
Exam 1 is on Tuesday, February 14, from 5:00-6:00 PM.  
 
• Testing Center provides accommodations for students 

with special needs 
• I must set up appointments one week before exam 
    Deadline for submitting accommodation letters:  
    Monday, Feb 6 by noon 
• student must make separate appointment with testing 

center  
 
• if you have other time conflicts, I need to know now! 

(they are the student’s responsibility unless the student 
participates in a major university or intercollegiate event)  

 

Exam 1 

http://testcenter.mst.edu/


• Physics Learning Center (Monday+Wednesday 2:00-4:30 
and 6:00 to 8:30 in rooms 129 and 130 Physics) 

• LEAD/tutoring sessions (http://lead.mst.edu/)  

Course Learning Assistance 

• Student Success Center, 198 Toomey Hall 
    Monday + Wednesday 2:00 to 4:00pm  
    Tuesday and Thursday 9:00 to 11:00am  

http://lead.mst.edu/


 
Today’s agenda: 
 

Announcements. 
 

Gauss’ Law Examples. 
You must be able to use Gauss’ Law to calculate the electric field of a high-symmetry 
charge distribution. 
 

Cultural enlightenment time. 
You must be culturally enlightened by this lecture. 
 

Conductors in electrostatic equilibrium. 
You must be able to use Gauss’ law to draw conclusions about the behavior of charged 
particles on, and electric fields in, conductors in electrostatic equilibrium. 
 



Gauss’ Law 

Last time we learned that 

Gauss’ Law 
Always true, not always easy to apply. 

and used Gauss’ Law to calculate the electric field for 
spherically-symmetric charge distributions 

Today we will calculate electric fields for charge distributions 
that are non-spherical but exhibit a high degree of symmetry, 
and then consider what Gauss’ Law has to say about 
conductors in electrostatic equilibrium. 
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Example: calculate the electric field outside a long cylinder of 
finite radius R with a uniform volume charge density ρ spread 
throughout the volume of the cylinder. 

To be worked at the blackboard in lecture. 

2

0

R
E

2 r
ρ

=
ε

More details of the calculation shown here: 
http://campus.mst.edu/physics/courses/24/Handouts/charged_cylinder.pdf  

“Long” cylinder with “finite” radius means neglect end effects; 
i.e., treat cylinder as if it were infinitely long. 

http://campus.mst.edu/physics/courses/24/Handouts/charged_cylinder.pdf


Example: calculate the electric field outside a long cylinder of 
finite radius R with a uniform volume charge density ρ spread 
throughout the volume of the cylinder. 

I don’t even want to think of trying to use dE=k|dq|/r2 for this. 

Cylinder is looooooong. I’m just showing a bit of it here. 



Example: calculate the electric field outside a long cylinder of 
finite radius R with a uniform volume charge density ρ spread 
throughout the volume of the cylinder. 
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Looking down the axis of the cylinder. 
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For positive ρ: 

In general: Why does this vary as 
1/r instead of 1/r2? 
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For a solid cylinder… 
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Example: use Gauss’ Law to calculate the electric field due to a 
long line of charge, with linear charge density λ. 

This is easy using Gauss’ Law (remember what a pain it was in 
the previous chapter). Study the examples in this lecture and 
others in your text! 

To be worked at the blackboard in lecture. 
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Example: use Gauss’ Law to calculate the electric field due to a 
long line of charge, with linear charge density λ. 

Line is looooooong. 
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Looking down the line. 
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For positive λ: 

In general: 
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solid cylinder! 
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Example: use Gauss’ Law to calculate the electric field due to 
an infinite sheet of charge, with surface charge density σ. 
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This is easy using Gauss’ Law (remember what a pain it was in 
the previous chapter). Study the examples in this lecture and 
others in your text! 

To be worked at the blackboard in lecture. 



Example: use Gauss’ Law to calculate the electric field due to 
an infinite sheet of charge, with surface charge density σ. 

σ >0 

Two views of sheet of charge; side view looking edge on, and 
top view looking down. Sheet extends infinitely far in two 
dimensions. 



Example: use Gauss’ Law to calculate the electric field due to 
an infinite sheet of charge, with surface charge density σ. 
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For this electric field symmetry, we usually 
use a “pillbox” (cylinder shape) for our 
Gaussian surface. In the views above, it will 
look like a rectangle and a circle. You could 
also use a rectangular box. 



Example: use Gauss’ Law to calculate the electric field due to 
an infinite sheet of charge, with surface charge density σ. 
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Example: use Gauss’ Law to calculate the electric field due to 
an infinite sheet of charge, with surface charge density σ. 
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Example: use Gauss’ Law to calculate the electric field due to 
an infinite sheet of charge, with surface charge density σ. 
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For positive σ: 

In general: 
That sure was easier 
than the derivation 
back in Lecture 2! 
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Gauss’ Law works well for three kinds of symmetry: 

Charge Symmetry  Gaussian Surface 
spherical   concentric sphere 
cylindrical   coaxial cylinder 
planar    pillbox 



 
Today’s agenda: 
 

Announcements. 
 

Gauss’ Law Examples. 
You must be able to use Gauss’ Law to calculate the electric field of a high-symmetry 
charge distribution. 
 

Cultural enlightenment time. 
You must be culturally enlightened by this lecture. 
 

Conductors in electrostatic equilibrium. 
You must be able to use Gauss’ law to draw conclusions about the behavior of charged 
particles on, and electric fields in, conductors in electrostatic equilibrium. 
 



Cultural Enlightenment* Time 

The top 5 reasons why we make you learn Gauss’ Law: 

5. You can solve difficult (high-symmetry) problems with it. 

4. It’s good for you. It’s fun! What more can you ask! 

3. It’s easy. Smart physicists go for the easy solutions. 

2. If I had to learn it, you do too. 

And the number one reason… 

…will take a couple of slides to present 

*This will not be tested on the exam. 



You have learned the integral form of Gauss’ Law: 

This will not be tested on the exam. 
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This equation can also be written in differential form: 
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a 3-dimensional derivative operator 

Now you can see we are on the trail of something Really Big… 



This will not be tested on the exam. 

The Missouri S&T Society of Physics Students T-Shirt! 



 
Today’s agenda: 
 

Announcements. 
 

Gauss’ Law Examples. 
You must be able to use Gauss’ Law to calculate the electric field of a high-symmetry 
charge distribution. 
 

Cultural enlightenment time. 
You must be culturally enlightened by this lecture. 
 

Conductors in electrostatic equilibrium. 
You must be able to use Gauss’ law to draw conclusions about the behavior of charged 
particles on, and electric fields in, conductors in electrostatic equilibrium. 
 



Homework hints buried in the next 3 slides! 

Conductors in Electrostatic Equilibrium 

Electrostatic equilibrium means there is no net motion of tne 
charges inside the conductor. 

The electric field inside the conductor must be zero. 

Any excess charge must reside on the outside surface of the 
conductor. 

If this were not the case, charges would accelerate. 

Apply Gauss’ law to a Gaussian surface just inside the 
conductor surface. The electric field is zero, so the net charge 
inside the Gaussian surface is zero. Any excess charge must go 
outside the Gaussian surface, and on the conductor surface. 



The electric field just outside a charged conductor must be 
perpendicular to the conductor’s surface. 

Otherwise, the component of the 
electric field parallel to the surface 
would cause charges to accelerate. 

The magnitude of the electric field just outside a charged 
conductor is equal to |σ|/ε0, where |σ| is the magnitude of the 
local surface charge density. 

A simple application Gauss’ Law. Different from infinite sheet of 
charge because E is zero inside the conductor. 



If there is an empty nonconducting cavity inside a conductor, 
Gauss’ Law tells us there is no net charge on the interior 
surface of the conductor. 

Construct a Gaussian surface that includes the inner surface of the conductor.  
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Construct a Gaussian surface that includes the inner surface of the conductor. The 
electric field at the Gaussian surface is zero, so no electric flux passes through the 
Gaussian surface. Gauss’ Law says the charge inside must be zero. Any excess 
charge must lie on the outer surface! The conductor does not have to be 
symmetric, as shown. 



If there is a nonconducting cavity inside a conductor, with a 
charge inside the cavity, Gauss’ Law tells us there is an equal 
and opposite induced charge on the interior surface of the 
conductor. 

Construct a Gaussian surface that includes the inner surface of the conductor.  Construct a Gaussian surface that includes the inner surface of the conductor. The 
electric field at the Gaussian surface is zero, so no electric flux passes through the 
Gaussian surface. Gauss’ Law says the charge inside must be zero. There must be a  
–Q on the inner surface. If the net charge on the conductor is not –Q, any 
additional charge must lie on the outer surface! The conductor does not have to 
be symmetric. 
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Construct a Gaussian surface that includes the inner surface of the conductor. The 
electric field at the Gaussian surface is zero, so no electric flux passes through the 
Gaussian surface. Gauss’ Law says the charge inside must be zero. 
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Example: a conducting spherical shell of inner radius a and 
outer radius b with a net charge -Q is centered on point charge 
+2Q.  Use Gauss’s law to show that there is a charge of  
-2Q on the inner surface of the shell, and a charge of +Q on 
the outer surface of the shell. 
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Let r be infinitesimally 
greater than a. 



Example: a conducting spherical shell of inner radius a and 
outer radius b with a net charge -Q is centered on point charge 
+2Q.  Use Gauss’s law to show that there is a charge of  
-2Q on the inner surface of the shell, and a charge of +Q on 
the outer surface of the shell. 
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From Gauss’ Law we know 
that excess* charge on a 
conductor lies on surfaces. 
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*excess=beyond that required for electrical neutrality 



Example: an insulating sphere of radius a has a uniform charge 
density ρ and a total positive charge Q.  Calculate the electric 
field at a point inside the sphere. 
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This object in this example is not a conductor. See Dr. Waddill’s 
lecture on Gauss’ Law from a few years ago. Click on the word 
“lecture” in the previous sentence to view/download the lecture. 
 
Here is the address for you to copy and paste into a web browser, in 
case the link in the above paragraph doesn’t work: 
http://campus.mst.edu/physics/courses/24/Handouts/Lec_03.ppt 
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http://campus.mst.edu/physics/courses/24/Handouts/Lec_03.ppt


Example: an insulating spherical shell of inner radius a and 
outer radius b has a uniform charge density ρ.  Calculate the 
electric field at a point inside the sphere. 
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Calculate the electric field at a point outside the sphere. 
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Also see exam 1, Fall 2015, problem 7, for a related example. 



 
Demo: Professor Tries to Avoid 

Debilitating Electrical Shock While 
Demonstrating Van de Graaff Generator 

 

http://en.wikipedia.org/wiki/Van_de_Graaff_generator 
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