get the
functions U(r,x,y,0) and d

*

ðr; x; y;0Þ, the full surface of the potential
and dipole moment, i.e., U(r,x,y,z) and d

*

ðr; x; y; zÞ can be obtained
according to the symmetry.

Fig. 6(a)–(c) shows the iso-surfaces of U(r,x,y,0), x component
of d

*

r; x; y;0ð Þ and y component of d
*

ðr; x; y;0Þ, respectively. The z
component of d

*

ðr; x; y;0Þ is not shown because it is always 0. Note
in Fig. 6, the unit of U is eV, and the unit of dipole moment is

Fig. 5. Coordinates of a CO2 molecule.

Fig. 6. Iso-value surfaces of (a) intra-molecular potential energy U(r,x,y,0); (b) dipole moment component parallel to the molecular axis dx(r,x,y,0); and (c) dipole moment
component perpendicular to the molecular axis dy(r,x,y,0).
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Debye. The zero potential in Fig. 6(a) corresponds to the minimal
potential of a CO2 molecule which is equal to �24.2815 eV.

As Eq. (6) is a four-dimensional Schrödinger equation, in order
to solve the equation efficiently, we split U(r,x,y,z) into five parts
as follows:

Uðr; x; y; zÞ ¼ Urðr; 0;0;0Þ þ Uxðre; x; 0;0Þ þ Uyðre; 0; y;0Þ
þ Uzðre;0;0; zÞ þ Vðr; x; y; zÞ ð8Þ

where re is the equilibrium C–O separation which is a constant. The
first four potential functions on the right-hand side of Eq. (8) are a
function of only one variable which can be directly extracted from
the function U(r,x,y,z). The remaining three variables in each of
the four potential functions are fixed at the equilibrium configura-
tion of the molecule. V(r,x,y,z) is the difference between U(r,x,y,z)
and the sum of the four one-variable functions. Fig. 7(a)–(c) shows
the four calculated potential functions and the dipole moment func-
tions extracted from U(r,x,y,z) and d

*

ðr; x; y; zÞ. Fig. 7(a) corresponds
to the symmetric stretching vibration mode; Fig. 7(b) corresponds
to the two degenerate bending vibration modes; and Fig. 7(c) corre-
sponds to the asymmetric stretching vibration mode. We define a
new Hamiltonian as follows:

bH0 ¼ �
�h2

2lO

o2

or2 �
�h2

2lC

o2

ox2 þ
o2

oy2 þ
o2

oz2

 !
þ UrðrÞ þ UxðxÞ

þ UyðyÞ þ UzðzÞ ð9Þ

Hence, bHv ¼ bH0 þ V , where V is a perturbation term.
One can see a Schrödinger equation with the new Hamiltonian

can be easily solved by separation of variables. The four separated
one-dimensional Schrödinger equations were solved indepen-
dently by the Numerov [18] method. The lowest three energy eigen
values of each mode were shown in Table 2, and their correspond-
ing normalized wave functions were shown in Fig. 8(a)–(c). The
combinations of these energy eigen values and eigen functions
form the eigen values En and eigen functions jni of bH0. The relation
is shown as

jni ¼ jnrnynznxi ¼ jnri � jnyi � jnzi � jnxi
En ¼ Enr þ Eny þ Enz þ Enx

ð10Þ

In Eq. (10), each eigen function contain four quantum numbers. The
first quantum number nr corresponds to the symmetric stretching

Fig. 7. Intra-molecular potential energy and dipole moment functions of (a) U(r,0,0,0) and dx(r,0,0,0), (b) U(re,0,y,0) and dy(re,0,y,0), and (c) U(re,x,0,0) and dx(re,x,0,0).

Table 2
Energy eigen values (cm�1) where all the values are subtracted by the corresponding
ground state energies

Quantum number Eigen energy

Enr Eny or Enz Enx

0 0 0 0
1 1344 662 2430
2 2682 1332 4879
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quantum number. The second and third quantum numbers ny, nz

correspond to the two degenerate bending quantum numbers. The
last one nx corresponds to the asymmetric stretching quantum
number. These eigen values and eigen functions will be used as
the 0th order results of vibrational levels. The real vibrational eigen
functions can be written as a linear combination of these 0th order
wave functions as

jvi ¼
X

n

cvnjni ð11Þ

The coefficients cvn and the real vibrational energy eigen values can
be obtained by solving the following matrix equation:

HCv ¼ EvCv ð12Þ

Fig. 8. The 0th order normalized vibrational wave functions of lowest three energy states, (a) symmetric stretching mode, (b) doubly degenerate bending mode, and (c)
asymmetric stretching mode.

Table 3
Energy eigen values and eigen functions of real vibration states

ðv1; vl
2; v3Þ E(exp.) E(cal.) Wave functions

(0,0,0) 0 0 0.999j0000i � 0.022j1000i � 0.015j1200i � 0.015j1020i
(0,11,0) 667 649 0.999j0100i � 0.015j0300i + 0.019j1100i � 0.025j1300i � 0.015j1021i
(0,20,0) 1285 1266 0.562j0200i + 0.562j0020i � 0.604j1000i + 0.036j1200i + 0.036j1020i
(1,0,0) 1388 1382 �0.427j0200i � 0.427j0020i � 0.796j1000i � 0.033j2000i � 0.024j0000i
(0,31,0) 1932 1900 0.644j0300i + 0.370j0120i � 0.664j1100i + 0.067j1300i + 0.037j1012i
(1,11,0) 2077 2054 �0.572j0300i � 0.333j0120i � 0.747j1100i � 0.045j1300i � 0.029j1012i
(0,0,1) 2349 2372 0.989j0001i � 0.145j1001i
(0,20,1) 3613 3617 0.594j0201i + 0.594j0021i � 0.528j1001i � 0.100j2100i
(1,0,1) 3716 3745 �0.380j0201i � 0.380j0021i � 0.812j1001i � 0.176j2100i � 0.132j0001i

Column 1 shows the notations of the traditional CO2 vibration levels. Columns 2 and 3 show experimental and calculated energy eigen values of CO2 vibrations, respectively.
Both of them are in unit of cm�1. Column 4 shows the real vibrational wave functions expressed as linear combinations of the 0th order eigen functions jnrnynznxi.

Z. Liang, H.-L. Tsai / Journal of Molecular Spectroscopy 252 (2008) 108–114 113
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The matrix elements in the H matrix in Eq. (12) can be determined
by

Hmn ¼ Hnm ¼ hnjbH0 þ V jmi ¼ Endmn þ hnjV jmi ð13Þ

where hnjVjmi is actually a four-dimensional integral which can be
evaluated by repeatedly using the Simpson rule.

In the calculation, fifty 0th order wave functions corresponding
to the 50 lowest 0th energy eigen values were chosen as the basis
functions. So the matrix H becomes a 50 � 50 matrix. The matrix
equation (12) was solved by matrix diagonalization schemes. Table
3 shows nine calculated real vibrational energy eigen values and
eigen functions. These vibrational energy levels are related to the
transitions shown in Table 4. The eigen functions in Table 3 were
expressed as a linear combination of the 0th order eigen functions
of which the absolute values of the coefficients are greater than
0.01.

After the real energy eigen values and eigen functions were
known, the transition dipole moment between different vibra-
tional energy levels can be calculated as

M
*

v1v2 ¼ v1j d
*

ðr; x; y; zÞjv2

� 	
¼
X
mn

cv1n
cv2m

nj d
*

jm
� 	

ð14Þ

The results are shown in Table 4. The calculated vibrational energy
levels in Table 3 have generally a good agreement with the experi-
mental data [19]. The biggest inaccuracy is less than 3%. The error is
mainly caused by an approximate exchange-correlation (Exc) func-
tional used in the calculations. From the wave functions shown in
Table 3, one can see (0,0,0), (0,11,0) and (0,0,1) energy levels are
dominated by their 0th order wave functions. Their real wave func-
tions are only weakly mixed by a few other 0th order wave func-
tions of the same species. The remaining six energy levels are
originated from the three coupled vibrational levels in resonance
(Fermi resonance). The 0th order wave functions of these vibra-
tional levels are strongly mixed with 0th order wave functions of
the resonant vibrational levels.

In Table 4, the transition dipole moments of nine parallel bands
and nine perpendicular bands were calculated. The transition di-
pole moments of fundamental transition bands like (0,0,1)–
(0,0,0) and (0,1,0)–(0,0,0) were dominated by only one dipolar
integral in Eq. (14) because all other integrals can be neglected
due to their small coefficients. For Fermi resonance energy levels,
the coefficients of strongly mixed 0th order wave functions are re-
lated to two constants [19]; one is DE (the unperturbated separa-
tion of the energy levels in resonance, DE = En � Em) and the
other is the interaction matrix elements hnjVjmi which is related
to the perturbation energy V. Hence, the errors in the calculations
of En and hnjVjmi were propagated into the calculations of coeffi-
cients cvn and the transition dipole moments M

*

v1v2 so that bigger
errors may be induced. As a result, the transition dipole moments
of fundamental transitions in Table 4 have generally better agree-

ments with experimental data [20] than those of Fermi resonance
levels. These results will also be improved with improved Exc

functionals.

4. Conclusion

Using the DFT, intra-molecular PES and DMS were determined
by solving the KS equation. Appropriate supercell size and cut-off
energy were selected to make a compromise between accuracy
and computation speed. DFT combined with PAW potential func-
tionals and PW basis functions greatly increased the computational
speed. The DFT method predicted an excellent CO2 geometry and
fairly good vibrational energy eigen values and transition dipole
moments. These results are very useful in the calculations of infra-
red absorption spectra of molecules. However, with the presently
available potential functionals, the DFT still cannot match the
accuracy that the methods like CCSD(T) and QCISD(T) can achieve
[21]. It is believed if better Exc functionals are available, the results
would be improved by using the method developed in this paper.
The high efficiency of the method developed in this paper makes
it applicable to larger and more complicated molecules. However,
with the number of atoms in the molecules increases, the compu-
tational cost of CCSD(T) method will be prohibitive.
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Table 4
Experimental and calculated transition dipole moments M

*

v1 v2 (Debye) of CO2, where the sign of the transition dipole moment is arbitrary

Band Mx(exp.) Mx(cal.) Band My(exp.) My(cal.)

Parallel bands Perpendicular bands
(0,0,1)–(0,0,0) 0.326 0.301 (0,1,0)–(0,0,0) 0.131 0.120
(0,20,1)–(0,0,0) 0.027 0.020 (1,1,0)–(0,0,0) 0.0011 0.0011
(1,0,1)–(0,0,0) 0.033 0.041 (0,31,0)–(0,0,0) 0.0005 0.0003
(0,0,1)–(0,20,0) 0.028 0.016 (1,0,0)–(0,1,0) 0.094 0.065
(0,0,1)–(1,0,0) 0.033 0.025 (0,20,0)–(0,1,0) 0.090 0.099
(0,20,1)–(0,20,0) 0.331 0.298 (1,1,0)–(1, 0,0) 0.153 0.134
(0,20,1)–(1,0,0) 0.011 0.024 (1,1,0)–(0,20,0) 0.031 0.029
(1,0,1)–(0,20,0) 0.008 0.021 (0,31,0)–(1,0,0) 0.024 0.015
(1,0,1)–(1,0,0) 0.331 0.296 (0,31,0)–(0,20,0) 0.154 0.150
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