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The vibrational contribution to the thermal conductivity of a polyatomic fluid
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(Received 26 February 2010; final version received 23 April 2010)

A simple analytical expression is proposed in this article to calculate the vibrational contribution to the thermal
conductivity of a polyatomic fluid. The analytic expression was obtained based on the assumption that the
self-diffusion process is the major mechanism in the transport of vibrational energy. The proposed expression
is validated by comparing the thermal conductivity of CO2 calculated by molecular dynamics (MD) simulations
to experimental data over a wide range of temperature and pressure. It is also demonstrated that the
proposed analytic expression greatly increases the accuracy of calculated thermal conductivity for CO2 at
the supercritical state.
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1. Introduction

The thermal conductivities of polyatomic fluids have
been calculated using equilibrium or non-equilibrium

MD simulations for decades [1–7]. Since thermal

conductivity measures the transport of energy through
the fluid, the inclusion of vibrational energy of the

molecule into the calculation is important. No matter
which MD simulation is used, however, there always

exists a problem of how to treat molecular vibrations

properly. As the number of atom in a molecule
increases, more vibrational modes need to be consid-

ered in the calculation. The characteristic vibrational
temperature normally varies from a few hundred K for

vibrational modes, such as torsional vibrations,

to several thousand K for vibrational modes, such as
stretching vibrations. Generally, two approaches are

frequently used to treat different vibrational motions.
The first one is to treat the vibrational motion

classically with a potential in which the parameters

are often determined from infrared spectroscopy data
or quantum chemistry results [1,2,4,6,7]. This classical

approximation is appropriate if the characteristic
temperature of the vibrational mode is considerably

lower than the simulation temperature. The other

approach is to apply constraints to the bond lengths or
bond bending angles, and the stretching or bending

energy is accordingly neglected [1,3–5]. The second

approach is normally used when the characteristic
temperature of the vibrational mode is much higher

than the simulation temperature. However, there exist

many vibrational modes of which the characteristic

temperature is higher but not too much higher than the

simulation temperature. In these cases, the vibration

motion is strongly affected by quantum effects.

The classical treatment of vibrational modes may

lead to wrong vibrational energies and hence wrong

vibrational contributions to the thermal conductivity.

On the other hand, a simple neglect of vibrational

energies is also not appropriate, because a non-

negligible population of molecules may have been

excited to the corresponding vibrational modes at

the simulation temperature. As an example,

Nieto-Draghi et al. [1] have shown that both the

classical treatment and the neglect of vibrational

motions of CO2 lead to a significant underestimate of

thermal conductivity at the supercritical state.

This problem was resolved recently by using a Monte

Carlo (MC) method to treat the quantum effects of the

vibrational motion [8,9]. The proposed MC method

is based on the assumption that the exchange of energy

between the constrained vibrational motion, which

is strongly affected by quantum effects, and all other

modes of motion is negligible. In implementation,

the vibrational energies of constrained vibrational

modes are considered to be constant during the

simulation after they are initialized by the Metropolis

algorithm [10] at the simulation temperature.

Meanwhile, the molecule (in the case when all vibra-

tional modes are constrained) or a part of the molecule

(in the case when a part of the molecule is constrained)
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is considered rigid in the simulation, and the structure

of the constrained part of the molecule is considered

unaffected by the initial vibrational energies. This MC

method used for quantum treatments of constrained

vibrational motion has been applied to accurately

determine the thermal conductivity of CO2 gas in a

wide range of temperature and pressure [8,9]. It was

found [9] that the vibrational contribution to the

thermal conductivity of CO2 gas has reached about

20% of the total thermal conductivity at 300K.

This temperature is much lower than all characteristic

vibrational temperatures of CO2, but a significant

vibrational contribution has been observed.
In the aforementioned studies [8,9], it was found

that the vibrational energies of all constrained modes

can be considered constant and, hence, independent of

time during the simulation. Hence, it may be possible

to find an analytic expression that can be used to

calculate the vibrational contribution to the thermal

conductivity. This work aims to develop such an

analytic expression for a polyatomic fluid. In order to

test the validity of the proposed analytic expression,

it is necessary to ensure that an accurate intermolecular

potential is used in the simulation and all other

parameters in the MD simulation such as cut-off

radius, simulation time step, and total simulation

length do not significantly influence the calculation

results of thermal conductivity. It has been shown that

an ab initio intermolecular potential for CO2 dimer

proposed by Bukowski et al. (BUK) [11] can be used to

accurately reproduce the thermophysical property of

CO2 gas in a wide range of temperature and pressure

[8,9,12,13]. Therefore, in this study the MD calculation

of the thermal conductivity of CO2 gas based on BUK

potential is used to test the validity of the proposed

analytic expression in the temperature range of

300�1000K and pressure range of 1�40 atm.

In addition to CO2 gas, the analytic expression is

applied to the calculation of thermal conductivity of

supercritical CO2 [1].

2. Theoretical background

In this work, the computations of thermal conductivity

are carried out by the equilibrium MD simulation in

a microcanonical ensemble. To study the vibrational

contribution to the thermal conductivity, we start with

the well-known Green–Kubo (GK) formula for the cal-

culation of thermal conductivity � [14,15]:

� ¼
V

3kBT 2

Z 1
0

dt
�
J
*

ðtÞ � J
*

ð0Þ
�

ð1Þ

where J
*

represents the energy current, t is the time,

h� � �i denotes the ensemble average, kB is the

Boltzmann constant, V is the volume of the system

and T is the average temperature of the system.

The general expression for the energy current J
*

in pure fluids which contain flexible, multicentre

molecules can be expressed as [6,16,17]

J
*

¼
1

V

X
i

Eiv
*

i þ
1

2

X
a2i

X
i6¼j

X
b2j

r
*

ij � ð f
*

ab � v
*

aÞ

" #
; ð2Þ

where i and j are molecular indices, and a and b are

atomic indices. v
*

is the velocity vector (all velocities

are barycentric), r
*

ij ¼ r
*

i � r
*

j is the centre–cen-

tre intermolecular distance vector and f
*

ab is the

intermolecular force. The internal energy Ei of

molecule i in Equation (2) includes the translational,

rotational, intermolecular potential energies and

energies of vibrational modes that can be treated

classically in the MD simulation. All these energies

vary continuously with time in the simulation. For the

constrained vibrational motion of which quantum

effects cannot be neglected, however, the energies do

not vary continuously with time and hence were

normally not considered in the MD simulation.

This is a defect in most MD simulations of thermal

conductivity of polyatomic fluids in the past.
Previous work [8,9] has shown that the quantum

effects of the constrained vibrational motion can be

included in MD simulation by a MC method.

Our simulation results indicate that the exchange of

energy between the constrained vibrational motion and

all other modes of motion is negligible for a dilute and

moderate dense polyatomic fluid. This conclusion is

similar to the assumption made by Chapman and

Cowling [18] when they derived the modified Eucken

formula for a dilute polyatomic gas. Based on the

assumption that there is no exchange of energy

between translational and internal modes (rotational

and vibrational) of motion, Chapman and Cowling

argued that the transport of internal energy would take

place by the diffusion of molecules. Hence, Chapman

and Cowling divided the thermal conductivity �all
which includes all modes of motions into two parts in

the following equation [18]:

�all ¼ �tr þ �DCV,int ð3Þ

where �tr represents the thermal conductivity due to

the transport of translational energy, � is the density

of the system, D is the self-diffusion coefficient and

CV,int is the contribution to the isochoric heat capacity

from internal modes of motion. �DCV,int represents
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the thermal conductivity due to the transport of

internal energy.
However, neglecting the exchange of energy

between the translational and internal modes

of motion (especially the rotational motion) is

generally a crude approximation. Instead, it is more

appropriate to use the approximation made in our

previous work which only neglects the exchange of

energy between the constrained vibrational motion and

all other modes of motion. In this study, we propose

that the thermal conductivity �all can be divided into

two parts as in the following equation:

�all ¼ �þ �DCV,vib ð4Þ

where � is the thermal conductivity due to the

transport of intermolecular potential energy and

energies of all modes of motion which can be treated

classically. Here, � is identical to the thermal conduc-

tivity in Equation (1) and, hence, can be obtained from

MD simulations. If the simulation temperature

is higher than the characteristic temperature of some

vibrational mode, a classical treatment of this

vibrational motion should be performed in the MD

simulation with an intramolecular potential for

the corresponding vibrational mode. But all other

vibrational modes should still be constrained in the

molecule. �DCV,vib represents the thermal conductivity

due to the energy transport of constrained vibra-

tional modes through the self-diffusion process. In

Equation (4), �DCV,vib can be considered as the

‘correction’ term to the original thermal conductivity

�. The quantum effects of constrained vibrational

motions are taken into account by the isochoric

vibrational heat capacity CV,vib which can be calculated

by the harmonic assumption using [19]:

CV,vib ¼ kB
Xn
j¼1

Evj

kBT

� �2
e�Evj=kBT

1� e�Evj=kBT
� �2

" #
; ð5Þ

where Evj is the fundamental vibrational transition

energy of jth constrained vibrational mode of the

molecule and n is the total number of constrained

vibrational modes. The self-diffusion coefficient D in

Equation (4) can be readily obtained from the MD

simulation by [20]

D ¼
1

3

Z 1
0

dt
�
v
*

iðtÞ � v
*

ið0Þ
�
: ð6Þ

The validity of Equation (4) is to be tested in this

work by calculating the thermal conductivity of CO2

fluid. The CO2 molecule has four vibrational modes,

among which the bending mode has the lowest

characteristic temperature of about 960K.

Hence, quantum effects of all vibrational modes of

the CO2 molecule cannot be neglected unless the sim-

ulation temperature is higher than 1000K. All MD

simulations in this work are carried out at a

temperature lower than 1000K. According to the

assumption made in this work, therefore, all

vibrational modes are constrained in the simulation

so that the CO2 molecule is modelled as a linear rigid

rotor. For a linear rigid molecule, the energy current J
*

which does not include the contribution from the

vibrational energy can be simplified to [8]:

J
*

¼
1

V

X
i

�
1

2
v
*

i

�
mv

*2

i þ Iu
*2

i þ
X
j6¼i

Uij

�

þ
1

2

X
j4i

r
*

ij �

�
ðv
*

i þ v
*

j Þ � F
*

ij þ ðu
*

i � G
*

ij � u
*

j � G
*

jiÞ

�	
;

ð7Þ

where m and I represent, respectively, the mass and

the moment of inertia of the CO2 molecule, u
*

i

is the rotational velocity of molecule i which is defined

as the time derivative of the unit vector along the

molecular axis, F
*

ij is the intermolecular force acting on

molecule i due to the interaction between the molecule i

and the molecule j, and Uij represents the intermole-

cular potential. In Equation (7), G
*

ij can be determined

from the intermolecular forces by

G
*

ij ¼
X
a

dia f
*

ija ð8Þ

where dia is the distance of the site a in molecule i

relative to the centre of mass and f
*

ija is the force acting

on the site a in molecule i due to the interaction

between molecule i and molecule j.

3. Simulation details

The BUK potential employed in this work uses a

site–site representation of the intermolecular potential

for CO2 dimer as shown in the following equation:

UBUK ¼
X
a2i

X
b2j

exp �ab � �abrabð Þ þ f1 �
ab
1 rab

� � qaqb
rab

�

� f6 �
ab
6 rab

� �Cab
6

r6ab
� f8 �

ab
8 rab

� �Cab
8

r8ab

	
,

ð9Þ

where

fn½x� ¼ 1� e�x
Xn
k¼0

xk

k!
: ð10Þ
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Here, sites a belong to molecule i, sites b belong to
molecule j and rab is the distance between a and b.
Each molecule contains five sites, with three
corresponding to the centres of the atoms in CO2 and
the remaining two on the C–O bonds 0.8456 Å away
from the C atom. The C–O distance is fixed at
1.162047 Å. Parameters �ab, �ab, �

ab
n , qa, and Cab

n are
given in [11]. Since the CO2 molecule is modelled as a
linear rigid rotor in this work, the dipole moment of
the CO2 molecule is zero at every time step of the
simulation. Hence, it is not necessary to use the reaction
field method [21] to account for the long-range
electrostatic interactions. In fact, the first non-vanish-
ing electrostatic interaction for CO2 dimer is the
quadrupolar interaction, which decays as r�5 at a
large intermolecular separation. On the other hand, the
quadrupolar interaction also depends on the relative
orientations between molecules. It is assumed that
there are no preferential relative orientations beyond
the cut-off sphere. Therefore, the long-range correction
for the quadrupolar interaction is negligible. In the
application of BUK potential, the cut-off radius,
within which all pair interactions are calculated, is
chosen to be 14 Å. The long range correction to
the pressure is calculated by orientational averaging of
the virial beyond the cut-off radius.

The equilibrium MD simulations are all carried out
in a constant NVE ensemble with N ¼ 4096 for dilute
CO2 gas at 1 atm and 300�1000K, and N¼ 1024
for moderate dense CO2 gas at 300K and 10�40 atm.
The volume V (or density �) and the total energy E of
the constant NVE ensemble corresponding to each
simulation temperature and pressure are obtained
by the method described in [9]. The coordinates of
the molecular centre of mass and the molecular
orientations are all initialized randomly in a cubic
box. The translational and rotational velocities are
both initialized by the Maxwell–Boltzmann relation
at the simulation temperature. The equations of
molecular translational motions and molecular rota-
tional motions are integrated by, respectively,
the Verlet leap-frog algorithm and the Singer leap-frog
algorithm [22]. The molecules in the system are
equilibrated for 500 ps using the Berendsen’s velocity
scaling method [23] with a time constant of 100 ps for
dilute gases and 25 ps for moderate dense gases before
the calculation of the time-correlation function starts.
The time step size, total simulation length of each
simulation and the calculated density of the fluid at
each simulated state point are given in Table 1.
The time step size is chosen so that the total energy
of the system remains constant within a relative
accuracy of 10�4. As shown in Table 1, a very long
total simulation length is used at each simulated state

point to ensure the statistical error of the calculated
thermal conductivity is lower than or around 1%.
The statistical error is calculated by Fincham’s block
averaging method [23]. Each long simulation shown in
Table 1 is divided into 100 shorter parallel runs which
are independently initialized and equilibrated at the
given temperature and pressure.

The self-diffusion coefficient and vibrational heat
capacity at a given temperature and pressure must be
accurately determined before the calculation of
vibrational contribution to the thermal conductivity
is carried out. The velocity autocorrelation function
used for the calculation of self-diffusion coefficient
is averaged over the autocorrelation functions of all
molecules in the system so that the statistical error of
the calculated self-diffusion coefficient is less than
0.1%. In order to study the validity of Equation (4),
the values of all variables used in the calculation
should be as accurate as possible. Since very accurate
experimental data (uncertainty� 0.15%) of the heat
capacity of CO2 at zero density are available [25]
at every simulation temperature, the vibrational heat
capacity used in the calculation is obtained by
Equation (10) instead of Equation (5).

CV,vib ¼ CV,�¼0 � 2:5R ð10Þ

where CV,�¼0 represents the experimental data of
isochoric heat capacity of CO2 at zero density, R is
the gas constant. Equation (5) is less accurate than
Equation (10) because the Fermi resonance among
different vibrational energy states of CO2 makes the
harmonic approximation more inaccurate.

4. Results and discussion

The first set of calculation is carried out at 1 atm
and 300�1000K. The calculated results are shown

Table 1. The time step size Dt, total simulation length ttotal
and calculated density of fluid � at each simulated state
point. The statistical error of � is less than 0.2%.

P (atm) T (K) � (kg/m3) Dt (fs) ttotal (ms)

1 300 1.805 12.5 6.24
1 400 1.347 12.5 7.41
1 500 1.075 12.5 8.58
1 600 0.900 10.5 9.76
1 700 0.767 10.5 10.9
1 800 0.671 10.5 12.1
1 900 0.597 8.5 13.3
1 1000 0.537 8.5 14.4
10 300 18.85 8.5 1.56
20 300 40.10 8.5 0.78
30 300 64.57 8.5 0.51
40 300 95.09 8.5 0.39
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in Table 2. The uncertainty of the experimental data of
the self-diffusion coefficient at 1 atm was estimated
to be �5% [26]. It can be seen from Table 2 that
the deviations between the calculated and experimental
self-diffusion coefficients are within the experimental
uncertainty. The error caused by decoupling the vibra-
tions from other degrees of freedom is assumed
negligible and Equation (10) is applied to calculate
the vibrational heat capacity. The uncertainty of the
experimental data of the heat capacity was estimated
to be �0.15% [25]. In Table 2, �MD the thermal
conductivity which does not include the vibrational
contribution is obtained directly from the MD
simulation with the statistical error of less than 1.0%.
It is evident that �MD significantly underestimates
�all,exp. the experimental thermal conductivity at all
simulation temperatures. The uncertainty of �all,exp
was estimated to be �1% near room temperature and
�2% at the higher temperatures. As shown in Table 2,
the density-diffusion product, �D and vibrational heat
capacity both increase with tempeature. As a result, the
magnitude of �DCV,vib, i.e., the vibrational contribu-
tion to the thermal conductivity also increases with
temperature. When the vibrational contribution is
included, the corrected thermal conductivity �all,MD

shows good agreement with the experimental data, as
shown in Table 2. The significance of the vibrational
contribution to the thermal conductivity for CO2 gas at
1 atm is calculated by �DCV,vib/�all,MD� 100%. The
results are shown in Figure 1. The vibrational contri-
bution increases with temperature from 24% at 300K
to 46% at 1000K.

If the simulation temperature is higher than
1000K, it may not be appropriate to assume the CO2

molecule is a linear rigid rotor because the quantum
effects of bending motions becomes negligible. In this
case, it is more appropriate to treat the bend mode

of CO2 classically and an intramolecular potential for
bending motions should be included in the MD model.
On the other hand, the other two vibrational modes
of the CO2 molecule should still be constrained because
their characteristic temperatures are much higher
than 1000K. In these high temperature cases,
the vibrational heat capacity CV,vib in Equation (4)
only includes the contribution from the two
constrained vibrational modes. The intermolecular
potential employed in this work is based on a rigid
geometry. Hence, it might not be appropriate to use
it for the interaction between flexible CO2 molecules
at high temperatures.

Table 2. The simulated self-diffusion coefficient and thermal conductivity at 1 atm. The statistical error of the
self-diffusion coefficient is less than 0.1%. The vibrational heat capacity is calculated by Equation (10) using
the experimental data in [25]. The statistical error of the thermal conductivity �MD is less than 1.0%.
The deviations are determined by |�all,MD� �all,exp.|/�all,exp.� 100%.

�D (mg/m � s) Conductivity (mW/m �K)

T (K) MD Exp. [26] Dev (%) CV,vib(J/mol �K) �MD �all,MD �all,exp. [27] Dev (%)

300 20.61 21.52 4.19 8.126 12.7 16.5 16.8 1.79
400 27.32 27.79 1.70 12.24 17.0 24.6 25.1 1.99
500 33.50 33.36 0.42 15.53 20.7 32.6 33.5 2.69
600 39.22 38.69 1.37 18.23 24.4 40.6 41.6 2.40
700 44.26 43.26 2.32 20.47 28.2 48.8 49.3 1.01
800 49.05 47.80 2.63 22.34 30.8 55.7 56.7 1.76
900 53.59 52.09 2.87 23.91 33.1 62.2 63.8 2.51
1000 57.83 56.11 3.08 25.22 37.6 70.7 70.6 0.14

Figure 1. The vibrational contribution to the thermal
conductivity as a function of temperature at 1 atm and as
a function of density at 300K.
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The second set of calculation is performed at 300K
and 10�40 atm. Similar to the 1 atm case, the calcu-
lated self-diffusion coefficient is firstly compared with
the experimental data. Stiel et al. [28] established
a relationship between the self-diffusion coefficients
and temperature for gases at moderate pressures.
The relationship as shown in Equation (11) was
found to reproduce the experimental data of the
self-diffusion coefficient of CO2 gas with an average
deviation of 1.99%.

�D ¼
0:464

�
1:391

T

Tc
� 0:381

� 	2=3
ð11Þ

where Tc¼ 304.2K is the critical temperature of CO2,
�¼ 0.0224 is constant for CO2. According to Equation
(11) at T¼ 300K, �D¼ 20.58mg/m � s is constant for
CO2 gas at moderate pressures. The calculated self-
diffusion coefficient compared to the experimental
value obtained from Equation (11) is shown in Table 3.
It can be seen the calculated results generally agree well
with the experimental data. However, a slightly
decrease of the calculated �D with density (or pressure)
is observed. The decreasing trend agrees with the
density dependence of �D for a fluid at the subcritical
gaseous states calculated by Meier et al. [29] using the
Lennard–Jones potential model. Liang and Tsai [9]
have shown that the decoupling between vibrations

and other degrees of freedom is appropriate for

moderate dense CO2 gas. Hence, the vibrational heat

capacity used in this set of calculation is the same as

that of dilute CO2 at 300K in Table 2. When the

vibrational contribution is not included, the calculated

thermal conductivity �MD significantly underestimates

the experimental thermal conductivity �all,exp [27] at all
simulation pressures as shown in Table 3. After the

vibrational contribution �DCV,vib is included, very

good agreement is achieved.
The statistical error of �MD is about 1.2%.

The uncertainty of the experimental data was

estimated to be �2% [27]. Since the vibrational heat

capacity is constant and the density-diffusion product

decreases with density, the magnitude of �DCV,vib

slightly decreases with density. On the other hand, �MD

increases with density due to the increasing contribu-

tion from the intermolecular potential. Therefore, the

vibrational contribution to the thermal conductivity

decreases with density from 21.7% at 18.9 kg/m3 to

17.9% at 95.1 kg/m3 as shown in Figure 1. As the

density or pressure is further increased, the vibrational

contribution to the thermal conductivity will be even

lower. In very high density fluids where the potential

contribution to the thermal conductivity

dominates, the vibrational contribution to the thermal

conductivity becomes smaller or negligible.

Table 3. The simulated self-diffusion coefficient and thermal conductivity at 300K.
The statistical error of the self-diffusion coefficient is less than 0.1%. The statistical error
of the thermal conductivity �MD is less than 1.2%. The deviations are determined
by j�all,MD � �all, exp :j=�all, exp : � 100 %:

Conductivity mW=m �Kð Þ

P (atm) �D mg=m � sð Þ MD results Dev (%) �MD �all,MD �all, exp : [25] Dev (%)

10 20.28 1.46 13.5 17.2 17.3 0.58
20 20.17 1.99 14.2 17.9 18.0 0.56
30 19.93 3.16 15.0 18.7 19.0 1.58
40 19.85 3.55 16.8 20.5 20.7 0.97

Table 4. The correction term �DCV,vib of the calculated thermal conductivity of supercritical CO2 in [1]. �ND

denotes the thermal conductivity calculated by Nieto-Draghi et al. based on the rigid-rotor assumption.
�all, exp : denotes the experimental data of the thermal conductivity shown in TABLE III of [1]. The self-
diffusion coefficient is obtained from [31].

� ðkg=m3Þ

�ND

(mW/m �K)
�all,exp.

(mW/m �K) Dev. (%) D ðm2=sÞ
�DCV,vib

(mW/m �K)
�all,corrected
(mW/m �K)

Dev. (%)
(corrected)

300 30.0 42.6 30 113� 10�9 11.3 41.3 3.3
800 86.3 94.4 9 28.5� 10�9 7.56 93.9 0.5
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To test validity of the proposed correction for

the vibrational contribution to the thermal conductiv-

ity in high density fluid, the MD simulation should

be extended to higher density range. However, the

BUK intermolecular potential employed in this work

has been proved unsuitable for high density CO2 fluids.

As an example, Bratschi et al. [30] showed that BUK

potential predicts too large critical temperature and

pressure compared to the experimental results. To test

the validity of Equation (4) in high density fluids,

therefore, a more appropriate intermolecular potential

should be employed.
Nieto-Draghi et al. [1] calculated the thermal

conductivity of CO2 along the supercritical isotherm

at 470K using EPM2 potential. EPM2 model is a well

know potential model for carbon dioxide which

reproduces accurately the critical properties. Using

the rigid-rotor assumption, Nieto-Draghi et al.

calculated the thermal conductivity of CO2 by MD

simulations. An underestimation of 30% and 9% were

found at 300 kg/m3 and 800 kg/m3, respectively. With

the classical treatment of the vibrational motions in the

simulation, they obtained an underestimation of 23%

at 300 kg/m3. Nieto-Draghi et al. discussed in their

paper that ‘an increase in the accuracy of the thermal

conductivity might require a quantum treatment of the

atomic vibration inside the molecule’. Since 470K is

much lower than the characteristic vibrational temper-

ature of bending mode of CO2, all vibrational modes

should be constrained in the simulation based on the

assumption made in this work. According to the

analysis shown in this work, the deviations in

their calculations can be corrected by �DCV,vib.

The vibrational quantum effects is taken into account

by CV,vib. We compare our corrected results

with Draghi et al.’s results based on the rigid-rotor

assumption and the experimental results in Table 4.

The self-diffusion coefficient data are taken from the

correlation provided by [31]. The vibrational heat

capacity at 470K is 14.62 J/molK [25]. It can be seen

from Table 4 that the deviations between Nieto-Draghi

et al.’s results and the experimental data can be

corrected by the proposed vibrational correction very

well. The deviation is reduced from 30% to 3.3% at

300 kg/m3, and from 9% to 0.5% at 800 kg/m3. From

this calculation we can see the vibrational contribution

to the thermal conductivity might be non-negligible

even at a density close to the liquid density. At 470K,

both diffusion coefficient D and vibrational heat

capacity CV,vib are higher than those at 300K at the

same density. For dilute CO2 gas at 470K, the

vibrational contribution is about 36% according to

Figure 1. Hence, the vibrational contribution of about

30% and 9%, respectively, at 300 kg/m3 and 800 kg/m3

is reasonable.

5. Conclusions

A simple correction term �DCV,vib is proposed to
account for the vibrational contribution to the thermal
conductivity. The proposed correction term is based
on the assumption that, depending on the simulation
temperature, the molecular vibrational modes
with relatively higher characteristic temperatures can
be considered constrained in the MD simulation. It is
proved that the energy of constrained vibrations
mainly contribute to the thermal conductivity through
the self-diffusion process. Base on the proposed
expression, the calculated thermal conductivities of
CO2 fluid at gaseous and supercritical states agree well
with experimental data.

Acknowledgement

This work was supported by Office of Naval Research
through the Multidisciplinary University Research Initiative
(MURI) program, Award No. N00014-05-1-0432.

References

[1] C. Nieto-Draghi, T. de Bruin, J. Perez-Pellitero,

J.B. Avalos and A.D. Mackie, J. Chem. Phys. 126,

064509 (2007).
[2] X. Li, L. Zhao, T. Cheng, L. Liu and H. Sun, Fluid

Phase Equilibr. 274, 36 (2008).
[3] B. Eckl, J. Vrabec and H. Hasse, Fluid Phase Equilibr.

274, 16 (2008).
[4] P. Ungerer, C. Nieto-Draghi, B. Rousseau, G. Ahunbay

and V. Lachet, J. Mol. Liq. 134, 71 (2007).
[5] G.A. Fernandez, J. Vrabec and H. Hasse, Mol. Simul.

31, 787 (2005).

[6] D.K. Dysthe, A.H. Fuchs and B. Rousseau, J. Chem.

Phys. 110, 4047 (1999).
[7] D.K. Dysthe, A.H. Fuchs, B. Rousseau and

M. Durandeau, J. Chem. Phys. 110, 4060 (1999).
[8] Z. Liang and H.L. Tsai, Mol. Phys. (DOI: 10.1080/

00268970902776740).
[9] Z. Liang and H.L. Tsai, Fluid Phase Equilibr. 293, 196

(2010).
[10] D. Frenkel and B. Smit, Understanding Molecular

Simulation (Academic Press, San Diego, 2002).

[11] R. Bukowski, J. Sadlej, B. Jeziorski, P. Jankowski,
K. Szalewicz, S.A. Kucharski, H.L. Williams and

B.M. Rice, J. Chem. Phys. 110, 3785 (1999).

[12] S. Bock, E. Bich, E. Vogel, A. S. Dickinson and
V. Vesovic, J. Chem. Phys. 117, 2151 (2002).

[13] S. Bock, E. Bich, E. Vogel, A. S. Dickinson and

V. Vesovic, J. Chem. Phys. 120, 7987 (2004).

Molecular Physics 1713

D
o
w
n
l
o
a
d
e
d
 
B
y
:
 
[
T
s
a
i
,
 
H
a
i
-
L
u
n
g
]
 
A
t
:
 
2
2
:
1
8
 
1
2
 
J
u
l
y
 
2
0
1
0



[14] M.S. Green, Phys. Rev. 119, 829 (1960).
[15] R. Kubo, J. Phys. Soci. Japan 12, 570 (1957).

[16] B.D. Todd, P.J. Daivis and D.J. Evans, Phys. Rev. E 51,
4362 (1995).

[17] G. Galliero and C. Boned, Phys. Rev. E 80, 061202
(2009).

[18] S. Chapman and T.G. Cowling, The Mathematical
Theory of Non-Uniform Gases (Cambridge University
Press, Cambridge, 1952).

[19] D.A. McQuarrie, Statistical Mechanics (University
Science Books, Sausalito, 2000).

[20] M.P. Allen and D.J. Tildesley, Computer Simulation of

Liquids (Clarendon, Oxford, 2000).
[21] M. Neuman, J. Chem. Phys. 85, 1567 (1986).
[22] K. Singer, A. Taylor and J.V.L. Singer, Mol. Phys. 33,

1757 (1977).

[23] H.J.C. Berendsen, J.P.M. Postma, W.F. Van Gunsteren,
A. DiNola and J.R. Haak, J. Chem. Phys. 81, 3684
(1984).

[24] D. Fincham, N. Quirke and D.J. Tildesley, J. Chem.
Phys. 84, 4535 (1986).

[25] Eds. P.J. Linstrom and W.G. Mallard, National
Institute of Standards and Technology, Gaithersburg
MD, 20899, http://webbook.nist.gov (retrieved
February 23, 2010).

[26] A. Boushehri, J. Bzowski, J. Kestin and E.A. Mason,
J. Phys. Chem. Ref. Data. 17, 255 (1988).

[27] V. Vesovic, W.A. Wakeham, G.A. Olchowy,

J.V. Sengers, J.T.R. Watson and J. Millat, J. Phys.
Chem. Ref. Data 19, 763 (1990).

[28] L.I. Stiel and G. Thodos, Can. J. Chem. Eng. 43, 186

(1965).
[29] K. Meier, A. Laesecke and S. Kabelac, J. Chem. Phys.

121, 9526 (2004).
[30] C. Bratschi, H. Huber and D.J. Searles, J. Chem. Phys.

126, 164105 (2007).
[31] T. Groß, J. Buchhauser and H.-D. Ludemann, J. Chem.

Phys. 109, 4518 (1998).

1714 Z. Liang and H.-L. Tsai

D
o
w
n
l
o
a
d
e
d
 
B
y
:
 
[
T
s
a
i
,
 
H
a
i
-
L
u
n
g
]
 
A
t
:
 
2
2
:
1
8
 
1
2
 
J
u
l
y
 
2
0
1
0


