Physics 6311: Stat. Mech. - Solutions of Homework 5

Problem 1: Comparison of the microcanonical and canonical ensembles: system of
two-level atoms

a) Microcanonical ensemble

N0+N1=N, TZO:NQ/N, nlle/N, ng+ny =1
E = NoEy + N1E1 = Nqe

(i) = N!/(No!Ny!)
S =kplnQ = kp[In(N!) — In(Np!) — In(Ny!)]
minimum S: S =0 for Ng=0,N; =N or Ng=N,N; =0
(just a single microstate, i.e maximum order)
maximum S: S = kg[ln(N!) — 21In(N/2!)]
(maximum disorder)
S/N = (kZB/N)[NlDN — N — Nogln Ny + Ng — N1 In N7 + Nl]
S/N = kB[—(No/N) In Ny — (Nl/N) In N7 + IHN]
SIN = kp[—(No/N)In(No/N) — (N1/N) In(N1/N)]
S/N = kB[—n() lnno —ni lnnl]

(ii) 1/T = (0S/0E), E = Nye
LT = (1/€)(05/0N1) = (1/€)(0(S/N)/O(N1/N))
1/T = (kp/€)(0/0n1)[—(1 —n1)In(1 —ng) — ny Inng]
1/T = (kg/e)[ln(1 —n1) + 1 — Inny — 1]

1/T = (kp/e€) In(ng/n1)
k?BT = 6/ ln(no/nl)
T > 0 if ng > ny, usual case — occupation probability decreases with increasing energy
T < 0 if ng < np, inversion, important i.e in lasers, in equilibrium only possible with
bounded energy spectrum
with increasing energy the temperature goes T'= 04+ — 400 = —oc0 — 0—
(iii) C = (OE/OT) = €(ON1/0T)
1/C = (1/€)(0T/ON1) = 1/(Nkp)(9/0n1)[1/ In((1 — n1)/n1)]
1/C = —=1/(Nkg)1/In*(no/n1)(—=1/ng — 1/n1)
C = Nkgngny lng(no/nl)
C > 0 for all temperatures!

b) Canonical ensemble

ZiB)=1+e% po=1/1+e ), pr=e/(1+e ")
A= —NkgTnZ(8) = —NkgTIn(1 + ¢ )

U=—-N(InZ /dB) = Nee P /(1 + e P¢) = Nep;



TS = (U —A) = Nee /(1 + e %) + NkpT In(1 + %)

Ne2 ef/kBT
C = (U/OT) = 1= (11 ce/hoT)?

(iii)
kT = ¢/In(po/p1)
U = Nep;
C = NkgIn?(po/p1)pop1
S = —kp(poInpo + p1 Inp1)

Results are identical to those obtained from the microcanonical approach above.



Problem 2: Two interacting magnetic moments (10 points)

a) In the ground state, the two moments will be parallel.

b)

1
dx exp(BJx) = 4—7Tsir1h(ﬁ,])

1

Q= /dd)d& sin@ exp(fSJ cosf) = 277/ BJ

A= —kgTlh [;; sinh(BJ)]

(E) = _ag;cg = —Jcoth(BJ)+1/8
2
C = a(;? =kp [1 + 7 (1— cothQ(BJ))]
B

d) At low temperatures, the angle § will be small. Thus we can expand sinf ~ 6 and cosf ~
1—6%)2.

B Jo° 0d6 6 exp(—BJ6%/2) -
[T 0d9 exp(—BJ62/2)

() m/(28J)

B I 646 62 exp(—B3.J0%/2) _

B Ofoooﬁde exp(—£J62/2) =2/(87)
_ kT

(0%) = (0)* = =~ (2= 7/2)

(0%)

One could argue that () = 0 because of symmetry. This depends on how exactly you define 6.
I count both answers as correct.



Problem 3: Specific heat of an anharmonic oscillator

At low temperatures, the particle is close to the minimum of the potential at x = 0! We can
therefore expand the potential in a power series about x = 0. The kinetic energy is quadratic in
the momentum, it thus contributes kp/2 to the specific heat, and we can focus on the positional
part of Q.

Qo = [ dvexpl=BVocosh(aao)] = [ dexpl-pVa(i-ra /(20 4o (A1) +a%) (6108 +O("))

—00 —00

The quadratic term restricts the z values to || < e = /23/B8. Therefore, the higher order
terms in the expansion are of order T or smaller for small 7', and we can expand the exponentials
of these terms.

Qpot ~ /OO dx exp[—BVor?/(223)] {1 — BVpat /(4! x%) — BVox®/(6!x§) + (BVox* /(4! x())? /2 + O(ﬂ:cg)} =

= \/2m2}/BVy [1 — 3/(418Vp) — 15/(618%V) + 105/[2 * 41282V
I Qpot = —% InB+1In[1—1/(88Vp) +9/(1283°V})]
For small T, the log can be expanded In(1 +z) =1+ x — 22/2 + ....
I Qpot = —% IngB—1/(86Vo) +1/(168%V3)

“;gm = 1/(28) — 1/(882Vh) + 1/(88°V2)

OE) kg kg kET 3kLT?

<Epot> = -

C =

or 2 2 Ay 8V



