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Abstract--This paper presents a closed-form solution of the problem of free beam-type vibration 
of a Iang cylindrical shell subject to uniform axial tension, uniform internal pressure, and elastic 
axial restraint. The shell is assumed to be ciamped at the ends, The b-ending moment-curvature 
relationship employed in this paper is non-linear due to the effect of ovalization (flattening) of 
initially circular cross sections. Another non-linear effect taken into account is the stretching of 
the shell axis which is caused by the axial restraint. 

The analysis results in a cubic differential equation; the frequency of the solution of this equation 
is found exactly using elliptic integrals. 

INTRODUCTION 

Large-amplitude flexural vibration of thin-walled circular cylindrical shells has been 
considered by numerous investigators [l-10]. Vibrations of perfect shells were studied by 
Reissner [1 “j, Nowinski [ZJ, Evensen [4] and Kildi~kov [S), as well as many others. The 
effect of initial imperfections on vibrations was analyzed by Lipovskii and Tokarenko [3], 
Rosen and Singer [6,7], and Watawala and Nash [8]. Experimental studies of non-linear 
vibrations were reported by Evensen [9] and Olson [lo]. 

It is noted that vibrations of cylindrical shells are usually associated with a multi-half- 
wave mode shape of the elastic surface. On the contrary, the shape of a long vibrating 
shell or tube can be associated with the global deformation, i.e. the single half-wave along 
the shell axis and uniform cross sections which are sometimes assumed to remain circular. 
In this case the non-linear analysis of the shell can be performed using beam theory [ 1 I]. 

However, the assumption that the cross sections of a deformed shell remain circular is 
not accurate. Brazier found that the cross sections of a shell subjected to pure bending are 
ovalized {12]. The “flattening” of the cross sections contributes to non-linearity of the 
curvature-biding moment relationship. This fact was confirmed and generalized by Wood 
[13] and Reissner [14] for pressurized shells. The analysis of non-linear vibration of long 
shells including the Brazier effect was reported by Hu and Kirmser [15] who considered 
an unpressurized shell free at both ends. 

The influence of elastic axiai restraint on non-linear free vibrations of structures is 
usually studied for the limiting case, i.e. complete axial restraint. However, Ray and Bert 
[16] and Wrenn and Mayers [I’?] investigated the effect of elastic axial restraint on non- 
linear vibrations of beams. 

in this paper are considered the free vibrations of long circular cylind~cal shells which 
are both pressurized and subjected to tensile forces. The non-linea~ties due to cross sections 
flattening and the elastic axial restraint are included in the analysis. The mode shape of 
vibrating shell is assumed to be represented by the single-mode displacement function. 
Then the resulting non-linear differential equation is solved exactly using elliptic integrals. 
The effects of flattening, stretching, pressurizing, and tension on the frequency of the 
fundamental mode of free vibrations are considered in numerical examples. 
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GOVERNING EQUATIONS 

Consider free large-amplitude vibrations of a long cylindrical shell with a mean radius 
a, length L, wall thickness h, and the cross sectional area F. The direct force T acts along 
the shell axis; the shell is pressurized, and the gauge pressure, i.e. the difference between 
the internal and the external pressure, is P. 

The equation of global transverse vibrations of the shell is 

(1) 

where m is the mass of the shell per unit length, E is the modulus of elasticity, M is the 
bending moment, CJ = Cl (z, t) is transverse displacement, z is axial position, and t is time. 
The non-linear term in equation (1) represents the stretching of the shell axis caused by 
the axial restraint expressed by the coefficient k. If the axial deformations of the shell are 
not restricted k = 0. The value k = 1 corresponds to the shell having ends that are 
immovable in the axial direction. 

It is usually assumed that the circular cross sections remain unchanged during vibrations. 
Then bending moment is proportional to curvature and equation (1) coincides with the 
non-linear equation of motion of a solid rod whose solution was obtained by Woinowsky- 
Krieger Cl83 and Burgreen [ 193 for k = 1. However, as it was shown by Brazier [12], 
Wood [13], and Reissner [14] the relationship between the bending moment and curvature 
of long circular shells is non-linear. In the first approximation this relationship is: 

M_E’l-c 
P ( ) P2 . (2) 

Here I is the moment of inertia of the undeformed circular cross section, p is the axial 
radius of curvature, and C is the coefficient given by 

where D is the flexural rigidity given by 

D = Eh3/12(1 - v2) 

and v is Poisson’s ratio. 
The radius of curvature is 

1 a2ufa2 
p = [i + (aU/az)y' 

This expression can be simplified since it is assumed that (~CJ/~Z)~ << 1. Therefore 

i aw -=- 
P az2 * 

(3) 

(4) 

(5) 

(6) 

The substitution of equations (2), (3), (4), and (6) into equation (1) yields the following 
equation 

+ EIizU f - 3CE1[2$p$y + ($I$] = 0. (7) 
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This equation can be conveniently represented in the non-dimensional form: 

where 

s = t/L 

11 = uja 

2 4 

4.5(1 - v2) ; ; 00 
Y= l+P 

Fg 4a2 = 
I = 2a2 + h*/2’ 

Note that if h -x a, F N 2. 
Nou-dimensional pressure in equation (9) is 

where P,, is a critical external pressure given by 

If the shell 

by 

(9) 

FREE VIBRATIONS OF A SHELL CLAMPED AT THE ENDS 

is clamped at both ends, the transverse displacement can be approximated 

u = A(t)s KS. (12) 

The substitution of equation (12) in equation (8) and use of the Galerkin procedure yield 

3 mL4d2A 
i6EIdt2+ It - 

( 4 %)A--n’(n4+)A3=0. (13) 

The natural frequency of linear transverse vibration of the shell can be immediately 
found from equation (13) (T = 0) 

The axial buckling load of the shell is 

(14) 

T,, = 4 ;*E*. 
0 

(1% 
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Introducing the non-dimensional time parameter 

T = i.,t 

and the non-dimensional axial load 

i+= T/T,, 

one may rewrite equation (13) as 

d2A ~+(l-~,A-(n41-~~F)A3=0. 

(17) 

(18) 

Exact solution of this equation is available in terms of elliptic functions [20,21]. 
Multiplication of equation (18) by dA and integration yields 

(19) 

where c is a constant of integration. When the shell displacement is maximum (,$, the 
velocity is equal to zero: 

A(0) = A 

dA(0) - 0 
dr ’ 

The substitution of equations (20) into equation (19) yields 

Now equation (19) can be written as 

d5 
z= /(I- T)(l -51)-f(n‘++F)A~(l -P) 

(20) 

(21) 

where 5 = AlA. (22) 

The solution of equation (21); obtained for the initial condition that 5 = 0 when r = 0, is 

1 

Js 

2’ dj 
T=- - 

n2A Y ,, ,/(l - r2)(b2 - S2) 

where 

l- ,-;(,,--!&,P 

b2 = ;(+ ++’ . 

(23) 

(24) 
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The restoring force in equation (18) is an odd function of A. Therefore, the non- 
dimensional period of motion can be calculated as 

7 = 45’ (25) 

where t’ is time between 5 = 0 and 5 = 1, i.e. 

n = l/b2. (27) 

It is noted that the integral in equation (26) is a complete elliptic integral of the first 
kind: 

1 

K(n) = 
dt 

J(1 - 52)(1 - nt2)’ 

Therefore, the non-dimensional frequency of vibration is 

(28) 

(29) 
I 

1 67r4y 

If the effects of flattening of the cross sections and non-linear stretching on the frequen- 
cies are neglected the non-dimensional frequency given by equation (29) is reduced to the 
classical result available also from equation (18) when y = 0, k = 0: 

w. = Ji=T. (30) 

Finally it is noted that the non-dimensional frequency given by equation (29) depends 
on the non-dimensional axial load T, the parameter y (which reflects the geometry of the 
tube and the gauge pressure), the coefficient of the axial restraint k, and the non-dimensional 
amplitude of vibration A. 

NUMERICAL RESULTS AND DISCUSSION 

The non-dimensional frequency-amplitude relationships for long cylindrical shells 
without axial restraint are plotted in Figs 1 and 2 for different values of the parameter 

1 
q = fy. (31) 

The relationships given in Fig. 1 correspond to the shell without external tension (T= 0). 
The curves in Fig. 2 represent the response of the shell subjected to the tensile load T = - 1. 

It can be noted that the effect of flattening of the cross sections is negligible for very 
small values of q. Indeed, the frequency-amplitude relationship for q = 0.01 almost coin- 
cides with the classical linear results which are given by w. = 1.0 (Fig. 1) and w. = 1.41 
(Fig. 2). 
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The effect of flattening of the cross sections increases with q. This means that the increase 
of internal pressure reduces the effect of flattening, as would be expected. 

The frequency-amplitude relationship of a shell having cross sections which flatten 
during vibration is softening. The frequency of the shell with q = 0.5 approaches zero when 
the amplitude increases. This means that the shell is unstable when vibrating with such 
amplitudes. It will snap-through to a curved equilibrium position; vibration takes place 
about this position. 

The influence of tension on frequencies of vibration is shown in Fig. 3 for different values 
of qii2 (k = 0). The curves o correspond to the solution obtained in this paper. The curve 
o0 calculated from equation (30) represents the linear result. In all cases an increase in 
tension increases the frequencies. It is noted that the curves o and o. lie very close if 

q = 0.01 

Fig. 1. Frequency-amplitude relationship for long cylindrical shells; no external tension (T = 0). 

Fig. 2. Frequency-amplitude relationship for long cylindrical 

Fig. 3. of tension on frequency-amplitude relationship of the shell; qAz = 0.1, qA* = 0.5. 



Long cylindrical shells 333 

qA2 < 0.1. In the case of qA* = 0.5 the frequency is far from that obtained from the linear 
solution; however, the tendency of increase of frequency with tension is preserved. 

The effect of elastic axial restraint on the frequencies is illustrated in Fig. 4. Both shells 
free of external axial forces (curves 1,2) and shells subjected to tension (curves 3,4) are 
considered. In all cases axial restraint is shown to increase the frequencies of vibration. 
This tendency was also found for beams in [16,17-j. If the shell is subject to large internal 
pressure (curves 2,4) the effect of axial restraint is considerably stronger. 

The frequency-amplitude relationships of a shell with q = 0.3, T= 0, for two limiting 
cases of axial restraint, are shown in Fig. 5. Although the frequencies of a completely 
restrained shell (k = 1) are larger, the curves representing the frequency-amplitude 
relationships are quite similar. 
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Fig. 4. Effect of elastic axial restraint on frequencies of free vibration of long cylindrical shells 
(A = 0.7). 
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Fig. 5. Frequency-amplitude relationship for long cylindrical shells unrestrained (k = 0) and 
completely restrained (k = 1) in axial direction; IJ = 0.3, T= 0. 
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