Lecture 37: Lenses and mirrors

- Spherical lenses: converging, diverging
- Plane mirrors
- Spherical mirrors: concave, convex

The animated ray diagrams were created by Dr. Alan Pringle.

Terms and sign conventions for lenses and mirrors

- object distance s, positive
- image distance s',
- positive if image is on side of outgoing light, i.e. same side of mirror, opposite side of lens: real image
- s' negative if image is on same side of lens/behind mirror: virtual image
- focal length f
 positive for concave mirror and converging lens
 negative for convex mirror and diverging lens
- object height h, positive
- image height h'
 positive if the image is upright
 negative if image is inverted
- magnification m= h'/h , positive if upright, negative if inverted

Lens equation

$$\frac{1}{s} + \frac{1}{s'} = \frac{1}{f}$$

$$m = -\frac{s'}{s} = \frac{h'}{h}$$

magnification

$$s' = \frac{fs}{s - f}$$

- there are focal points on both sides of each lens
- focal length f on both sides is the same

Ray diagram for converging lens

Ray 1 is parallel to the axis and refracts through F.
Ray 2 passes through F' before refracting parallel to the axis.
Ray 3 passes straight through the center of the lens.

object between f and 2f: image is real, inverted, enlarged object outside of 2f: image is real, inverted, reduced object inside of f: image is virtual, upright, enlarged

Ray diagram for diverging lens

Ray 1 is parallel to the axis and refracts as if from F.

Ray 2 heads towards F' before refracting parallel to the axis.

Ray 3 passes straight through the center of the lens.

image is always virtual, upright and reduced

Plane mirror

 point object A, source of light

- reflected rays appear to come from $A' \rightarrow A'$ is image of A
- image appears to be located behind the mirror

 image is virtual

Image of an extended object

- every point of the object acts as light source
- every point has an image
- collection of image points form image of the object
- image is upright, virtual, same size as object (h'=h), s'=s

Spherical mirror

- made from (polished) sections cut from a spherical surface
- center of curvature C is center of original sphere
- vertex V is center of mirror segment
- radius of curvature R is radius of sphere, or the distance from V to C.

Principal Axis

 principal axis (or optical axis) is line passing through C and V

Rays parallel to the axis get reflected through a common point the **focal point** or **focus** F.

Focal length *f* is distance from V to F.

Concave and convex mirror

Ray diagrams

Ray 1 is parallel to the axis and reflects through F.

Ray 2 passes through F before reflecting parallel to the axis.

Ray 3 passes through C and reflects back on itself.

Ray 4 goes to the vertex V and reflects under the same angle below the optical axis

Ray Diagrams for Concave Mirrors

- image is formed where the outgoing rays cross
- two principal rays are sufficient to find image, use third and fourth to check your diagram

Example:

- object outside center (s>2f)
 → image is real, inverted,
 and smaller than object
 ("telescope")
- object between f and 2f
 → image is real, inverted,
 and larger than object
 ("microscope")

Real image: outgoing rays do cross. Can be captured on screen or by camera.

- object inside the focal point (s<f)
 → image is virtual, upright, and larger than object (makeup mirror)
- Ray 1: parallel to the axis then through F.

Ray 2: through F then parallel to the axis.

Ray Diagrams for Convex Mirrors

Concave mirrors:

Shaving and makeup mirrors
Solar cookers
Satellite dishes (for EM waves)

Convex mirrors:

Passenger side rear-view mirrors Anti-shoplifting (surveillance) mirrors Christmas tree ornaments

Image formation for mirrors and lenses

Туре	Focal length f	Object distance s	Image distance s'	Character	Orientation	Size
Concave mirror/ Converging lens	f > 0	s > 2f	f < s' < 2f	real	inverted	reduced
		f < s < 2f	s' > 2f	real	inverted	enlarged
		s <f< td=""><td>s'<0</td><td>virtual</td><td>upright</td><td>enlarged</td></f<>	s'<0	virtual	upright	enlarged
Convex mirror/ diverging lens	f < 0	s > 0	s' < 0	virtual	upright	reduced

Do not memorize! We can easily get this from the equation!