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a b s t r a c t 

The non-linear response of a sandwich panel with the core that consists of a functionally graded material 

(FGM) undergoing in-plane loading is investigated. The panel consists of two face sheets, metallic or com- 

posite laminated, and an FGM core that is a medium whose mechanical properties change through the 

depth facilitating a desirable response of the structure. The effect of the FGM core is introduced through 

the constitutive relations that affect conventional and high-order stress resultants and stress couples in 

the panel. The formulation employs the Extended High-Order Sandwich Panel Theory (EHSAPT) to assess 

the effect of the FGM material of the core. A variational approach is adopted to derive the linear and 

non-linear governing equations with a prescribed FGM distribution through the depth of the core. The 

wrinkling study of FGM panels includes two loading scenarios where in-plane loads are applied through 

a rigid edge beam connected to the core only and where the loads are applied through a rigid edge 

structure attached to both the face sheets and core causing uniform end shortening. The post-wrinkling 

behavior is also considered to prove that the initial pattern of wrinkles is not affected. 

© 2018 Published by Elsevier Ltd. 
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1. Introduction 

An ordinary sandwich panel consists of two face sheets and

a core. Usually the face sheets are made of metallic or lami-

nated composite materials and the core is made of either metal-

lic or Nomex (metallized paper) honeycomb, low strength closed-

cell or open-cell foam or balsa wood. The performance of such

panel is significantly affected by the mechanical properties of the

core. In customary design these properties are uniform through

the depth of the homogeneous core, but they can be modi-

fied at selected regions in order to enhance the response, e.g.,

Frostig and Thomsen (2005) and Bozhevolnaya and Frostig (2006) .

In the last decades the use of FGM core for sandwich applications

has emerged, e.g., Venkataraman and Sankar (2003), Apetre et al.

(2008) and Birman and Vo (2017) . In general, the FGM material is

used to enhance the performance of structures through improve-

ments of a variety of properties, such as stiffness, strength, thermal

conductivity, residual stresses, delamination resistance, etc. In the

case of sandwich panels, the FGM core consist of a material with

a variable mass density (e.g., foam) or a composite material with
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 variable content of the constituent phases (e.g., content of metal

s. ceramic) through the depth of the core. While such variations

ay enhance wrinkling stress and reduce delamination tendencies,

ther modes of failure, such as the strength of face sheets and

lobal stability are little affected, unless the designer employs a

eavy and stiff core that defies its purpose. Mathematically, a FGM

ore is modeled as a material with variable mechanical properties

hrough the depth or over the planform of the panel. For example,

rostig and Thomsen (2008) considered thermal buckling and post-

uckling of a sandwich panel where the properties of the core var-

ed through the thickness due to the effect of a non-uniform tem-

erature. The effect of a FGM core on the linear wrinkling instabil-

ty and nonlinear post-wrinkling response of a sandwich panel is

tudied in this paper. 

There are numerous applications where sandwich structures

re subjected to in-plane compressive loads. Sandwich deck and

ottom structures of ships are compressed as a result of bending

n rough seas. Sandwich panels used as the bottom skin of the

ings of an airplane are subjected to compression as a result of

he bending moment produced by the weight of the wing and the

ngines carried by the wing. Among other wrinkling examples,

hough they are not analyzed here, are the dynamic wrinkling of

 structure due to impact or vibrations produced by unbalanced

achinery, and the thermal wrinkling caused by an elevated

https://doi.org/10.1016/j.ijsolstr.2018.02.023
http://www.ScienceDirect.com
http://www.elsevier.com/locate/ijsolstr
http://crossmark.crossref.org/dialog/?doi=10.1016/j.ijsolstr.2018.02.023&domain=pdf
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Fig. 1. Sign convention and geometry: (a) coordinate system, (b) stress resultants, (c) loads (c) and (d) displacement pattern through the depth of sandwich panel. 
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emperature that may be combined with static compression. Addi-

ionally, one of the facings of any sandwich structure experiencing

ending is compressed and can wrinkle, even though the opposite

acing is in tension. 

A recent paper on the effect of functional grading of the core

n wrinkling stability of sandwich panels demonstrated the effec-

iveness of a graded core ( Birman and Vo, 2017 ). By concentrating

enser thin core layers adjacent to the face sheets, the wrinkling

tress was increased by several times. Furthermore, it was shown

hat while the wrinkling stress is reduced under uniform temper-

ture in both homogeneous and graded core panels, the improve-

ent achieved through grading is preserved. 

Analyses of sandwich panels utilize two main approaches. The

rst assumes that the cores are very stiff, i.e. incompressible, in

he vertical (thickness) direction and possess negligible in-plane

igidity in the in-plane directions (metallic or Nomex honeycomb

s a representative example of such cores). Examples of the analy-

es utilizing this approach can be found in the textbooks by Allen
1969), Plantema (1966) and Vinson (1999) . Such panels can be

odeled by the First-Order (e.g., Mindlin, 1951 ), or High-Order

hear deformation theories (e.g., Reddy, 1999 ) that represent the

ncompressible core as an equivalent single layer, ESL. The second,

lso referred to as layer-wise approach, depends on High-Order

odels, see for example Frostig et al. (1992) that obtained the so-

ution for the core fields in a closed-form or Carrera and Brischetto

2009) that presumed the displacements fields of the core. In such

odels the overall response is derived using the responses of the

ace sheets and the core subject to the equilibrium and compati-

ility requirements. 

The High-Order approach where the in-plane rigidity of the

ore is neglected has been considered by Frostig and others us-

ng the High-Order Sandwich Panel Theory (HSAPT). This approach

as been extensively employed in static, dynamic, linear and non-

inear applications, e.g., beam analysis by Frostig et al. (1992 );

uckling and free vibration by Frostig and Baruch (1993, 1994 );

on-linear behavior by Sokolinsky and Frostig (20 0 0) ; dynamic re-
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Fig. 2. Sandwich panel: (a) geometry and load transfer mechanism (Detail A), (b) FGM properties distribution through the depth of core. 
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sponse of debonded panels by Schwarts-Givli et al. (20 07a, 20 07b )

and free vibration with thermal effects by Frostig and Thomsen

(20 09a, 20 09b ). 

In the case where a finite in-plane core rigidity has to be con-

sidered, such as in medium to heavy mass density foam or wood

or if the response of the panel is of a local nature, such as wrin-

kling, an enhanced model referred to as EHSAPT has been im-

plemented. It represents an extension of the HSAPT model and

employs the closed-form polynomial displacement field distribu-

tions through the depth of the core. This theory has been ap-

plied to a number of problems. In particular, Frostig (2011) ap-

plied EHSAPT to the analysis of in-plane loads through core, Phan

et al. (2012a, 2012b ) studied wrinkling and global buckling of sand-

wich panels, Phan et al. (2012c) considered free vibrations and

Frostig et al (2016) studied curved sandwich panels. Recently the

enhanced model has been implemented in a special finite element

by Yuan et al. (2015) . 

It is worth mentioning that while the exploration of FGM in

sandwich structures is a relatively new area, biological tissues have

always been functionally graded. One of the examples of grading

is found in the tendon-to-bone insertion (enthesis) where a huge

mismatch of the stiffness occurs between tendon and bone over a

short distance of less than 1 mm ( Genin et al., 2009 ). In this case

the combination of the gradient of collagen (protein) fiber orienta-

tion combined with the gradient in the mineral content from bone

to tendon results in a relatively compliant band within the inser-

tion site. It has been suggested that the function of such rather

unexpected compliance is a higher toughness of the joint. Another

biomedical example of grading is found in human sclera where the

orientation and distribution of collagen fibers yields an enhanced

response ( Pijanka et al., 2012 ). In engineering FGM have been con-

sidered for numerous applications since they were first proposed
or thermal barrier coatings in 1980th ( Koizumi 1997 ). A detailed

eview of FGM studies is outside the scope of this paper; reviews

nd sources of information on these materials can be found in

uresh and Mortensen (1998 ), Miyamoto (1999 ), Birman and Byrd

20 07 ), Paulino (20 08 ), Birman et al. (2012 ) and Birman (2014 ). A

pectrum of problems that have to be addressed to utilize the ad-

antages of FGM includes manufacturability, micromechanic mod-

ling establishing the properties as functions of local content of

onstituent materials and topology, heat and moisture transfer (if

he material is employed in hydrothermal environments), the for-

ulation of governing equations and boundary conditions, and

tress, stability or dynamic analysis. The solution of fracture prob-

ems is also often necessitated (e.g., Dodds et al., 2002 ). Notably,

he problems relevant to FGM are often coupled. For example, local

hermal conductivity may be affected by local temperature. How-

ver, the solution of the heat transfer problem depends on the con-

uctivity, so that the heat transfer and micromechanics solutions

annot be separated. 

In this paper the governing equations and the appropriate

oundary conditions for a sandwich panel where the core prop-

rties are coordinate-dependent are derived explicitly. The math-

matical formulation follows the steps of the Enhanced High-

rder Theory (EHSAPT) developed by Phan et al. (2012a ). This

heory has been proven to be very accurate by comparing to

lasticity for static transverse loading in Phan et al. (2012b) ;

or global buckling behavior in Phan et al. (2012a ); for wrin-

ling behavior in Phan et al. (2012c) ; and for dynamic load-

ng in Phan et al. (2013) . The benchmark elasticity solutions for

andwich beams/wide plates were developed for wrinkling in

ardomateas (2005) ; for global buckling in Kardomateas (2010) ;

or static transverse loading in Kardomateas and Phan (2011) and

or dynamic loading in Kardomateas et al. (2013) . The effects of
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Fig. 3. Extreme vertical displacement as a function of the compressive force gener- 

ated Load Displacement control at the edge x = 0 subject to a controlled displace- 

ment. 
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Fig. 4. Relationship between the maximum longitudinal controlled displacement at 

x = 0 and the resulting compressive force. 
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he FGM heterogeneous mechanical properties through the depth

f the core on the wrinkling behavior of the panel are accounted

or. The sandwich face sheets are assumed linearly elastic and un-

ergoing large displacements with moderate rotations and small

trains. The core is linear in both physical (linear elasticity) and ge-

metric sense (linear strain-displacement relationships). Contrary 

o High-Order theories, the core possesses finite stiffness in all

lanes, including in-plane stiffness, normal stiffness in the direc-

ion perpendicular to the middle plane as well as finite shear

igidities in the middle plane and in the planes perpendicular to

he middle plane. It is assumed that perfect bonding exists be-

ween the face sheets and the core at their interfaces and the loads

ay be applied both to the core (with the specifics discussed be-

ow) and to the face sheets. 

The mathematical formulation of the EHSAPT computational

odel accounting for the FGM properties of the core is followed

ith a numerical study of two basic cases. In the first case the

n-plane loads are applied to the core through a rigid edge beam

xtended through the thickness of the core, while in the second

he edge displacements are applied through a rigid edge beam ex-

ended through the entire depth of the sandwich panel yielding

 uniform end shortening. The former case can be referred to as

controlled force,” while the latter case represents “controlled dis-

lacement.” A significant difference in the response of the sand-

ich panel to these two loading cases is discussed in detail, in-

luding its implication to design of sandwich joints. Two symmet-

ic types of FGM distributions are considered with the enhanced

tiffness either in the vicinity to core-face interfaces or around the

iddle plane of the core. 

. Mathematical formulation 

The mathematical formulation employs the EHSAPT (Ex-

ended High-Order Sandwich Panel Theory) model to derive the

eld equations and the appropriate boundary conditions, see

rostig (2011) for more details. The sandwich panel, its geometry

nd coordinate system employed in the subsequent analysis are

epicted in Figs. 1 and 2 . In the following, the face sheets are

ssumed homogeneous and isotropic, while the core is heteroge-
eous and quasi-isotropic, i.e. its properties vary through the thick-

ess, but they remain isotropic at each location. The generalization

or the case of composite face sheets would not present any com-

lications. The forces and moments referred to below are applied

n the cross sections perpendicular to the x -axis, i.e. there are no

orces and moments acting out of plane in Fig. 1 . 

The governing equations and the boundary conditions are de-

ived via the variational principle imposed on the total potential

nergy: 

( U + V ) = 0 (1) 

here U and V are the internal and the external potential energy,

espectively, and δ denotes the variation operator. 

The internal potential energy is 

U = 

∫ 
V t 

σxxt δε xxt d V + 

∫ 
V b 

σxxb δε xxb d V 

+ 

∫ 
V c 

( τxzc δγxzc + σxxc δε xxc + σzzc δε zzc ) d V (2) 

here σ xxj and εxxj (j = t,b,c) are the in-plane normal stresses and

trains in the upper and the lower face sheets and the core, respec-

ively, τ xcz and γ xzc are the transverse shear stresses and strains in

he core, and σ zzc and εzzc are the normal stresses and strains in

he vertical (thickness) direction of the core. 

The external potential energy is given by 

V = −
∫ L 

0 

( n t δu ot + q t δw t + m t δw t,x + n b δu ob + q b δw b 

+ m b δw b,x ) dx −
NC ∑ 

i =1 

L ∫ 
0 

[ N eti δu ot + P eti δw t + M eti δw t,x + N ebi δu ob 

+ P ebi δw b + M ebi δw b,x + N eci δu c ( z c = z cgc ) + P eci δw c ( z c = z cgc ) 

+ M eci δ( w c,x ) ( z c = z cgc ) ] δd ( x − x i ) dx (3) 

here n j , q j and m j (j = t,b) are the in-plane and vertical distributed

oads and the bending moment distributed loads respectively (see

ig. 1 ); N eji , P eki and M eji (j = t,b,c) are external concentrated loads
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Fig. 5. Longitudinal displacements along the middle plane of the sandwich panel prior to and after wrinkling for loading that is controlled displacement at the left end 

( x = 0). 
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in the in-plane and vertical directions and the concentrated mo-

ment respectively exerted at x = x i on the face sheets and at the

centroid of the core (at z c = z cgc ), u oj , w j and w j,c (j = t,b,c) are the

longitudinal and vertical displacements and rotation at the cen-

troid of the face sheets and the core respectively, NC denotes the

number of concentrated loads; δd (x −x i ) is the delta Dirac function;

u oj , w j and w j,x (j = t,b) are the in-plane and vertical displacements

and the rotation of each face sheet, x is the longitudinal coordinate

and L is the length of the panel. Detailed geometry and sign con-

vention of stresses, displacements, and loads are depicted in Fig. 1 .

The field equations are derived through the introduction of the

displacement fields and strains in the face sheets and core and ap-

plying the compatibility conditions along the face sheet – core in-

terfaces as follows. 

The displacement and strain pattern in the face sheets ( j = t,b ) is

specified following the Bernoulli assumption and using the strain-

displacement relations for moderate displacements: 

u j 

(
x, z j 

)
= u oj ( x ) − z j 

d 

dx 
w j ( x ) 

ε j 
(
x, z j 

)
= ε oj ( x ) − z j χ j ( x ) 

(4)

In (4) , the middle plane in-plane strains and curvatures are 

ε oj ( x ) = 

d 

dx 
u oj ( x ) + 1 / 2 

(
d 

dx 
w j ( x ) 

)2 

, χ j ( x ) = 

d 2 

d x 2 
w j ( x ) (5)
nd z j (j = t,b) are the vertical coordinates of each face sheet mea-

ured downwards from the centroid of the corresponding face

 Fig. 1 ). 

The displacement pattern of the core is non-linear coinciding

ith its counterpart in the HSAPT model ( Frostig et al., 1992 ): 

 c ( x, z c ) = u o ( x ) + u 1 ( x ) z c + u 2 ( x ) z 
2 
c + u 3 ( x ) z 

3 
c 

 c ( x, z c ) = w o ( x ) + w 1 ( x ) z c + w 2 ( x ) z 
2 
c 

(6)

here z c is the vertical coordinate within the core, measured

rom the middle plane downwards, and u k (x) ( k = 0,1,2,3 ) and

 k (x) ( k = 0,1,2 ) are unknown functions. Hence, the geometrically

inear strain–displacement relations in the core read: 

ε xxc ( x, z c ) = 

d 

d x 
u o ( x ) + 

(
d 

d x 
u 1 ( x ) 

)
z c + 

(
d 

d x 
u 2 ( x ) 

)
z 2 c + 

(
d 

d x 
u 3 ( x ) 

)
z 3c

ε zzc ( x, z c ) = w 1 ( x ) + 2 w 2 ( x ) z c 

xzc ( x, z c ) = u 1 ( x ) + 2 u 2 ( x ) z c + 3 u 3 ( x ) z 
2 
c + 

d 

d x 
w o ( x ) 

+ 

(
d 

d x 
w 1 ( x ) 

)
z c + 

(
d 

d x 
w 2 ( x ) 

)
z 2 c (7)

here ε xxc , ε zzc and γ xzc are the normal strains in the longitudi-

al and vertical directions, and the transverse shear strain, respec-

ively. 
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Fig. 6. Vertical displacements of the top and lower facings along the span of the sandwich beam subject to controlled axial displacement. 
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The compatibility conditions at the upper and the lower face

heet–core interfaces are formulated using the first equation

q. (4) : 

 c 

(
x, −1 

2 

c 

)
= u ot ( x ) − 1 

2 

(
d 

d x 
w t ( x ) 

)
d t , w c 

(
x, −1 

2 

c 

)
= w t ( x ) 

 c 

(
x, 

1 

2 

c 

)
= u ob ( x ) −

1 

2 

(
d 

d x 
w b ( x ) 

)
d t , w c 

(
x, 

1 

2 

c 

)
= w b ( x ) 

(8) 

The use of these conditions along with the displacements of the

ore given by Eq. (6) enables us to express four out of seven un-

nown functions of the displacement pattern of the core: 

 1 ( x ) = 

−w t ( x ) + w b ( x ) 

c 
, w 2 ( x ) = 

2 ( w t ( x ) − 2 w o ( x ) + w b ( x ) ) 

c 2 

 2 ( x ) = 

2 u ot ( x ) −
(

d 
d x 

w t ( x ) 
)
d t + 2 u ob ( x ) + 

(
d 
d x 

w b ( x ) 
)
d b − 4 u o ( x ) 

c 2 
,

 3 ( x ) = 

2 

(
−2 u ot ( x ) + 

(
d 
d x 

w t ( x ) 
)
d t −2 u 1 ( x ) c + 2 u ob ( x ) + 

(
d 
d x 

w b ( x ) 
)
d b 

)
c 3 

(9) 
This leaves three unknown functions in the core and two un-

nown functions in each of two face sheets that will be deter-

ined from the variational principle. 

The field equations are now derived using the variational prin-

iple, Eq. (1) . The substitution of the strains in the face sheets and

he core utilizing Eqs. (4) and (7) in Eqs. (2) and (3) and using the

ompatibility conditions in Eq. (9) yields 

d 

d x 
N xxe t ( x ) = 4 

M xz1 c ( x ) 

c 2 
− 12 

M xz2 c ( x ) 

c 3 
− n t 

d 

d x 
V xze t ( x ) = 4 

M zzc ( x ) 

c 2 
− R zzc ( x ) 

c 
− q t 

d 

d x 
M xxe t ( x ) = V xze t ( x ) − N xxt ( x ) 

d 

d x 
w t ( x ) − 2 

M xz2 c ( x ) 

c 2 
+ 

M xz1 c ( x ) 

c 

+ m t ( x ) − 6 

M xz2 c ( x ) d t 
c 3 

+ 2 

M xz1 c ( x ) d t 
c 2 

d 

d x 
N xxe b ( x ) = 12 

M xz2 c ( x ) 

c 3 
+ 4 

M xz1 c ( x ) 

c 2 
− n b 
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Fig. 7. Bending moment upon wrinkling along the span of the sandwich beam subject to controlled displacement. 

 

 

(  

a

N

M

V

d 

d x 
V xze b ( x ) = 4 

M zzc ( x ) 

c 2 
+ 

R zzc ( x ) 

c 
− q b 

d 

d x 
M xxe b ( x ) = V xze b ( x ) −

M xz1 c ( x ) 

c 
− N xxb ( x ) 

d 

d x 
w b ( x ) − 2 

M xz2 c ( x ) 

c 2 

+ m b ( x ) − 2 

d b M xz1 c ( x ) 

c 2 
− 6 

M xz2 c ( x ) d b 
c 3 

d 

d x 
N xxe c ( x ) = −8 

M xz1 c ( x ) 

c 2 

d 

d x 
M xxe c ( x ) = V xz e c ( x ) − 8 

M xz2 c ( x ) 

c 2 

d 

d x 
V xze c ( x ) = −8 

M zzc ( x ) 

c 2 

(10)
Equivalent stress resultants and couples that appear in Eq.

10) account for the contribution of the high-order stress resultants

nd couples of the core: 

 xxe t ( x ) = N xxt ( x ) − 4 

M xx 3 c ( x ) 

c 3 
+ 2 

M xx 2 c ( x ) 

c 2 

 xxe t ( x ) = −M xxt ( x ) + 2 

M xx 3 c ( x ) d t 
c 3 

− M xx 2 c ( x ) d t 
c 2 

 xze t ( x ) = (
d 

d x 
M xx 2 c ( x ) 

)
d t c − 2 

(
d 

d x 
M xx 3 c ( x ) 

)
d t + 

(
d 

d x 
M xxt ( x ) 

)
c 3 

+ N xxt ( x ) 
(

d 
d x 

w t ( x ) 
)
c 3 − c ( c + 2 d t ) M xz1 c ( x ) + ( 2c + 6 d t ) M xz2 c ( x ) − m t ( x ) c 3 

c 3 
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Fig. 8. Transverse shear forces upon wrinkling along the span of the sandwich panel subject to controlled displacement. 
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c

[

[

[

 xxe b ( x ) = N xxb ( x ) + 4 

M xx 3 c ( x ) 

c 3 
+ 2 

M xx 2 c ( x ) 

c 2 

 xxe b ( x ) = −M xxb ( x ) + 2 

M xx 3 c ( x ) d b 
c 3 

+ 

M xx 2 c ( x ) d b 
c 2 

 xze b ( x ) = 

−
(

d 

d x 
M xx 2 c ( x ) 

)
d b c − 2 

(
d 

d x 
M xx 3 c ( x ) 

)
d b + 

(
d 

d x 
M xxb ( x ) 

)
c 3 + 

N xxb ( x ) 
(

d 
d x 

w b ( x ) 
)
c 3 + c ( c + 2 d b ) M xz1 c ( x ) + ( 2c + 6 d b ) M xz2 c ( x ) − m b ( x ) c 

3 

c 3 

 xxe c ( x ) = N xxc ( x ) − 4 

M xx 2 c ( x ) 

c 2 

 xx e c ( x ) = 

M xxc ( x ) − 4 M xx 3 c ( x ) 

c 2 

 xze c ( x ) = Q xzc ( x ) − 4 

M xz2 c ( x ) 

c 2 

(11) 

w

Note that compared to the formulation in Frostig (2011) , the use

f the equivalent stress resultants yields relatively simple equilib-

ium equations and boundary conditions that are defined in terms

f the equivalent quantities only. 

The stress resultants and couples in the core, including both

onventional and higher-order contributions are defined by 

 

N xxc , M xxc , M xx 1 c , M xx 2 c ] = 

1 
2 c ∫ 

− 1 
2 c 

{
1 , z c , z 

2 
c , z 

3 
c 

}
b w 

σxx ( x, z c ) d z c 

 

Q xzc , M xz1 c , M xz2 c ] = 

1 
2 c ∫ 

− 1 
2 c 

{
1 , z c , z 

2 
c 

}
b w 

τxz ( x, z c ) d z c 

 

R zzc , M zzc ] = 

1 
2 c ∫ 

− 1 
2 c 

{ 1 , z c } b w 

σzz ( x, z c ) d z c 

(12) 

here b w 

is the width of the panel. 
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Fig. 9. Transverse shear stresses in the core upon wrinkling along the span of the sandwich panel when subject to controlled displacement. 
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The mechanical properties of the FGM core are introduced

through the moduli of elasticity of the core in the longitu-

dinal and vertical directions that are dependent on the verti-

cal ( z ) coordinate, E cx (x,z c ) and E cz (x,z c ) , respectively, and the

shear modulus G xzc (x,z c ) . A specific distribution of these prop-

erties is presented in the numerical study section. The conven-

tional core scenario is recovered from the FGM formulation by

assuming that all above moduli are independent of the vertical 

coordinate. 

The stress and the displacements fields in the core are required

in order to explicitly present field Eq. (10) . They are determined

using the core strains, Eq. (7) , and the FGM core properties. The
−

 

⎞ 

⎟ ⎟ ⎟ ⎟ ⎠ 
ore stress fields read: 

xxc ( x, z c ) = 

E cx ( x, z c ) 

⎛ 

⎜ ⎜ ⎜ ⎜ ⎝ 

d b z c 
2 ( c + 2 z c ) 

d 2 

d x 2 
w b ( x ) − d t z c 

2 ( c − 2 z c ) 
d 2 

d x 2 
w t ( x ) + 

2 z c 
2 ( c + 2 z c ) 

d 

d x 
u ob ( x ) + 2 z c 

2 ( c − 2 z c ) 
d 

d x 
u ot ( x ) + 

c 

( (
c 2 z c − 4 z c 

3 
) d 

d x 
u 1 ( x ) + 

(
c 2 − 4 z c 

2 
) d 

d x 
u o ( x ) + 

( ( c + 4 z c ) w b ( x ) + ( −c + 4 z c ) w t ( x ) − 8 w o ( x ) z c ) μzx 

) 

⎞ 

⎟ ⎟ ⎟ ⎟ ⎠ 

c 3 ( μxz μzx − 1 ) 

zzc ( x, z c ) = 

E cz ( x, z c ) 

⎛ 

⎜ ⎜ ⎜ ⎜ ⎝ 

d b z c 
2 μxz ( c + 2 z c ) 

d 2 

d x 2 
w b ( x ) − d t z c 

2 μxz ( c − 2 z c ) 
d 2 

d x 2 
w t ( x ) + 

2 z c 
2 μxz ( c + 2 z c ) 

d 

d x 
u ob ( x ) + 2 z c 

2 μxz ( c − 2 z c ) 
d 

d x 
u ot ( x ) + 

c 

( (
c 2 μxz z c − 4 μxz z c 

3 
) d 

d x 
u 1 ( x ) + 

(
c 2 μxz − 4 μxz z c 

2 
) d 

d x 
u o ( x ) + 

( c + 4 z c ) w b ( x ) + ( −c + 4 z c ) w t ( x ) − 8 w o ( x ) z c 

)

c 3 ( μxz μzx − 1 ) 
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Fig. 10. Interfacial normal stresses upon wrinkling along the span of the sandwich panel when subject to controlled displacement. 
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xzc ( x, z c ) = ⎛ 

⎜ ⎜ ⎜ ⎜ ⎝ 

( ( 2 c + 6 d b ) z c + c ( c + 2 d b ) ) z c 
d 

d x 
w b ( x ) −

( ( −2 c − 6 d t ) z c + c ( c + 2 d t ) ) z c 
d 

d x 
w t ( x ) + (

c 3 − 4c z c 
2 
) d 

d x 
w o ( x ) + 4 z c ( 3 z c + c ) u ob ( x ) + 

4 z c ( c − 3 z c ) u ot ( x ) + 

((
c 2 − 12 z c 

2 
)
u 1 ( x ) − 8 z c u o ( x ) 

)
c 

⎞ 

⎟ ⎟ ⎟ ⎟ ⎠ 

G xzc ( x, z c ) 

c 3 

(13) 

here μxz and μzx are the Poisson ratios of the core that satisfy

he following relation: μxz / E cx = μzx / E cz . 

In addition, the boundary conditions obtained from the varia-

ional principle and shown below in terms of the equivalent quan-

ities and displacements in the face sheets ( j = t,b ) and in the core
ead 

 xxe j ( x e ) α − N e j = 0 or u oj ( x e ) − u oe j ( x e ) = 0 

M e j − αM xxe j ( x e ) = 0 or D 

(
w j 

)
( x e ) − D 

(
w e j 

)
( x e ) = 0 

 xze ( x e ) α − P e j = 0 or w j ( x e ) − w e j ( x e ) = 0 

 xxce ( x e ) α − N ec = 0 or u o ( x e ) − u oec ( x e ) = 0 

 xxce ( x e ) α − M ec = 0 or u 1 ( x e ) − D w ec ( x e ) = 0 

 xzce ( x e ) α − P ec = 0 or w o ( x e ) − w ec ( x e ) = 0 

(14) 

here N xxej , V xzej , and M xxej (j = t,b,c) are the equivalent in-plane

tress resultants, transverse shear stress resultants and bending

tress couples, respectively, introduced in Eq. (11) ; N ej , P ej , and M ej 

j = t,b,c) are the external longitudinal and vertical load intensities

nd external bending stress resultant applied at the face sheets and

t the core at the boundary x = x e , u oej , w ej , and Dw ej (j = t,b,c) are

he in-plane and vertical displacements and the rotations of the
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Fig. 11. Extreme vertical displacement as a function of the compressive controlled 

force at the edge x = 0. 
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centroids of the face sheets and the core, respectively, α = 1 when

x = L and α = −1 when x = 0 . 

The displacement fields in the core are obtained by the substi-

tution of Eq. (9) into Eq. (6) : 

u c ( x, z c ) = ⎛ 

⎜ ⎜ ⎝ 

z c 
2 d b ( 2 z c + c ) 

d 

dx 
w b ( x ) − z c 

2 d t ( −2 z c + c ) 
d 

dx 
w t ( x ) + 

2 z c 
2 ( 2 z c + c ) u ob ( x ) 

+ 

(
2 z c 

2 u ot ( x ) + c ( u o ( x ) + u 1 ( x ) z c ) ( 2 z c + c ) 
)
( −2 z c + c ) 

⎞ 

⎟ ⎟ ⎠ 

c 3 

w c ( x, z c ) = w o ( x ) + 

( −w t ( x ) + w b ( x ) ) z c 
c 

+2 

( w t ( x ) − 2 w o ( x ) + w b ( x ) ) z 
2 

c 2 

(15)

The governing equations are derived by the substitution of the

force-displacement relations for the isotropic face sheets into the

field Eq. (10) , along with the high-order stress resultants in the

core given by Eqs. (11) and (13) . The force-displacements relations

for the isotropic face sheets ( j = t,b ) read: 

N xx j ( x ) = 

∫ 
σxx j 

(
x, z j 

)
dA = E A j 

( 

d 

dx 
u oj ( x ) + 1 / 2 

(
d 

dx 
w j ( x ) 

)2 
) 

M xx j ( x ) = 

∫ 
σxx j 

(
x, z j 

)
z j dA = −E I j 

d 2 

d x 2 
w j ( x ) 

(16)

where EA j and EI j ( j = t,b ) are the axial and the flexural rigidity of

unit-width of each face sheet, respectively. Note that through Eq.

(16) we formulate the problem in terms of forces and moments in

a sandwich beam, rather than stress resultants and couples. 

The resulting set of the 18 ordinary non-linear differential gov-

erning equations is derived through substitution of the stress re-

sultant relations, Eqs. (11) –(13) into Eq. (10) using Maple (see

Char et al., 1991 ). However the equations are very long and are

omitted for brevity. Note that deformations of each constituent of

the panel are defined through three unknowns, i.e. in-plane and

vertical displacements and rotation of its centroid. The solution has

been obtained numerically using a finite-difference approach that

is implemented in the ODE solver of Maple, see Char et al. (1991) .

It uses trapezoid or mid-point methods with Richardson extrapola-

tion or deferred corrections, ( Ascher and Petzold, 1998 ), along with

parametric or arc-length continuation methods ( Keller, 1992 ). 

3. Numerical study 

The numerical study investigates the effects of the load transfer

mechanism when the compressive external load is applied through

the core’s edge while the edges of the face sheets are free of any

traction and when a prescribed axial displacement is uniformly ap-

plied both to the core and the face sheets through a rigid edge

beam, see Fig. 2 . In particular, we are interested in the effect of

various distributions of FGM mechanical properties on the wrin-

kling response of the sandwich panel. The case where the load

is applied through the core only can be addressed as “controlled

force” since the magnitude of the applied force is known. In this

case, the load is applied to the core through a rigid beam and re-

distributed to the face sheets through the core close to the loaded

edge. The case where uniform displacements are applied (uniform

end shortening) at the edge of the sandwich panel may be called

“controlled displacements.” In this case, the external load is dis-

tributed based on the stiffness of the face sheets and the core at

the linear and non-linear regime of response. Both cases are fea-

sible in practical applications since the relevant joints can be de-

signed and manufactured. In the case of controlled force, a rigid
dge beam is extended through the depth of the core. In the joint

esigned for controlled displacements, a rigid edge beam extends

hroughout the entire depth of the sandwich panel. Note that in

he first case (controlled force), the load should be symmetric

bout the middle plane of the panel, avoiding eccentricities. In the

ase of controlled displacements the rigid edge beam remains per-

endicular to the middle plane of the panel, producing symmetric

oading on the identical face sheets and in the core. 

The sandwich panel considered in numerical analysis had the

idth of 60 mm and the length of 300 mm. The face sheets are

.5 mm thick and the core thickness is 19.05 mm. The identical

evlar/epoxy laminated composite face sheets has an equivalent

odulus of elasticity of 27,400 MPa. The isotropic core is made of

ohacell where its elasticity and shear moduli varies in the vertical

irection. Geometry, boundary conditions, load transfer and FGM

roperties distributions are depicted in Fig. 2 . In order to achieve

 non-trivia (out of plane) wrinkling solution, a small distributed

oad q zt = −q zb = 0.001 N/mm is applied to the face sheets. 

The study examines two types of symmetric property distribu-

ions through the depth of the core, as reflected in Fig. 2 b. The first

ase where the stiffer core properties are at the face core interface

s denoted by “se ”, while the second case is where the material is

elatively compliant at the core interfaces and stiffer at the mid-

eight of core is denoted by “sm ”. The case of a homogeneous core

ith uniform through-the-thickness properties is denoted by “av ”.

he stiffness corresponding to this case corresponds to the average

f the se case. Note that the average of the sm case properties is

arger than those of the homogeneous av case, so it can be antici-

ate that the former panel will be heavier. 

The FGM distribution depends on the distribution of the den-

ity of the material through the depth of the core. The moduli in-

rease in denser core and decrease in the core with a low density.

he moduli-density relationships adopted here were developed for

oam materials ( Gibson and Ashby, 1997 ): 

 c ( ρc ) = k 1 

(
ρc 

ρ

)
( z c ) 

n 1 E, G c ( ρc ) = k 2 

(
ρc 

ρ

)
( z c ) 

n 2 G 

here E and G are moduli of solid foam material, k 1 , k 2 , n 1 and

 are material constants and ρc and ρ are foam and solid foam
2 
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Fig. 12. Longitudinal displacements along the middle plane of the panel prior to and after wrinkling under controlled compressive force applied at the left end ( x = 0). 
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aterial densities, respectively. For the particular case consid-

red here, these values are: E = 905.8 MPa, G = 370.4 MPa. k 1 = 1,

 2 = 0.4, n 1 = 2, n 2 = 2. 

For a symmetric core material distribution the variation of the

ensity ratio through the thickness is described by a parabola: 
ρc 
ρ ( z c ) = a 1 z c 

2 + a 0 , with the limiting conditions for the se case

here ρc 
ρ ( z c = 0 ) = 0 . 05 and 

ρc 
ρ ( z c = c/ 2 ) = 0 . 5 . For the sm case,

hese conditions were inversed. Hence, the mechanical properties

re: 

a. Stiffer core at the face-core interfaces ( se ): 

E c ( z c ) = 905 . 7971014 

(
1 . 80 

z c 
2 

c 2 
+ 0 . 050 

)2 

, 

G c ( z c ) = 370 . 4433498 

(
1 . 80 

z c 
2 

2 
+ 0 . 050 

)2 
c p  
b. The homogeneous core with the average through-the-thickness

properties, ( av ): 

E c ( z c ) = 52 . 5 MPa , G c ( z c ) = 21 . 0 MPa 

c. Stiffer core at the middle plane ( sm ): 

E c ( z c ) = 905 . 7971014 ( −1 . 80 z c 
2 

c 2 
+ 0 . 500 ) 2 , G c ( z c ) = 

70 . 4433498 ( −1 . 80 z c 
2 

c 2 
+ 0 . 500 ) 2 

As noted above, the average properties of the sm case are larger

han their counterparts in the case av . 

Two cases of load transfer mechanism have been studied. In

ne case the compressive load is applied to both the face sheets

nd the core through a rigid edge beam that yields a uniform

nd-shortening for all sandwich components (controlled displace-

ents). In this case both the face sheets and the core are simply-

upported at the edges. In the other case the compressive load is

pplied through a rigid edge beam to the edges of the core only,

hile the core is simply-supported and the face sheets are free at

he edges. In the controlled displacement case the in-plane dis-

lacements of the centroid of each face sheets and core displace-
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Fig. 13. Vertical displacements of the top and lower facings along the span of the sandwich panel when subject to controlled force. 
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ments are identical within the linear response range. The compres-

sive loads in the case of controlled displacement are introduced

through a change in the longitudinal displacement of the loaded

edge. 

The following results concentrate on wrinkling of the panels

subject to the controlled displacements or forces. To get a bet-

ter insight into the post-wrinkling nonlinear behavior, the post-

wrinkling results are also demonstrated for functionally graded

core panels with a higher stiffness near the interfaces with the fac-

ings (case se ). 

Problem 1: Wrinkling under controlled axial displacements 

The extreme vertical (out-of-plane) displacement is shown as a

function of the compressive force generated by a controlled com-

pressive displacement in Fig. 3 . In all cases the displacements in-

crease linearly with the axial force, prior to wrinkling. This reflects

a uniform increase of the thickness of the panel undergoing con-

trolled compressive displacements at the edge x = 0while the op-

posite edge is restrained. The changes in the slope of the equi-
ibrium curves reveal the onset of wrinkling. They occur at the

orce N xxG of an order of 10 kN in the panel with a homogeneous

ore and between 14 kN and 16 kN in the panels with functionally

raded cores. The increase in the wrinkling axial force in function-

lly graded panels in case se as compared to the homogeneous core

v is understandable since stiffer sections of the core provide ad-

itional support to the face sheets. In case sm such increase may

eem counterintuitive since the stiffness of the core adjacent to

he face sheets is reduced as compared to cases av and se . How-

ver, the overall stiffening of the core achieved at the expense of

 larger weight explains the large wrinkling resistance of panels

m . The secondary branches observed in functionally graded pan-

ls reveal the presence of a buckling point in the panels with a

unctionally graded core that is absent in the panel with a homo-

eneous core. 

The conclusions from Fig. 4 demonstrating a relationship be-

ween the maximum longitudinal controlled displacement and the

esulting compressive force are identical to those obtained from
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Fig. 14. Controlled axial force vs. equivalent bending moment at the face sheets 

and the core. 
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ig. 3 . A sharp reduction in the stiffness reflected in a large re-

uction in the force gradient is a symptom of wrinkling. 

As follows from Fig. 5 , longitudinal displacements vary linearly

rior to wrinkling from the loaded to the restrained end of the

anel in both homogeneous av and functionally graded core cases

 se and sm ). However, upon wrinkling short wrinkling waves are

uperimposed on the straight line between the maximum displace-

ent at the loaded end x = 0 and the opposite restrained end as

s shown for case se . The presence of these superimposed waves

eflects the onset of wrinkling at the controlled longitudinal dis-

lacement of about 10 mm and the subsequent post-wrinkling

onlinear behavior. The controlled displacements shown for cases

v and sm did not reach the wrinkling stage; accordingly, superim-

osed wrinkling waves are not shown in the corresponding graphs.

The pattern of wrinkling is similar for both homogeneous and

unctionally graded core panels as demonstrated in Fig. 6 . The am-

litudes of short wrinkles are nearly identical over the span of the

anel, except for the narrow regions adjacent to the edges. In the

anels with a functionally graded core that is stiffer adjacent to the

ace sheets se the wrinkles are noticeably smaller near the edges.

he situation is reversed in panels with a stiffer core at the mid-

le plane sm . The difference between the amplitudes in the three

ases considered here is related to different magnitudes of con-

rolled axial displacements. In addition to the pattern of wrinkles

t the wrinkling controlled displacement shown for all three core

ases, the post-wrinkling pattern is demonstrated in case se . While

he wrinkle amplitudes increase, the pattern of waves remains un-

hanged in the post-wrinkling phase. Smaller amplitudes in a func-

ionally graded core panel with a higher stiffness at the middle

lane sm as compared to case se are related to the higher average

verall stiffness of the core. 

The distribution of bending moments upon wrinkling (cases

v and sm ) and both upon wrinkling and in the nonlinear post-

rinkling state (case se ) are shown in Fig. 7 . In the panels with a

omogeneous core the moments with larger amplitudes are adja-

ent to the edges. The situation is reversed in panels with a func-

ionally graded core that is stiffer near the facings se . In panels

ith a stiffer graded core at the middle plane ( sm ) the ampli-

ude remains nearly constant throughout the span. In the post-

rinkling phase the amplitudes of the moment change, but the

attern of its distribution is not altered ( se ). 

A comparison of the transverse shear forces in Fig. 8 reflects

 higher support of the facings by both functionally graded cores.

n both functionally graded cores the controlled wrinkling longi-

udinal displacement is larger than in the homogeneous core, ex-

laining larger post-wrinkling forces. Three-dimensional effects are

learly observed in the vicinity to the edges in all cases considered,

hough they produce different outcomes, the most noticeable being

ower amplitude near edges values compared to the amplitudes in

he central section of the span in case se . Post-wrinkling nonlinear

esponse shown for the case se does not alter the pattern of the

orce distribution over the span, though the amplitude increase. 

The distribution of transverse shear stresses in the core is

hown in Fig. 9 . Three-dimensional effects in the vicinity to the

dges result in a higher stress amplitude in this area compared to

mplitudes within the rest of the span in the cases of a homoge-

eous core and, to a lesser extent, in a functionally graded core

ith a higher stiffness at the middle plane (cases av and sm , re-

pectively). In the functionally graded panel with stiffer core ad-

acent to the face sheets, (case se ), transverse shear stresses have

 smaller amplitude near the edges. The largest stresses in both

unctionally graded panels exceed those in the panel with a ho-

ogeneous core. This is a consequence of a stiffer core adjacent to

he face sheets (case se ) and a larger average core stiffness (case

m ). The trends observed for wrinkling response are not altered in

he post-wrinkling phase as shown in case se . 
The observations regarding the distribution of transverse shear

tresses remain valid for facing-core interfacial normal stresses as

hown in Fig. 10 . The magnitude of these stresses in the cases

f a homogeneous core or a core that is stiffer near the mid-

le plane is smaller than the transverse shear counterparts upon

rinkling as well as in the post-wrinkling phase complying with

ell-documented knowledge. However, the relationship between

he transverse shear and normal stresses can change in the non-

inear post-wrinkling phase (compare case se : post-wrinkling in

igs. 9 and 10 ). Based on the results in Figs. 9 and 10 , it is possible

o conclude that the core failure will likely originate at the edges

n the homogeneous core and in the graded core that is stiffer at

he middle plane, while in the core of the panel with a stiffer core

djacent to the facing failure will originate within the span. 

Problem 2: Wrinkling under controlled axial force 

Wrinkling under controlled compressive force is generally sim-

lar to wrinkling under controlled axial displacement. However,

here are differences in the response due to different edge joints.

ccordingly, only selected representative results are presented in

his section. 

The extreme vertical displacement is demonstrated as a func-

ion of the compressive controlled force in Fig. 11 . Nonlinearity is

xhibited under this type loading, particularly noticeable in case

e , even at relatively small values of the force. At first, this phe-

omenon is puzzling, but as follows from the following figures, it

an easily be explained by formation of a single deformation half-

ave at the edges even at low load. 

The axial displacement distribution along the middle plane of

he core throughout the span is demonstrated in Fig. 12 . Even prior

o wrinkling, three-dimensional effects are clearly indicated at the

dges of the panel reflecting single half-waves of the deformation

acilitated by the local shear lag phenomenon between the face

heets and core. Such phenomenon that was not observed in the

ase of controlled displacement reflects the observation that ex-

reme vertical displacements in Fig. 11 do not adequately predict

rinkling since they refer to the local deformations at the edges,

ven while the major part of the span does not wrinkle. These ob-

ervations about the sequence of deformation and wrinkling under

oading are confirmed by the results in Fig. 13 showing the distri-

ution of vertical displacements throughout the span of the panel.



136 Y. Frostig et al. / International Journal of Solids and Structures 148–149 (2018) 122–139 

Fig. 15. Transverse shear stresses in the core upon wrinkling under controlled force. 
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A single half-wave of deformation adjacent to the edges prior to

overall wrinkling is clearly observed in this figure. 

Because of local waves developing adjacent to the edges due

to the three-dimensional effect even at a low controlled force,

the wrinkling force resulting in wrinkling over the entire span is

rather difficult to detect from Figs. 11 and 12 . However, this force

is determined from Fig. 14 showing the variation of the equiv-

alent bending moment in the facings and core as a function of

the applied controlled force. The secondary branches of the cor-

responding curves indicate the load resulting in the overall wrin-

kling. Accordingly, the wrinkling force is about 11 kN, 15 kN and

over 20 kNin cases av, se and sm , respectively. The fact that the

wrinkling force is higher in the graded core that is stiffer at the

middle plane is reasonable in the controlled force type of loading

where the force is applied to the core directly and redistributed to

the stiff facings. This represents a major difference from the case

of controlled displacements where the axial displacement in the

facings and core is kept identical prior to wrinkling. The equiva-

lent moment remains equal to zero at the middle plane of the core
hroughout the loading process meaning that wrinkling is symmet-

ic about the middle plane. 

A distribution of transverse shear stress in the core ( Fig. 15 ) and

nterfacial normal stress throughout the length of the span ( Fig. 16 )

s also instructive. Contrary to the case of controlled displacements,

he peak stresses occurring at the edges of the panel significantly

xceed the corresponding stress amplitudes in the span in all three

ases reflecting shear lag phenomenon and are a results of the load

ransfer mechanism from the core to the edges, see Fig. 15 . 

Finally, the pattern of progressive deformation is shown for

rinkling under controlled force and controlled displacement in

igs. 17 and 18 , respectively. The shapes of sandwich panels shown

n these figures confirm our observations above, i.e. a significant

hree-dimensional effect is observed in panels with a stiffer core

n the vicinity to the facings undergoing controlled force. Such lo-

al deformations can cause failure prior to the loss of strength of

he core or face sheets in the sections adjacent to the edges or

elamination of the core from the face sheets prior to wrinkling.

his demonstrates the necessity of considering all possible modes
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Fig. 16. Interfacial normal stresses upon wrinkling under controlled force. 

Fig. 17. Deformed shapes of a progressively loaded panel when subject to controlled force. 
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Fig. 18. Deformed Shapes of a progressively deformed panel subject to controlled displacement (uniform end shortening). 
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of failure designing composite and sandwich structures and a care-

ful analysis of their joints. 

4. Summary and conclusions 

The High-Order Sandwich Panel Theory is extended to analyze

wrinkling instability and post-wrinkling behavior of sandwich pan-

els with a functionally graded core. The goals of the analysis in-

clude: 

– Investigation whether functional grading of the core can in-

crease wrinkling axial controlled displacements or wrinkling

forces, without the penalty of a higher weight of the structure;

– Comparison of the response and efficiency of grading schemes

dependent on different loading scenarios (and different joint

designs), namely controlled displacement and controlled force; 

– Examination whether geometric nonlinearities affecting post-

wrinkling response alter the pattern of wrinkles; 

– Suggestion of a preferable grading for the core. 

The study addresses all goals listed above and resulted in the

following conclusions and observations. 

A functionally graded core can improve wrinkling stability of

sandwich structures. In particular, employing higher stiffness ad-

jacent to the face sheets may increase the axial controlled wrin-

kling displacement without a detrimental effect on the weight of

the structure. Using a functionally graded core with stiffer sections

at and in the vicinity of the middle plane may also be beneficial

but at the expense of a larger weight. While a functionally graded

core can improve wrinkling stability, the post-wrinkling stresses

may actually increase compared to the case of a homogeneous core

as a result of higher support against deflections of the face sheets. 

Some tendencies that are not prominent in conventional com-

posite structures may become essential in functionally graded

counterparts. For example, a three-dimensional effect at the edges

and associated local stresses can cause failure prior to the over-

all wrinkling. In addition, interfacial normal stresses may exceed

transverse shear stresses in the panels with a functionally graded

core. Post-wrinkling loading of the panel by either controlled dis-

placement or controlled force does not qualitatively affect the pat-

tern of deformation. Predictably, the stresses increase in the post-

wrinkling phase, i.e. the ultimate failure of a wrinkled panel is the

loss of strength. 
While the advantages of using a functionally graded core have

een demonstrated for both types of loading considered in the pa-

er, there are pronounced differences in the response. In the case

f controlled displacement where the prewrinkling displacements

re uniform throughout the depth of the panel, wrinkling occurs

imultaneously, at the same displacement, across the entire span.

he situation is different in the panels subject to controlled force

pplied through the core and transmitted to the face sheets. In this

ase, three-dimensional effects near the edges predominate result-

ng in one half-wave of deformation adjacent to both edges of the

anel even at low forces. Accordingly, the stresses at the edges are

uch higher than in the rest of the panel span. While wrinkling

ccurs throughout the span at certain loads, the mode of failure

ay actually be the loss of strength in the core adjacent to the

dges due to the three-dimensional effect, prior to overall wrin-

ling along the span. This demonstrates the importance of the joint

t the edges of sandwich structures loaded by axial displacement

r force since the design of this joint may dictate both the failure

oad and the mode of the failure. 
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