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Calculation of thermophysical properties for CO2 gas using an ab initio potential model

Zhi Liang and Hai-Lung Tsai*

Department of Mechanical and Aerospace Engineering, Missouri University of Science and Technology, 400 W. 13th Street,
Rolla, MO 65409, USA

(Received 8 January 2010; final version received 1 February 2010)

The density, isochoric heat capacity, shear viscosity and thermal conductivity of CO2 gas in the pressure range
of 1–50 atm and 300K are calculated based on a five-centre potential model obtained from ab initio
calculations of the intermolecular potential of a CO2 dimer. The quantum effects of the intramolecular motion
are included in a model by the Monte Carlo (MC) Method. Without using any experimental data, the present
model achieves excellent agreements between the calculated thermophysical properties and experimental data
for all simulated CO2 densities except the highest one at 135 kg/m3 (3mol/L). The contributions of potential to
the thermophysical properties of the moderate dense CO2 gas and their dependence on density are investigated
in detail.
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1. Introduction

In general, as long as the structure of the molecule in a

fluid and the intermolecular potentials which describe

the interactions between molecules are known, all

thermodynamic and transport properties of the fluid at

any given temperature and pressure can be calculated

by theoretical approaches such as the formal kinetic

theory and time-correlation function theory. CO2 is a

moderate size molecule and is suitable for very

accurate ab initio calculations. Based on different

molecular potential models, a number of calculations

for the CO2 thermophysical properties were carried out

in the last decade [1–6]. Bock et al. [1–3] calculated

accurately the transport properties of CO2 at the zero

density limit by evaluating the relevant collision cross

sections by means of classical-trajectory calculations

directly from ab initio potentials. However, their

calculation method so far cannot be extended to the

calculation of transport properties for dense fluids. The

determination of density-dependent thermophysical

properties of real fluids based on the formal kinetic

theory still strongly relies on experimental data [7]. On

the other hand, many calculations [4–6] used molecular

dynamics (MD) simulations and the Green and Kubo

(GK) formulas [8–10] to calculate the CO2 transport

properties because the GK formulas do not depend

upon the details of any particular molecular model and

are not limited to any density condition [11]. Coelho

et al. [4] and Ludemann et al. [5] used, respectively,

a LJ 6–12 potential and a rough hard sphere model to

calculate the self-diffusion coefficient of CO2. Both of

the molecular models considered the molecule as a

structureless spherical particle, and the parameters in

the potentials were extracted from experimental data.

It is well known that an isotropic potential is inade-

quate to describe the interactions between polyatomic

molecules. Moreover, the parameters used to calculate

the self-diffusion coefficient in these models cannot be

used to reliably predict other transport properties such

as viscosity and thermal conductivity. Hence, an

anisotropic potential is required for quantitative

calculations. Fernandez et al. [10] used a two-centre

LJ plus point quadruple pair potential to calculate the

shear viscosity and thermal conductivity of low tem-

perature, high density CO2 fluids. In their model, the

parameters in the potential were adjusted exclusively to

fit the experimental pure substance vapour–liquid

equilibrium data. The calculated shear viscosities and

thermal conductivities have an average deviation of

5% and 10%, respectively, as compared to experimen-

tal data. The deviations are mainly caused by inaccu-

rate intermolecular potential since the experimental

data can indicate only a limited region of the potential

energy surface [12]. Therefore, one of the difficulties in

the calculations of thermophysical properties of real

fluids is to obtain an accurate intermolecular potential

function. It is impossible to use a single intermolecular

potential for the calculations of thermophysical
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properties at all fluid states. For dilute gases such as
the low pressure high temperature CO2 gas, it is
possible to obtain an accurate pair potential directly
from ab initio calculations of the intermolecular
potential of a CO2 dimer without adjusting to any
experimental data. For instance, Bukowski et al.
(BUK) [13] accurately computed a four-dimensional
intermolecular potential energy surface for the CO2

dimer using the many-body symmetry-adapted pertur-
bation theory and a large 5s3p2d1f basis set. With the
increase of fluid density, the three-body contribution to
the potential becomes important and the potential
calculated from the molecular dimer would be inaccu-
rate for dense fluids. However, in moderate dense
gases, such as moderate dense CO2 gas, in which the
contributions of the potential to thermophysical
properties would become important, it is still possible
to use the potential for a CO2 dimer to accurately
reproduce the thermophysical properties without con-
sidering the three-body effects. In this study, we use
MD simulations and a five-center ab initio intermole-
cular potential (BUK potential) to study the depen-
dence of thermophysical properties on density for
moderate dense CO2 gas without relying on any
experimental data. This study also shows the upper
limit of the gas density where the molecular interac-
tions can be well represented by the pair-additive
potential obtained from the molecular dimer.
Additionally, the potential contributions to thermo-
physical properties and their dependence on density are
studied in details at each simulated state point.

In the present work, the density, isochoric heat
capacity, shear viscosity and thermal conductivity of
CO2 gas at 300K and in the pressure range of 1–50 atm
(which corresponds to the density range 2–140 kg/m3)
are calculated by the equilibrium MD simulations
using the BUK potential. The simulation conditions
are chosen in order to compare against experimental
data. Different from a fluid at low temperatures in
which the vibrational degrees of freedom can be
neglected [6,14], for a polyatomic gas like CO2, which
has low-lying vibrational states, the vibrational energy
contributions to the heat capacity and thermal con-
ductivity are important even at room temperature. In
this case, it is inappropriate to either neglect the
vibrational degrees of freedom or treat the molecular
vibration classically. The vibrational heat capacity can
be easily calculated independently. However, it is hard
to include the variation of vibrational energies directly
into the GK formula for the calculation of thermal
conductivities because the vibrational energy is not
allowed to change continuously. The traditional
Eucken formula [15] which accounts for internal
degrees of freedom of molecules by Eucken correction

factor cannot reliably predict thermal conductivities
over a large range of pressure and temperature. In this
work, the quantum effects of molecular vibrational
energies are taken into account by the MC
method [16]. Using this method, thermal conductivities
can be obtained much more accurately than those
obtained from a classical treatment of vibrational
motions or by the neglect of vibrational energies [17].
The present molecular model can accurately reproduce
the thermophysical properties of moderate dense CO2

gas totally based on ab initio calculation results.

2. The molecular structure and inter-molecular

potential

In order to include the rotational and vibrational
motions of molecules in the MD model, the moment of
inertia and the vibrational energy eigen values are both
calculated from the intramolecular potential. Two
ab initio intramolecular potential surfaces have recently
been proposed for the CO2 molecule; one is based on
the Coupled-Cluster Singles and the Doubles excita-
tion with perturbative treatment of the Triple excita-
tions [CCSD(T)] method [18] and the other is
the Density Functional Theory (DFT) method [19].
The CCSD(T) method is generally more accurate
than the DFT method, but is computationally more
expensive. Both the intramolecular potentials predicted
the linear symmetric equilibrium structure of CO2. Our
previous ab initio results [19] show the C-O bond length
r0 ¼ 1:162 Åwhich is consistent with the experimental
data [20]. In this work, we assume the CO2 molecules
to be linear rigid rotors. Hence, the moment of
inertia, I, of CO2 is a constant in the simulation and
can be computed via I ¼ 2mOr

2
0, where mO is the mass

of the oxygen atom. Using the ab initio intramolecular
potential, the vibrational energy eigen values are
obtained by solving the vibrational Schrödinger equa-
tion. The energy eigen values calculated from the
intramolecular potential obtained by the CCSD(T)
method normally gives more accurate results.
Therefore, the corresponding results of CO2 vibra-
tional states are used in this work. The CO2 molecule
has four vibrational modes. The vibrational energy
eigen values of the first excited states of the symmetric
stretching mode, the asymmetric stretching mode, and
the doubly degenerated bending modes are, respec-
tively, 1387.9 cm�1, 2348.8 cm�1 and 667 cm�1 [18]. In
the calculation, we assume the energy differences
between any two neighbouring energy states of each
vibratoinal mode are constant. Due to the strong
quantum effects, the classical MD simulation of
molecular vibrational motions is inappropriate.
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We use the MC calculations to take into account the

quantum effects in the work.
The most important issue in a MD simulation is to

use an appropriate intermolecular potential. The BUK

potential employed in this work used a site-site

representation of the intermolecular potential and

was validated by comparing to the experimental

second virial coefficients. The site-site fit BUK poten-

tial reads

UBUK ¼
X
a2A

X
b2B

expð�ab � �abrabÞ þ f1ð�
ab
1 rabÞ

qaqb
rab

�

�f6ð�
ab
6 rabÞ

Cab
6

r6ab
� f8ð�

ab
8 rabÞ

Cab
8

r8ab

�
, ð1Þ

where

fn½x� ¼ 1� e�x
Xn
k¼0

xk

k!
: ð2Þ

In Equation (1), the parameters �ab, �ab, �
ab
n , qa,

and Cab
n are given in [13].

Figure 1 shows the radial dependence of the

intermolecular potential for different CO2 dimer

configurations. To ensure the continuity of the poten-

tial and force near the cut-off radius, the original BUK

potential UBUK is employed with a small modification

as follows

Umod ¼
UBUK � 1� e

rAB�rcutð Þ
2

�2:0

� �
rAB � rcut

0 rAB 4 rcut

8<
: , ð3Þ

where rcut is the cut-off radius and rAB is the distance
between the centre of mass for each of the two CO2

monomers. Both the rAB and rcut are in atomic units.
The modification only takes effects in the weak
interaction region which is close to the cut-off radius.
In this work, we set rcut ¼ 14 Å. Tests showed that with
such a large cut-off radius, the use of an Ewald sum to
treat long range Coulomb interactions was not neces-
sary [21]. The modified potential makes the intermo-
lecular potential, the intermolecular force, and the
torque acting on the molecule all tend smoothly to zero
at the cutoff radius so that possible problems
associated with the energy conservation and numerical
instability in the equations of motion are eliminated.

3. Theoretical background

The computations of thermophysical properties are all
carried out by the equilibrium MD simulations in a
microcanonical ensemble. The time-correlation func-
tion theory is employed for the calculations of shear
viscosity and thermal conductivity. The heat capacity
can be simply obtained from the energy fluctuations.
The density is determined directly from the equilibra-
tion process described next.

3.1. Shear viscosity

The GK formula for shear viscosity � can be expressed
as [22]

� ¼
V

kBT

Z 1
0

dt P��ðtÞ � P��ð0Þ
� �

, ð4Þ

where

P�� ¼
1

V

X
i

mvi�vi�|fflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflffl}
P��,k

þ
1

V

X
i

X
j4i

rij� fij�|fflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflffl}
P��,p

: ð5Þ

In Equations (4) and (5), P�� are the off-diagonal
(� 6¼ �) elements of the pressure tensor, � � �h i denotes
the ensemble average which can be determined from
MD simulations. The variations of translational
velocities, vi, intermolecular distances, rij, and forces,
fij, in Equation (5) are all caused by the interactions
between molecules and are assumed to be unaffected
by molecular vibrational motions. To study the
potential contribution to the shear viscosity as a
function of gas density, Equation (5) is separated
into two parts as suggested by Meier et al. [23]; one is
the kinetic contribution P��,k and the other is the
potential contribution P��,p. When this separation is
inserted into Equation (4), the viscosity is divided into

Figure 1. Radial dependence of BUK intermolecular poten-
tial for different CO2 dimer configurations.
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three different contributions, i.e. the kinetic-kinetic

contribution �kk, kinetic–potential contribution �kp
and potential–potential contribution �pp. The three

contributions as a function of gas density are all

calculated in this work.

3.2. Thermal conductivity

The GK formula relates the thermal conductivity �T
to the time autocorrelation function of the energy

current [11].

�T ¼
V

kBT2

Z 1
0

dt J�ðtÞJ�ð0Þ
� �

: ð6Þ

Here, J� is a component of the energy current. For

a linear molecule like CO2, J� can be expressed as

Equation (7) based on the frozen vibrational energy

assumption [16]

J� ¼
1

V

X
i

vi�
1

2
mv2i þ

1

2
Iu2i þ EVi þ

1

2

X
j6¼i

Uij

 !

þ
1

V

X
i

X
j4i

rij�
1

2
ðvi
*
þ vj
*
Þ � Fij

*
þ
1

2
ðui
*
�Gij

*

� uj
*
�Gji

*

Þ

� �
,

ð7Þ

where ui
*
is the rotational velocity of molecule i which is

defined as ei
*
, the time derivative of the unit vector

along the molecular axis, and Uij represents the

intermolecular potential. In Equation (7), Gij

*

can be

determined from the intermolecular forces by

Gij

*

¼
X
a

dia fija
*

, ð8Þ

where dia is the distance of the site a in molecule i

relative to the centre of mass, fija
*

is the force acting on

the site a in molecule i due to the interaction between

molecule i and molecule j.
Most of the papers which calculated the thermal

conductivity of the molecular fluids from the GK

formula either removed the vibrational energy EVi

[6,14,17,24] or treated the vibrational motions classi-

cally [17,25,26]. However, neither of the methods is

appropriate for polyatomic gases. In this work, the

quantized vibrational energy of each molecule is

initialized by MC method at the desired temperature.

Due to the interactions among molecules in the system,

the translational, rotational, and intermolecular poten-

tial energies all vary with time. However, the vibra-

tional energies are assumed to be frozen in the

molecules so that they have no influence on the

molecular interactions.
To study the potential contribution to the thermal

conductivity as a function of the gas density, the energy

current expression is also separated into the kinetic

contribution J�,k and the potential contribution J�,p as

follows:

Similarly, the thermal conductivity is divided into
three different contributions, i.e. kinetic-kinetic con-
tribution �T,kk, kinetic–potential contribution �T, kp
and potential–potential contribution �T, pp. The density
dependence of the three contributions is studied in
details in this work.

3.3. Heat capacity

The calculation of isochoric heat capacity is much
easier than the transport properties such as shear
viscosity and thermal conductivity. In a constant NVE
ensemble, the heat capacity can be calculated by [27]

E 2
P

� �
� EPh i

2¼
d

2
Nk2BT

2 1�
dNkB
2CV

� �
, ð10Þ

where EP is the total potential energy of the system, CV

is the isochoric heat capacity excluding the vibrational
contributions, and d is the degree of freedom. Since the
vibrational energies are assumed frozen in the mole-
cules during the simulation, the CV in Equation (10)
does not include the contribution from the vibrational
degree of freedom. Hence, d¼ 5 for CO2 molecules
which include three degrees of freedom of translational
motion and two degrees of freedom of rotational
motion. The vibrational heat capacity is calculated
independently at the desired temperature. Since we
assume the vibrational energies of each mode are
equally spaced, the vibrational heat capacity can be
calculated as the sum of four independent harmonic
oscillators:

CV,vib ¼ NkB
X4
j¼1

Evj

kBT

� �2
e�Evj=kBT

ð1� e�Evj=kBTÞ
2

" #
, ð11Þ

J� ¼
1

V

X
i

vi�
1

2
mv2i þ

1

2
Iu2i þ EVi

� �
|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

J�,k

þ
1

V

X
i

vi�
1

2

X
j6¼1

Uij

 !
þ
X
i

X
j41

rij�
1

2
ðvi
*
þ vj
*
Þ � Fij

*
þ
1

2
ðui
*
�Gij

*

� uj
*
�Gji

*

Þ

� �" #
|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

J�, p

:
ð9Þ
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where Evj means the fundamental vibrational transition
energy of mode j whose value is given in Section 2.1.
The sum of the calculated CV from Equation (10) and
the vibrational heat capacity from Equation (11) is the
isochoric heat capacity of CO2 gas. The potential
contribution CV:p to the isochoric heat capacity is
obtained directly from the difference between the heat
capacity of a real gas and the heat capacity of the ideal
polyatomic gas at the corresponding temperature.

4. Initialization and equilibration

The MD simulations in this work are all carried out in
a constant NVE ensemble with N¼ 1024. This number
was chosen since no systematic dependence on the
system size was found for the calculated thermophy-
sical property when the number of molecules is greater
than 1024. The pressure and temperature of the system
each fluctuates around a desired value during the
simulations. In order to be able to compare the
calculated results with experimental data at the given
temperature and pressure, the corresponding volume
and energy of the constant NVE ensemble must be
evaluated at the desired temperature and pressure. The
two values are obtained by an equilibration process
described in this section. To save the simulation time
for the equilibration process, the configuration of
molecules and the distribution of energies should all be
initialized at the desired temperature and pressure so
that they can relax quickly to the appropriate
distributions.

4.1. Initialization

The coordinates of the molecular center of mass are
initialized randomly inside the cubic simulation box
and its volume can be initialized by the ideal gas law.
The minimum distance between any two molecules is
controlled to be greater than 6 Å to avoid unrealistic
large potentials and forces. The molecular orientations
are initialized as random vectors uniform in solid angle.

The distributions of translational, rotational and
vibrational energies all fulfil the Boltzmann distribu-
tion at the given temperature. The translational
velocities are initialized directly by the Maxwell–
Boltzmann distribution. Theoretically, the rotational
and vibrational energies are both quantized. The
rotational energy levels of a CO2 molecule which is
modelled as a rigid rotor are determined by the
following equation:

Erot½J� ¼ J Jþ 1ð Þ
�h2

2I
with J ¼ 0, 1, 2, . . . ,1 ð12Þ

where the degeneracy of level J equals 2Jþ 1. The
rotational energy level of each molecule in the system
can be initialized by the Metropolis MC method [27].
Initially, we set all molecules on the ground rotational
energy state, i.e. J¼ 0. Then, a trial transition from the
current energy level o to the new level n is carried out.
The probability of accepting such a trial transition is
accðo! nÞ which can be determined by

accðo! nÞ ¼ 0:5 �min 1,
gðnÞ

gðoÞ
exp �

Erot½n��Erot½o�

kBT

	 
� �
,

ð13Þ

where n ¼ o� 1 and n � 0. In Equation (13), g(n) and
gðoÞ are, respectively, the degeneracy of level n and level
o, and Erot½n� and Erot½o� are, respectively, the rotational
energy on level n and level o. After several thousand trial
transitions, the average rotational energy per molecule
starts to fluctuate around a constant value. The
fluctuating rotational energies correspond to different
distributions of rotational energies in the molecule. Any
one of these distributions can be used to initialize the
rotational energy distribution at the given temperature.
After the rotational energy is initialized, the energy is
allowed to change continuously in the simulation since
the rotational quantum effects can be neglected. Hence,
the rotational velocity is also allowed to change
continuously. The magnitude of rotational velocity, u

*
,

is determined by

Erot ¼
1

2
I u
* 2 ð14Þ

where the directions of u
*

are chosen randomly in the
plane perpendicular to the molecular axis.

The vibrational energy levels of a CO2 molecule
which is modelled as a combination of four indepen-
dent harmonic oscillators are determined by

Evib ¼
X4
j¼1

ðnj þ
1
2ÞEvj, ð15Þ

where nj is the vibrational energy level of the jth
vibrational mode. A similar Metropolis MC method as
described above can be employed to initialize vibra-
tional energy of each molecule at the given tempera-
ture. Since the vibrational quantum effects cannot be
neglected, it is not appropriate to initialize the
vibrational velocities of the molecules. In practice,
the vibrational energies do not change during the
simulation once they are initialized.

4.2. Equilibration

In the equilibration process, the volume and total
energy of the system should be relaxed to values that
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correspond to the desired temperature and pressure.
Once these two values are found, they are used
as preset values in the constant NVE ensemble.
Therefore, the equilibration procedure is needed
before starting the calculations of thermophysical
properties.

To equilibrate the system to the desired tempera-
ture and pressure, the system is coupled to a constant
temperature and pressure bath using the approach
proposed by Berendsen et al. [28]. At each time step,
the translational velocities are scaled by a factor

� ¼ 1þ
Dt
�T

T0

T
� 1

� �� �1
2
, ð16Þ

where T0 is the desired temperature, T is the current
translational temperature, Dt is the time step and �T is
a preset time constant. The scale factor can force both
the translational and rotational kinetic temperatures to
the desired temperature since the energy exchanges
between the translational and rotational motions are
fast. Meanwhile, the molecular centre-of-mass coordi-
nates are scaled by a factor of �, and the volume of the
simulation box is scaled by a factor of �3, where

� ¼ 1þ
Dt
�p

P

P0
� 1

� �� �1
3
, ð17Þ

where P0 is the desired pressure, P is the instantaneous
pressure, and �p is a time constant. The long range
correction to the pressure [22] is calculated by
orientational averaging of the virial beyond the
cut-off radius. It is found in the simulation that
�T � 25 ps and �p � 10 ps are appropriate for CO2 gas
studied in this work. Thanks to all these methods we
used in the initialization and equilibration, the system
can be well equilibrated within 500 ps. An example of
the equilibration process of CO2 gas at 300K and
30 atm is shown in Figure 2(a) and 2(b). From Figure 2
we can see after the temperature and pressure are
relaxed to the desired values, the total internal energy
E and the volume V of the system both fluctuate
around a constant value. After the system reaches the
equilibrium, the equilibrium process runs for 2 ns more
to determine the desired energy and volume from the
average of those fluctuating values. The desired V can
be used to calculate the density of the gas at the
corresponding temperature and pressure.

The calculated densities together with experimental
data and the gas densities predicted by using the
second virial coefficient of CO2 are shown in Figure 3.
The deviations of the calculated densities from exper-
imental values are negligibly small except at the highest
pressure of our calculation. The maximum deviation,

4.4%, is found at 300K, 50 atm and density of about

135 kg/m3 (3mol/L). From Figure 3 we can see the
second virial coefficient becomes inadequate to accu-

rately predict gas density when the CO2 density is
higher than 70 kg/m3. In the moderate high density

region, the third virial coefficient contribution becomes
non-negligible. The pair-additive potential employed in

this work can partially account for the third virial
coefficient because the third virial coefficient depends

on both the pair interactions and non-additive
three-body interactions. Therefore, our MD simulation

based on the BUK potential predicts much better

results than those predicted by using the second virial
coefficient, but the deviation still exists due to the

neglect of the three-body contributions to the inter-
molecular potential. At higher densities, the deviations

are supposed to be even greater and the results will

Figure 2. Equilibration process of CO2 gas at 300K and
30 atm: (a) temperature and pressure vs time; and (b) volume
and total energy vs time.
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be unacceptable. This is a systematic error of applying
the BUK potential to high density CO2 fluids and
hence cannot be improved by simulation techniques.
Therefore, 135 kg/m3 or 3mol/L is about the upper
limit of the CO2 density above which the thermo-
physical properties cannot be reliably predicted from
the potential for the CO2 dimer.

5. Simulation details and the results

The shear viscosity, thermal conductivity, and heat
capacity of CO2 gas at different pressures are all
produced from the equilibrium MD simulations. The
equations of molecular translational motions are
integrated by the Verlet leap-frog algorithm. For
linear molecules like CO2, the Singer leap-frog algo-
rithm [29] can be applied to integrate the equations of
molecular rotational motions. Compared to the stan-
dard implicit quaternion algorithm [22], the Singer
algorithm preserves the linear rigid molecular structure
and improves the energy conservation so that a
considerably large step size can be employed in the
simulations to save total computational cost.

Since the molecular vibrational energies are frozen
in each MD simulation, the variations of molecular
vibrational energies are considered separately. Using
the MC method described in the last section, 2000
distributions of vibrational energies are used to
initialize the vibrational energies of the molecules in
the system. Hence, each MD simulation actually

started with 2000 different initial vibrational energy

distributions but with the same initial configuration

and initial translational and rotational velocities. In the

calculation of thermal conductivities, the correspond-

ing time autocorrelation functions of the energy

current calculated from different initial states are

averaged to determine the final time autocorrelation

function at the given temperature and pressure. The

time step size used in the simulation are chosen so that

the total energy of the system is always kept constant

within 1 part in 104. Thanks to the modified BUK

intermolecular potential and the Singer leap-frog

algorithm which improve the numerical stability, a

step size up to 12.5 fs can be used for the CO2 gas at

1 atm and 300K. The step sizes for higher pressures in

this work are all set as 8.5 fs to ensure the energy

conservation.
The shear viscosity and thermal conductivity are

both transport properties which have long correlation

times in the gas phase. Accurate determinations of the

ensemble averages in Equations (4) and (6) require

extremely long simulations whose length would be

more than 104 times of the correlation time [30].

The calculated time correlation functions of the

off-diagonal elements of the pressure tensor and

energy current are shown in Figure 4(a) and 4(b) for

pressures at 10 atm, 20 atm and 50 atm. It is seen from

these figures that the correlation time of the energy

current are a little larger than that of the pressure

tensors and both correlation times decrease with

pressure. Hence, the total simulation lengths required

for the calculations of shear viscosity and thermal

conductivity decrease with pressure from 7 ms at 1 atm
to 200 ns at 50 atm. The computational cost for such

long simulation lengths is very high because of the

complex expression of the BUK potential used in this

model. Hence, at each pressure, the long simulations

are divided into 100 shorter parallel runs which are

independently initialized and equilibrated at the given

temperature and pressure. The final results are

obtained by averaging the results calculated from

shorter parallel runs. The statistical errors are obtained

from the mean-square deviation of the correlation

functions. The time integrals of the calculated auto-

correlation functions are the shear viscosities and

thermal conductivities at the corresponding tempera-

ture and pressures. Compared to the above two

transport properties, the heat capacity is a static

property and hence easier to be calculated. The heat

capacities at different pressures are obtained directly

from the fluctuations of potential energies as shown in

Equation (10). The calculated isochoric heat capacities,

shear viscosities, and thermal conductivities,

Figure 3. CO2 gas density vs pressure at 300K. The BUK
potential predicts the second virial coefficient to be –121.3
cm3/mol at 300K. The value is used to calculate the density
from the second virial correction.
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together with the experimental data [31,32] are shown
in Figures 5 to 7.

Similar to the calculated densities, the deviations
between the calculated heat capacity and experimental
data are negligible (within 1%) except at the highest
pressure as shown in Figure 5(a). The largest deviation
of about 4.7% is found at 50 atm. Since the BUK
potential does not take into account the three-body
contribution, the deviation will be even larger at higher
pressures if we still employ the same potential in the
calculation. In order to improve the accuracy of
the calculated heat capacities at higher densities, the
parameters in the original ab initio potential need to be

adjusted to include the average three-body effects.
So far, a very accurate ab initio calculation of an
intermolecular potential which includes the three-body
effects is unavailable. Hence, the potential model must
be optimized to the available experimental data to get
better calculation results of thermophysical properties
of dense fluids. From Figure 5(b) we can see the
increase of the heat capacity at constant temperature
is purely attributed to the increase of the potential
contribution to the heat capacity. Although the highest
density in our calculation is still far less than the
critical density of the CO2, the weight of the potential

Figure 5. (a) Isochoric heat capacity vs pressure at 300K.
(b) Kinetic and potential contributions to the heat capacity
as a function of density.

Figure 4. Normalized autocorrelation functions of
(a) off-diagonal elements of pressure tensors and (b) energy
current at 10 atm, 20 atm and 50 atm and 300K.
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contribution CV,p in the heat capacity has reached 25%
which shows a significant contribution.

The dependence of the calculated shear viscosity on
the pressure shown in Figure 6(a) seems a little
irregular. This is because the statistical uncertainty of
the calculated viscosity is about 1.6%, whereas the
maximal increment of the calculated viscosity between
any two adjacent pressures in the calculation is only
3.7%. Hence, we can only see the viscosity generally
increases with pressure, but the clear dependence is
blurred by the statistical uncertainty. Nevertheless, the
calculated viscosities have generally a very good
agreement with the experimental data. The deviations

are within 1.8% except at 50 atm. At the highest

pressure, the deviation is about 4.5% which is mainly

caused by the neglect of three-body contribution to the

potential. Compare to heat capacity, the shear viscos-

ity as well as thermal conductivity cannot be divided

into pure kinetic and potential contributions. There

also exist kinetic-potential cross contributions to these

two properties as discussed in Section 3. Figure 6(b)

depicts the density dependence of the three viscosity

contributions. In the density range of our calculation,

the kinetic–kinetic contribution �kk decreases with

density, while the kinetic–potential contribution �kp
and potential–potential contribution �kp both increase

with density. The kinetic–potential contribution is

Figure 6. (a) Shear viscosity vs pressure at 300K.
(b) Viscosity contributions �kk,�kp and �pp as a function of
the gas density. The statistical error is within 1.6%. The
uncertainty of the experimental data is 0.9%.

Figure 7. (a) Thermal conductivity vs pressure at 300K.
(b) Thermal conductivity contributions �T,kk,�T,kp and �T,pp
as a function of the gas density. The statistical error is within
1.2%. The uncertainty of the experimental data is 2%.

Molecular Physics 1293

D
o
w
n
l
o
a
d
e
d
 
A
t
:
 
2
2
:
1
9
 
6
 
J
a
n
u
a
r
y
 
2
0
1
1



generally a little larger than the potential–potential
contribution. The above observation agrees with the
density dependence of the viscosity contributions of
a LJ model fluid at the subcritical gaseous states
calculated by Meier et al. [23]. The viscosity calculated
in this work is dominated by the kinetic–kinetic
viscosity contribution. The kinetic–potential contribu-
tion and the potential-potential contribution only
account for, respectively, 10% and 5% at the highest
density of the calculation.

As shown by Figure 7(a), the calculated thermal
conductivity agrees very well with the experimental
data. Similar to the other three thermophysical proper-
ties, the maximal deviation of 2% is found at the
highest pressure. The density dependence of the three
thermal conductivity contributions depicted in
Figure 7(b) is similar to that of the three viscosity
contributions. The difference is the kinetic-potential
�T,kp and the potential-potential �T,pp contributions to
the thermal conductivity are more significant. At the
highest density, �T,kp and �T,pp account for, respec-
tively, 23% and 19% of the thermal conductivity. The
statistical uncertainty of the calculated thermal con-
ductivity is estimated to be within 1.2%. The contri-
bution of the vibrational energy term to the total
thermal conductivity can be easily examined by calcu-
lating the difference between the thermal conductivity
which includes the vibrational energy term and the one
which sets the vibrational energy to zero. The weights
of the vibrational energy contribution in the total
thermal conductivity at 1 atm, 10 atm, 20 atm, 30 atm,
40 atm and 50 atm were calculated, and they are,
respectively, 22.6%, 21.6%, 20.6%, 19.5%, 17.8% and
15.0%. Hence, there is a significant contribution from
the vibrational energy term to the thermal conductivity
for dense CO2 gas even around room temperature.

6. Conclusions

In this work, the density, isochoric heat capacity, shear
viscosity, and thermal conductivity of CO2 gas in the
pressure range of 1–50 atm and 300K are calculated
directly from computer simulations without using any
experimental data. The potential contributions to the
thermophysical properties are studied at every simu-
lated state point, and their characteristic dependence
on density is described. The MC method is employed in
the model to include the quantum effects of the
vibrational motions. For the intramolecular dynamics
of CO2 molecules, the assumptions of rigid-rotor for
rotational motion and of quantum harmonic oscillator
for vibrational motion are both validated by good
agreements between the calculated thermophysical
properties and experimental data. For the

intermolecular interactions, accurate thermophysical
properties can be predicted by a pair-additive potential
which is obtained from an ab initio calculation of the
intermolecular potential of a CO2 dimer if the CO2

density is less than 135 kg/m3 or 3mol/L. For the
calculations of thermophysical properties at higher
densities, the ab initio intermolecular potential of a
CO2 dimer becomes inaccurate and the three-body
contribution to the intermolecular potential must be
taken into account. So far, the three-body contribution
cannot be accurately obtained without experimental
data. Therefore, 135 kg/m3 is the upper limit of the
CO2 density in which the thermophysical properties
can be accurately calculated from molecular simulation
without using any experimental data.

CO2 is a small molecule. The frozen vibrational
energy assumption for CO2 molecule is valid at
temperatures up to 1000K [16] since all the vibrational
modes of CO2 have a high energy gap between two
neighbouring vibrational energy levels. For larger
molecules, however, there might exist torsional
motions which are typically at lower frequencies than
bond vibrations. In this case, it might be necessary to
treat some vibrational modes in a classical way and the
rest of them by a quantum mechanical way as
described in this work. In all cases, a quantum
mechanical treatment of some vibrational modes
must be performed; otherwise a significant underesti-
mate of the thermal conductivity of a polyatomic fluid
would be found in the calculation. As the vibrational
energy for a given molecule is independent of time
during the simulation when a quantum treatment of
vibrational energy is carried out, its contribution to the
thermal conductivity might be reducible to a simpler,
perhaps analytic form.
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