Physics 1135 Homework for recitation 14: Gravitational potential energy

1. A comet of mass m is in an elliptical orbit around a star of mass M. At the closest point of its orbit, point P, the comet is a distance D from the center of the star, and at the farthest point, point A, the distance is $3D$. You may disregard the presence of all other celestial bodies.
Derive an expression for the change in the comet’s kinetic energy as it moves from point P to point A, in terms of system parameters and constants.
Does the comet have its greatest speed at point A or point P?

2. A planet has mass M and radius $2R$.
 a) Derive an expression for the escape speed from the planet.
 b) A projectile of mass m is shot directly away from the surface of the planet at \(\frac{1}{3} \) of the escape speed from the planet. Derive an expression for the maximum distance from the center of the planet the projectile reaches, in terms of R. Simplify as far as possible. (Ignore the existence of all other celestial objects.)

3. A spaceship of mass m has its engines switched off and is moving in a circular orbit at height R above the surface of a planet of mass M and radius R.
 a) Derive an expression for total mechanical energy E of the orbiting spaceship, in terms of G, m, M and R.
 b) Derive an expression for the minimum speed V the spaceship would need to escape from this orbit into deep space, in terms of system parameters. (The engines can’t fire for the whole trip; they can only give the spaceship one boost so it obtains this velocity. Ignore all other celestial objects.)
4. The kings of planet A (mass $4M$, radius $2R$) and planet B (mass M, radius $3R$) want to meet for negotiations. The planets are a distance $10R$ from one another, center to center. For absolute fairness, the kings (who possess no physics knowledge) decide that the meeting place P is to be exactly halfway between the planets. A space capsule of mass m is launched from point X on the surface of planet A by means of a giant cannon, which gives it a launch speed V_L. It travels directly along the line that connects the centers of both planets. Ignore the orbital motion of the planets.

a) Derive an expression for the speed V with which the capsule arrives at the meeting place P, in terms of relevant system parameters.

b) Derive an expression for the net force (magnitude and direction) experienced by the capsule when it is at point P.

c) At what distance from planet A is the net gravitational force zero?