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a b s t r a c t

This article demonstrates a highly accurate molecular dynamics (MD) simulation of thermal conductivity
of methane using an ab initio intermolecular potential. The quantum effects of the vibrational contribution
to thermal conductivity are more efficiently accounted for in the present MD model by an analytical cor-
rection term as compared to by the Monte Carlo method. The average deviations between the calculated
thermal conductivity and the experimental data are 0.92% for dilute methane and 1.29% for methane at
moderate densities, as compared to approximately 20% or more in existing MD calculations. The results
demonstrate the importance of considering vibrational contribution to the thermal conductivity which
is mainly through the self-diffusion process.

© 2010 Elsevier B.V. All rights reserved.

1. Introduction

Methane is of specific importance in different fields rang-
ing from its industrial application as a feed-gas for ultra-smooth
diamond coating to its environmental impact as an important
greenhouse gas. Moreover, it is the principal component of natural
gas which is often described as the cleanest fossil fuel. Accurate
knowledge of the transport properties of methane is therefore
essential for the engineering design of chemical process and fluid
transportation. Although the experimental data for transport prop-
erties of methane are available, they, especially the self-diffusion
coefficient and thermal conductivity data, are of acceptable accu-
racy only around room temperature [1]. This work attempts to
calculate the self-diffusion coefficient and thermal conductiv-
ity of methane in a wide range of temperature at dilute phase
and in an intermediate dense phase by equilibrium MD simula-
tions using an ab initio potential energy surface (PES) which was
recently proposed by Hellmann et al. [2]. A quantum mechanical
treatment of vibrational motions is employed in the MD model
to improve the accuracy of the calculated thermal conductiv-
ity.

In addition to MD simulations, there also exist several other
approaches for the calculation of transport properties from a known
intermolecular potential. For example, the classical-trajectory (CT)
method has been shown to be highly accurate in reproducing
the transport and relaxation properties of simple molecular gases
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in a wide range of temperatures [1,3–5]. However, this method
is restricted to the computation of transport properties in the
dilute gas limit. For the calculation of transport properties at
moderate and high densities, Rainwater–Friend [6,7] and mod-
ified Enskog theories [8,9] need to be used. The application of
these theories must rely on the existence and accuracy of the
experimental transport property data because some scaling param-
eters used in these calculations are obtained by the best fit of
the available experimental data [10,11]. On the other hand, MD
simulations do not have such restrictions and are applicable at
any arbitrary density and temperature. If an accurate intermolec-
ular PES is available and the simulation length is long enough,
MD simulations have been demonstrated to be able to repro-
duce the thermophysical properties of a polyatomic fluid in a
wide range of temperatures and densities with high accuracy
[12–14].

In MD simulations of methane fluids, the potential was often
approximated by an isotropic Lennard–Jones (LJ) type function in
which the two adjustable parameters were fitted to experimental
data [15,16]. The spherical approximation of the methane molecule
is an oversimplification for the calculation of transport properties,
especially thermal conductivity. Using the approximation, it is not
surprising that the deviations of the calculated thermal conductiv-
ity from the experimental data reached 20% in dense phase [15] and
up to 55% in more dilute ones [16]. In order to calculate the thermal
conductivity of methane accurately, therefore, an anisotropic PES
should be employed to take into account the exchange of energy
between translational and internal modes of motion. In MD simula-
tions, a classical treatment of translational and rotational motions
is normally valid, which, however, may not be true for vibrational
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motions. The methane molecule has nine vibrational modes with
the lowest vibrational frequency of 1306 cm−1 [17]. The high vibra-
tional frequency implies that the classical treatment of methane
vibrations is not only inefficient, but also inappropriate due to the
strong quantum effects at simulation temperatures. On the other
hand, the negligence of vibrational motions in the MD simulation
could cause a significant underestimate of thermal conductivity
[14,18]. Therefore, a quantum treatment of molecular vibrations is
necessary in the MD model. Since the exchange of vibrational and
other kinetic energy caused by collisions is rare, it is assumed in
this work that there is no exchange of energy between vibrational
and other modes of motion. Accordingly, the methane molecule is
considered as a rigid rotor and the molecular structure is assumed
to be unaffected by the vibrational state of the molecule and the
interaction between molecules. Hence, the influence of molecu-
lar vibrations on the transport of mass is neglected in this work.
The transport of energy by vibrational excited molecules, on the
contrary, cannot be neglected and is accounted for by a recently
proposed correction term [14] based on the assumption that the
vibrational energy mainly contributes to the thermal conductiv-
ity through self-diffusion processes. Therefore, the calculation of
the self-diffusion coefficient is correlated with that of the thermal
conductivity in this work. The calculation method is more effi-
cient than the previously proposed Monte Carlo method [12,13]
which involves the average of autocorrelation functions corre-
sponding to thousands of initial vibrational energy distributions.
The accuracy of the calculation method is examined by com-
paring the simulation results with experimental data whenever
possible.

2. Intermolecular potential

As methane is the simplest alkane and suitable for very accu-
rate ab initio calculations, it has attracted many theoretical studies
on the interaction potential for methane pair in the past decades.
The two most recent ab initio PES for the methane dimer are pro-
posed by Hellmann et al. [2] and Chao et al. [19]. Both these groups
calculated the PES by the counterpoise-corrected supermolecu-
lar approach at the CCSD(T) level of theory with the basis sets
of aug-cc-pVTZ and aug-cc-pVQZ qualities. The calculated PES’s
were both extrapolated to the complete basis set. The major differ-
ence between the two PES’s is that Hellmann et al. introduced an
isotropic correction term to include the effects of zero-point vibra-
tions so that a more accurate PES is obtained. Compared with Chao
et al.’s potential, the global minimum of Hellmann et al.’s potential
is deeper by about 50 K. Hellmann et al. used a nine-site potential
function to fit the ab initio potential data. The potential function
was validated against the experimental second pressure virial coef-
ficient data. Chao et al. used a four-site Lennard–Jones (LJ) potential
function to fit the calculated potential data. Although the expres-
sion of Chao et al.’s potential is much simpler, the fitting errors are
relatively large. In MD simulations, we use the PES proposed by
Hellmann et al.

Hellmann et al.’s potential assumes the methane molecule as a
rigid rotor with the C-H bonds fixed at the experimental zero-point
vibrationally averaged value of 1.099 Å. The bond angles of CH4
were established to give a regular tetrahedron and each molecule
contains 9 sites. Hence, each pair interaction contains 81 site–site
contributions. The partial charges were assigned to the denoted
C and H sites to reproduce the octupole moment of the methane
monomer obtained from ab initio calculations. The total poten-
tial which includes a correction for zero-point vibrational effects
is given by Eq. (1).

Fig. 1. Hellmann et al.’s potential as a function of the center of mass separation for
different angular orientations.
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Here, sites a belong to molecule i, sites b belong to molecule j, rab is
the distance between a and b, and rij is the distance between cen-
ters of mass of two molecules. Parameters Aab, ˛ab, ˇab, qa, Cab

n , ˇcorr,
�C6 and �C8,iso are given in Ref. [2]. Fig. 1 depicts the anisotropy of
Hellmann et al.’s potential. Since the methane molecule is modeled
as a rigid rotor, the dipole moment of methane is exactly zero at
each time step in the simulation. Therefore, it is not necessary to use
the reaction field method [20] to account for the long-range elec-
trostatic interactions. In fact, the first nonvanishing electrostatic
interaction for a methane dimer is the octupole–octupole interac-
tion, which decays as r−7 at a large intermolecular separation. In the
application, the cut-off radius, within which all pair interactions are
calculated, is chosen to be 14 Å.

3. Theory

The influence of vibrational motions is neglected in the cal-
culation of self-diffusion coefficient. Hence, the self-diffusion
coefficient is calculated directly from the Green–Kubo (GK) formu-
las [21,22]. The accurate determination of self-diffusion coefficient
is important in this work because it will be used in calculating
the vibrational contribution to the thermal conductivity. The self-
diffusion coefficient D is given by [23]

D = 1
3

∫ ∞

0

dt
〈

�vi(t) · �vi(0)
〉

, (3)

where �vi is the translational velocity of molecule i, t is the time, and
〈· · ·〉 denotes the ensemble average.

Due to the strong quantum effects, vibrational motions are
not directly taken into account in classical MD simulations. As a
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result, the vibrational energy is not included in the GK formula. The
thermal conductivity �T,0 which does not include the vibrational
contribution is calculated by [24]

�T,0 = V

kBT2

∫ ∞

0

dt
〈

J˛(t)J˛(0)
〉

. (4)

Here, J˛ is a component of the energy current which does not
take into account the quantized vibrational energies, V is the vol-
ume of the system, kB is the Boltzmann constant and T is the average
temperature of the system. Using the rigid-rotor assumption, the
expression for the energy current J˛ which contains the contribu-
tions from translational energy, rotational energy and molecular
interactions is given by [25]

J˛ = 1
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, (5)

where �ωi and Ii are, respectively, the angular velocity and the
matrix of moments of inertia for molecule i, m represents the
mass of the methane molecule. rij and fij denote, respectively, the

intermolecular distance and force. Uij and ��ij are, respectively, the
intermolecular potential energy between molecule i and molecule j
and the torque acting on molecule i due to the interaction between
molecule i and molecule j.

The energy current varies with time due to the interaction
between molecules. Since collisions resulting in the exchange of
vibrational and other kinetic energy are rare, the quantized vibra-
tional energy is considered as frozen in the molecule and only
contributes to the thermal conductivity by diffusion. Hence, the
vibrational contribution to thermal conductivity is calculated sep-
arately in this work. Accordingly, the thermal conductivity �T which
includes the vibrational contribution is given by [14]

�T = �T,0 + �DCV,vib, (6)

where � is the density of the system and CV,vib is the isochoric
vibrational heat capacity. The quantum effects of the molecular
vibrations are included by CV,vib which can be normally calculated
using the quantum harmonic approximation [24]. It is notable that
Eq. (6) is similar to the modified Eucken formula [11] which is used
for the estimation of thermal conductivity of dilute gas:

�T = 15kB

4m
� + �DCV,int. (7)

In Eq. (7), the first term on the right side represents the transla-
tional contribution to thermal conductivity, and the second term
represents the contribution from the internal modes of motion,
CV,int is the contribution to the isochoric heat capacity from inter-
nal modes of motion. In this work, CV,int = CV,vib + 1.5R where R is the
gas constant. The major difference between the modified Eucken
formula and Eq. (6) is that the modified Eucken formula assumes
that there is no exchange of energy between the translational
and internal modes of motion, whereas energy exchange between
translational and rotational motion is included in Eq. (6) by MD
simulations. In the case of dilute methane gas, the self-diffusion
coefficient D is available through MD calculations and very accurate
experimental shear viscosity � data exist. Therefore, the accuracy
of the modified Eucken formula, i.e., Eqs. (7) and (6) for the cal-
culation of thermal conductivity of dilute methane gas can be both
examined by comparing the calculated results with the experimen-
tal thermal conductivity data. As the fluid density increases, it is
unlikely to neglect the exchange of energy between translational
and rotational energies. Hence, the modified Eucken formula, Eq.

(7), is not applicable to dense fluids. In this case, the thermal con-
ductivity is calculated by Eq. (6) and compared with experimental
data to examine if the decoupling between vibrations and other
degrees of freedom is also valid for a moderately dense methane
fluid.

4. Simulation details and results

4.1. Simulation details

Two sets of simulations of the self-diffusion coefficient and ther-
mal conductivity of methane are carried out in the microcanonical
ensemble. In the first set of simulations, the pressure of methane
gas is fixed at 1 atm and the temperature varies from 200 to 900 K.
The density of the methane is determined from the ideal gas law.
In the second set of simulations, the temperature is fixed at 200
or 300 K and the density varies from 0.04 to 5 mol/L. For any given
temperature and density, the number of molecules included in a
cubic simulation box is always 1024. The coordinates of the center
of mass and the orientations of the molecules are both initial-
ized randomly inside the simulation box with periodic boundary
conditions. The minimum distance between any two molecules
is set to be greater than 6 Å to avoid unrealistic large potentials
and forces. The translational and angular velocities are both initial-
ized by the Maxwell–Boltzmann relation at the given temperature.
The equations of molecular translational and rotational motions
are integrated by the Verlet leap-frog algorithm and the quater-
nion algorithm [23], respectively. Berendsen et al.’s algorithm [26]
is applied to equilibrate the system to the desired temperature with
a time constant of 2.0 ps. Using these settings, the system can be
well equilibrated within 50 ps at all simulated state points. After
the system is equilibrated and reaches the desired total energy
corresponding to the given temperature and density, the thermo-
stat is turned off and the transport properties are calculated in the
constant-NVE ensemble. A step size of 2.5 fs is chosen for dilute
gases of which the temperature is lower than 600 K. For moder-
ately dense methane fluids and dilute methane gases with higher
temperatures, the step size is chosen as 2 fs. The time step size
is chosen such that the total energy of the system is always kept
constant within 2 parts in 104.

In order to obtain the thermal conductivity with a low statisti-
cal error (∼1%) from the MD simulation, it is necessary to carry out
a long simulation length. For dilute gases at 1 atm, the total simu-
lation length is increased from 3 �s at 200 K to 6 �s at 900 K. For
moderately dense fluids, the total simulation length is decreased
from 240 ns at 1 mol/L to 40 ns at 5 mol/L. With such long simu-
lation lengths, the statistical error of the calculated self-diffusion
coefficient can be reduced to less than 0.1% by additional averag-
ing all the molecules in the system. Since the ab initio potential
employed in this work is a nine-site potential model with a com-
plex analytical expression for each site–site interaction, the total
computational cost is very high. To save the computational time,
the long simulation is divided into hundreds of shorter parallel
runs which are independently initialized and equilibrated at the
given temperature and density. The statistical error is estimated by
Fincham’s block averaging method [27].

4.2. Simulation results of dilute methane gases

The calculated self-diffusion coefficients comparing with the
values extrapolated to the dilute gas limit [1] from the density-
dependent experimental data measured by Dawson et al. [28] and
Oosting and Trappeniers [29] are shown in Table 1. The uncertain-
ties of the experimental data were estimated to be ±6% [28] and
±2% [29]. Due to difficulties of the measurements, the experimen-
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Table 1
Thermophysical properties of methane at 1 atm. The statistical error of self-diffusion coefficient is less than 0.1%. The statistical error of thermal conductivity is less than 1%.

T (K) �D (mg/m s) � (�Pa s) CV,vib (J/mol K) �T (mW/m K)

MD Exp. CT Exp. [32,34] Exp. [32] MD �T,0 MD �T Exp. [32,33] CT Modified Eucken

200 10.50 10.48 [28] 10.53 7.81 0.257 21.62 21.79 21.94 21.75 23.50
10.16 [29]

300 15.25 14.99 [28] 15.25 11.25 2.521 32.35 34.75 34.55 34.36 36.14
15.29 [29]

400 19.37 – 19.36 14.27 7.351 41.16 50.03 50.13 50.04 51.70
500 23.07 – 23.04 16.98 13.25 49.83 68.90 68.56 68.45 70.04
600 26.45 – 26.42 19.43 19.24 56.38 88.13 88.92 88.62 90.11
700 29.58 – 29.56 21.63 25.35 67.12 113.9 112.1 109.9 112.1
800 32.61 – 32.52 23.71 30.83 73.74 136.5 134.3 131.8 134.6
900 35.45 – 35.35 25.71 35.89 79.55 158.9 156.6 154.1 157.5

tal self-diffusion coefficient data at temperatures higher than 350 K
are scarce or nonexistent. Comparing with the available experi-
mental data at 200 and 300 K, the deviations of MD simulation
results are generally within the experimental uncertainties. How-
ever, the deviation between the simulated self-diffusion coefficient
and Oosting and Trappeniers’ data [29] at 200 K is greater than
the experimental uncertainty. As was pointed out by Hellmann
et al. [1], the experimental uncertainties may be overoptimistic
and the calculated self-diffusion coefficients from CT method are
more reliable than the experimental data. Hence, we compared our
MD simulation results with those calculated from CT method [1]
in which the same intermolecular PES was used and the methane
molecule was also treated as a rigid rotor. As shown in Table 1, very
good agreement is found at all simulation temperatures. The CT
method has been proved to be very accurate in reproducing trans-
port properties of dilute gases [4,5,30,31]. Therefore, the deviations
found in Table 1 should not be attributed to the MD simulation
method or the GK formula used in the calculation of self-diffusion
coefficient. A critical test of the accuracy of the potential energy sur-
face and the proposed calculation method requires more accurate
experimental data.

In Table 1, the MD simulation results of the thermal conductivity
of dilute methane gases are compared with the experimental data
[32,33], results from CT method [3] and modified Eucken formula.
For temperatures lower than 600 K, the experimental thermal con-
ductivity data of methane at 1 atm are obtained from the correlation
provided by NIST [32] with the uncertainty estimated to be ±2.5%.
At higher temperatures, however, there are no estimates of uncer-
tainty of NIST correlation at 1 atm. Therefore, the experimental data
at 700–900 K are from a theoretically based correlation for the zero-
density thermal conductivity provided by Assael et al. [33] with the
uncertainty estimated to be ±4%. In Table 1, �T,0 is obtained directly
from the integral of the time correlation function of energy cur-
rent which does not include the vibrational energy. The statistical
errors are less than 1%. It is evident that �T,0 significantly underes-
timates the thermal conductivity except at a very low temperature.
The vibrational contribution �DCV,vib is then included to obtain �T

according to Eq. (6). In the calculation, the vibrational heat capacity
CV,vib shown in Table 1 is calculated by Eq. (8).

CV,vib = CV,�=0 − 3R, (8)

where CV,�=0 represents the isochoric heat capacity at zero density.
Since experimental data of CV,�=0 at each simulation temperature
are all available [32] and the uncertainty is within ±1%, CV,vib cal-
culated from Eq. (8) is supposed to be more accurate than that
calculated from quantum harmonic approximation since the Fermi
resonance in the methane vibrational modes makes the harmonic
approximation inaccurate. It can be seen from Table 1 that the
calculated thermal conductivity �T which includes the vibrational
contribution agrees well with the experimental data. The ratio
of the vibrational contribution to the total thermal conductivity

increases from 0.8% at 200 K to 50% at 900 K. Hence, the vibrational
contribution to the thermal conductivity of the dilute methane gas
is non-negligible even at a temperature much lower than the lowest
characteristic vibrational temperature (∼1870 K) of methane.

To compare the accuracy of different calculation methods, the
thermal conductivities calculated from CT method and the modi-
fied Eucken formula are also shown in Table 1. The shear viscosity
used in the modified Eucken formula is obtained directly from the
accurate experimental data [32,34]. The uncertainty of the exper-
imental shear viscosity is estimated to be ±0.2% around room
temperature and ±1% at low and high temperatures. The thermal
conductivity calculated from CT method is provided by Hellmann
et al. [3]. As was pointed out by Hellmann et al. [3], the CT calcu-
lation results are expected to be more reliable than the currently
available correlations at low and high temperatures. For the afore-
mentioned three calculation methods, the deviations between the
calculated thermal conductivity and the experimental data [32,33]
at each simulation temperature are shown in Fig. 2. It can be seen
that both the MD calculation employed in the work and the CT
method employed by Hellmann et al. predict the thermal conduc-
tivity within the experimental uncertainty. Using the following Eq.
(9), the averaged absolute deviations (AAD) of the results from
MD method and CT method are calculated to be 0.92% and 0.94%,

Fig. 2. The deviations between the calculated thermal conductivity and experimen-
tal data of dilute methane gases. The dashed lines show the uncertainties of the
experimental data. Dev. % = (�T,cal/�T,exp − 1) × 100%.
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respectively.

AAD = 1
Ndata

Ndata∑
i=1

∣∣∣ calculated result at state point i

experimental data at state point i
− 1

∣∣∣
× 100%, (9)

where Ndata means the number of data points. Therefore, the MD
method is as accurate as the CT method in calculating thermal con-
ductivities. The good agreement with experimental data indicates
the assumption that the vibrations mainly contribute to thermal
conductivity through self-diffusion processes is valid in a dilute
gas.

As shown in the above discussion, the vibrational contribution
to the thermal conductivity �DCV,vib could reach 50% of the total
thermal conductivity at the highest temperature of our calculation.
Hence, the accuracy of the calculated thermal conductivity strongly
depends on the accuracy of the heat capacity CV,vib used in the cal-
culation. It is noted in Fig. 2 that MD results at temperatures higher
than 700 K are greater than CT results by 3–3.5% which is much
greater than the statistical error (±1%) of the MD result. Since both
the MD and CT calculations use the same intermolecular poten-
tial and the rigid-rotor approximation, the deviation between the
two calculation results might be caused by different heat capacity
reference data used in the calculation.

As shown in Fig. 2, the modified Eucken formula is not able to
predict the thermal conductivity within the experimental uncer-
tainty if the temperature is lower than 500 K. At relatively low
temperatures, the vibrational contribution to the thermal con-
ductivity is small. The large deviations are, therefore, mainly
caused by neglecting the exchange of energy between translational
and rotational motions. The MD calculation with an anisotropic
intermolecular potential takes into account this kind of energy
exchange, hence gives much better results. Nevertheless, the mod-
ified Eucken formula predicts reasonable thermal conductivities if
the temperature is higher than 600 K. The results indicate that the
exchange of energy between translational and internal modes of
motion might become negligible for dilute gases at high tempera-
tures so that both the rotational and vibrational motions contribute
to thermal conductivities mainly through self-diffusion processes.
This result agrees with Mason and Monchick’s prediction of the
temperature dependence of internal contribution to the thermal
conductivity by making use of the energy-sudden and centrifugal-
sudden approximations [35,36].

4.3. Simulation results at moderate densities

The MD simulation results of self-diffusion coefficients of mod-
erately dense methane at 200 and 300 K are shown in Fig. 3. The
experimental data are obtained from Dawson [37] who measured
the density dependence of the self-diffusion coefficient of methane
from 154 to 354 K. The uncertainty was estimated to be ±4.5% and
is depicted by dashed lines in Fig. 3. The statistical error of the cal-
culated self-diffusion coefficient is about 0.1% which is less than
the size of the symbols in Fig. 3. At 300 K, the deviations between
the calculated and experimental results are within the experimen-
tal uncertainty. The AAD between the MD results and experimental
data is 1.21%. At 200 K, however, the calculated results only agree
with the experimental data at densities lower than 3 mol/L. At
higher densities, the deviations reached 4.55% and 5.25% which are
higher than the experimental uncertainty. The vibrational energies
of methane are rarely excited at 200 K. Hence, the disagreement
should not be attributed to the decoupling between the vibrations
and other degrees of freedom in the MD model. The relative large
deviations at higher densities may come from the neglect of three-
body effects in the pair potential employed in the calculation. On
the other hand, the self-diffusion coefficients are notoriously diffi-

Fig. 3. The product �D as a function of density at 200 or 300 K. The dashed lines
show the uncertainties of the experimental data. The statistical errors are smaller
than the size of the symbols.

cult to measure accurately. The claimed experimental uncertainty
may be optimistic [1]. Furthermore, the relatively large deviation
at densities higher than 3 mol/L is not observed at 300 K. To inves-
tigate the deviation caused by the negligence of three-body effects,
therefore, more accurate experimental data of self-diffusion coef-
ficient should be used for comparison.

Fig. 4 depicts the calculated thermal conductivity and the exper-
imental data [32] as a function of density at 200 and 300 K. The
uncertainty of the experimental data provided by NIST [32] was
estimated to be ±2% and is depicted by dashed lines in Fig. 4. The
statistical error of the calculated thermal conductivity is about 1.2%
which is smaller than the size of the symbol shown in Fig. 4. With-
out the vibrational correction term, the MD results underestimate
the thermal conductivity at both temperatures. The AADs between
the calculated thermal conductivity without the vibrational cor-
rection term and the experimental data at 200 and 300 K are 1.54%
and 7.36%, respectively. It is evident, especially at 300 K, that the

Fig. 4. The thermal conductivity as a function of density at 200 or 300 K. The dashed
lines show the uncertainties of the experimental data. The statistical errors are
smaller than the size of the symbols.
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accuracy of the calculation results is greatly improved when the
vibrational correction term �DCV,vib is included. With the correction
term, the AADs at 200 and 300 K are 1.05% and 1.53%, respectively.
The calculated thermal conductivity at both temperatures has gen-
erally a good agreement with the experimental data. Although the
MD results underestimate the self-diffusion coefficient of methane
at relative high densities at 200 K, the underestimation has little
effects on the calculated thermal conductivity because the vibra-
tional contribution to thermal conductivity at 200 K is negligible.
Nevertheless, it is found at both temperatures the calculated ther-
mal conductivity always slightly underestimates the experimental
data at moderate densities even when the vibrational contribution
is included. The small deviations might come from the neglect of
the exchange of energy between vibrations and other modes of
motions. As is discussed in the self-diffusion results, however, the
vibrational energy of methane at 200 K is negligible. It is possible
that the underestimations are caused by the neglect of three-body
effects in the pair potential. Therefore, in order to extend the cal-
culation to more dense methane fluids or test the accuracy of the
MD calculation method in calculating self-diffusion coefficient and
thermal conductivity of methane at high densities, Hellmann et al.’s
potential should be employed with a correction term to account for
the three-body effects. The determination of an accurate potential
that includes the three-body effects needs further investigations.

5. Conclusions

MD simulations of the self-diffusion coefficient and thermal
conductivity of methane are performed in a wide range of tem-
perature at dilute phase and in an intermediate dense phase. At the
simulated state points, the experimental data of the two transport
properties of interest are of relatively low accuracy or nonexistent.
By comparing the MD simulation results with the available exper-
imental data, it is found that the decoupling between vibrations
and other degrees of freedom of methane is appropriate in a dilute
or intermediate dense phase. On the other hand, the exchange of
energy between translational and rotational motions cannot be
neglected even in a dilute gas. The vibrational energies are proved
to contribute to the thermal conductivity mainly through self-
diffusion processes. The correction term �DCV,vib is able to nicely
account for the vibrational contribution which is shown to be signif-
icant in the total thermal conductivity of methane at both low and
intermediate densities. In order to obtain better results or extend
the MD simulation to methane fluids at higher densities, the ab ini-
tio pair potential employed in this work needs some improvement
to incorporate the three-body effects.

List of symbols
a interaction site index
AAD averaged absolute deviations
b interaction site index
CV,vib vibrational heat capacity
CV,int the contribution to the isochoric heat capacity from inter-

nal modes of motion
CV,�=0 the isochoric heat capacity at zero density
D self-diffusion coefficient
I the matrix of moments of inertia
J˛ a component of the energy current
kB Boltzmann constant
m the mass of molecule
Ndata the number of data points
qa partial charge on interaction site a
qb partial charge on interaction site b
rab distance between interaction site a and b
rij˛ a component of the distance vector from the molecule j

to i

R gas constant
t time
T temperature
Uij intermolecular potential
�vi translational velocity of molecule i
vi˛ a component of translational velocity of molecule i
V volume

Greek letters
��ij torque acting on molecule i due to the interaction

between molecule i and molecule j
� shear viscosity
�T,0 thermal conductivity that does not include the vibrational

contribution
�T thermal conductivity that includes the vibrational contri-

bution
� density
�ωi angular velocity of molecule
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