
Physics 6311: Stat. Mech. - Solutions of Homework 5

Problem 1: Comparison of the microcanonical and canonical ensembles: system of
two-level atoms

a) Microcanonical ensemble

N0 +N1 = N , n0 = N0/N , n1 = N1/N , n0 + n1 = 1
E = N0E0 +N1E1 = N1ε

(i) Ω = N !/(N0!N1!)
S = kB ln Ω = kB[ln(N !)− ln(N0!)− ln(N1!)]

minimum S: S = 0 for N0 = 0, N1 = N or N0 = N,N1 = 0
(just a single microstate, i.e maximum order)

maximum S: S = kB[ln(N !)− 2 ln(N/2!)]
(maximum disorder)

S/N = (kB/N)[N lnN −N −N0 lnN0 +N0 −N1 lnN1 +N1]
S/N = kB[−(N0/N) lnN0 − (N1/N) lnN1 + lnN ]
S/N = kB[−(N0/N) ln(N0/N)− (N1/N) ln(N1/N)]
S/N = kB[−n0 lnn0 − n1 lnn1]

(ii) 1/T = (∂S/∂E), E = N1ε
1/T = (1/ε)(∂S/∂N1) = (1/ε)(∂(S/N)/∂(N1/N))
1/T = (kB/ε)(∂/∂n1)[−(1− n1) ln(1− n1)− n1 lnn1]
1/T = (kB/ε)[ln(1− n1) + 1− lnn1 − 1]
1/T = (kB/ε) ln(n0/n1)

kBT = ε/ ln(n0/n1)

T > 0 if n0 > n1, usual case – occupation probability decreases with increasing energy
T < 0 if n0 < n1, inversion, important i.e in lasers, in equilibrium only possible with
bounded energy spectrum

with increasing energy the temperature goes T = 0+→ +∞→ −∞→ 0−
(iii) C = (∂E/∂T ) = ε(∂N1/∂T )

1/C = (1/ε)(∂T/∂N1) = 1/(NkB)(∂/∂n1)[1/ ln((1− n1)/n1)]
1/C = −1/(NkB)1/ ln2(n0/n1)(−1/n0 − 1/n1)
C = NkBn0n1 ln2(n0/n1)

C > 0 for all temperatures!

b) Canonical ensemble

(i)

Z1(β) = 1 + e−βε, p0 = 1/(1 + e−βε), p1 = e−βε/(1 + e−βε)

A = −NkBT lnZ1(β) = −NkBT ln(1 + e−βε)

(ii)

U = −N(∂ lnZ1/∂β) = Nεe−βε/(1 + e−βε) = Nεp1



TS = (U −A) = Nεe−βε/(1 + e−βε) +NkBT ln(1 + e−βε)

C = (∂U/∂T ) =
Nε2

kBT 2

eε/kBT

(1 + eε/kBT )2

(iii)

kBT = ε/ ln(p0/p1)

U = Nεp1

C = NkB ln2(p0/p1)p0p1

S = −kB(p0 ln p0 + p1 ln p1)

Results are identical to those obtained from the microcanonical approach above.



Problem 2: Two interacting magnetic moments (10 points)

a) In the ground state, the two moments will be parallel.

b)

Q =

∫
dφdθ sin θ exp(βJ cos θ) = 2π

∫ 1

−1
dx exp(βJx) =

4π

βJ
sinh(βJ)

A = −kBT ln

[
4π

βJ
sinh(βJ)

]
c)

〈E〉 = −∂ lnQ

∂β
= −J coth(βJ) + 1/β

C =
∂〈E〉
∂T

= kB

[
1 +

J2

k2BT
2
(1− coth2(βJ))

]
d) At low temperatures, the angle θ will be small. Thus we can expand sin θ ≈ θ and cos θ ≈

1− θ2/2.

〈θ〉 =

∫∞
0 θdθ θ exp(−βJθ2/2)∫∞
0 θdθ exp(−βJθ2/2)

=
√
π/(2βJ)

〈θ2〉 =

∫∞
0 θdθ θ2 exp(−βJθ2/2)∫∞
0 θdθ exp(−βJθ2/2)

= 2/(βJ)

〈θ2〉 − 〈θ〉2 =
kBT

J
(2− π/2)

One could argue that 〈θ〉 = 0 because of symmetry. This depends on how exactly you define θ.
I count both answers as correct.



Problem 3: Specific heat of an anharmonic oscillator

At low temperatures, the particle is close to the minimum of the potential at x = 0! We can
therefore expand the potential in a power series about x = 0. The kinetic energy is quadratic in
the momentum, it thus contributes kB/2 to the specific heat, and we can focus on the positional
part of Q.

Qpot =

∫ ∞
−∞

dx exp[−βV0 cosh(x/x0)] =

∫ ∞
−∞

dx exp[−βV0(1+x2/(2x20)+x
4/(4!x40)+x

6/(6!x60)+O(x8))]

The quadratic term restricts the x values to |x| . xmax =
√
x20/β. Therefore, the higher order

terms in the expansion are of order T or smaller for small T , and we can expand the exponentials
of these terms.

Qpot ∼
∫ ∞
−∞

dx exp[−βV0x2/(2x20)]
{

1− βV0x4/(4!x40)− βV0x6/(6!x60) + (βV0x
4/(4!x40))

2/2 +O(βx8)
}

=

=
√

2πx20/βV0
[
1− 3/(4!βV0)− 15/(6!β2V 2

0 ) + 105/[2 ∗ 4!2β2V 2
0 ]
]

lnQpot = −1

2
lnβ + ln

[
1− 1/(8βV0) + 9/(128β2V 2

0 )
]

For small T , the log can be expanded ln(1 + x) = 1 + x− x2/2 + ....

lnQpot = −1

2
lnβ − 1/(8βV0) + 1/(16β2V 2

0 )

〈Epot〉 = −∂ lnQpot
∂β

= 1/(2β)− 1/(8β2V0) + 1/(8β3V 2
0 )

C =
∂〈E〉
∂T

=
kB
2

+
kB
2
−
k2BT

4V0
+

3k3BT
2

8V 2
0


