Physics 1135 Homework for recitation 13: Universal gravitational force

1. a) Uranus has a mass of 8.68×10^{25} kg and a radius of 2.33×10^{7} m. Find the free-fall acceleration on the surface of Uranus.
b) Jupiter’s moon Io has a mass of 8.9×10^{22} kg. It is orbiting Jupiter at a distance 4.22×10^{8} m and has an orbital period of 1.77 Earth days. Find the mass of Jupiter.

2. The center of a moon of mass m is a distance D from the center of a planet of mass M. At some distance x from the center of the planet, along a line connecting the centers of planet and moon, the net force on an object will be zero.
a) Derive an expression for x in terms of m, M, and D.
b) If the net force is zero a distance $\frac{2}{3}D$ from the planet, what is the ratio R of the mass of the planet to the mass of the moon, M/m?

3. A geosynchronous satellite moves in a circular orbit around the Earth and completes one circle in the same time T during which the Earth completes one revolution around its own axis. The satellite has mass m and the Earth has mass M and radius R. In order to be geosynchronous, the satellite must be at a certain height h above the Earth’s surface. Derive an expression for h in terms of m, M, R, T and constants and find a numerical value. Earth’s mass and radius can be found in your textbook.

4. Binary Star. Two identical stars of mass M orbit around the center of a circle with radius R. The stars are always on opposite sides of the circle as shown.

Derive expressions for the orbital speed and the orbital period of each star.