Itinerant ferromagnetic quantum phase transition

Thomas Vojta
Department of Physics, University of Missouri-Rolla
(with D. Belitz and T.R. Kirkpatrick)

- Coupling between magnetization and additional fermionic modes
 ⇒ non-local order parameter theory
 ⇒ clean electrons: 1st order transition
 ⇒ dirty electrons: non-mean field exponents

- Coupled local field theory for all soft modes
 ⇒ fluctuation induced transitions and log. corrections to scaling
Motivation

Itinerant ferromagnetic quantum phase transition is one of the most obvious quantum phase transitions

Experiments

- \text{MnSi, UGe}_2, \text{ZrZn}_2 – pressure tuned
- \text{Ni}_x\text{Pd}_{1-x}, \text{URu}_{2-x}\text{Re}_x\text{Si}_2 – composition tuned

Transition can be

- first order (MnSi, UGe$_2$) or
- second order with mean-field exponents (ZrZn$_2$, Ni$_x$Pd$_{1-x}$) or
- second order with non-mean-field exponents (URu$_{2-x}$Re$_x$Si$_2$)

Experiments seemingly inconclusive
Order parameter field theory of the ferromagnetic quantum phase transition

Starting point: microscopic model of interacting electrons

\[S = S_0 + S_{trip} = S_0 + \frac{\Gamma_t}{2} \int d^d r d\tau \ n_s(\tau) \cdot n_s(\tau) \]

\(n_s \) – spin density
\(S_0 \) – reference system, interacting Fermi liquid

Landau Ginzburg-Wilson philosophy

Derive an effective field theory in terms of the order parameter only, i.e., integrate out other degrees of freedom

\[\Rightarrow \text{potentially dangerous if soft modes are integrated out!} \]
Soft modes, long-range correlations, and generic scale invariance

long-range (power-law) correlations: due to soft (gapless) modes

critical phenomena: critical modes become soft at one particular point in the phase diagram

generic scale invariance: long-range correlations in large regions of the phase diagram due to additional soft modes in the system (due to conservation laws or broken symmetry)

Examples for generic scale invariance

- long-time tails in equilibrium correlation functions of classical fluids
- non-existence of virial expansion for transport coefficients
- long-range spatial correlations in classical non-equilibrium states
- weak localization effects in disordered electronic systems
Generic scale invariance in a 3D Fermi liquid

quasi-particle dispersion: \[\Delta \epsilon(p) \sim |p - p_F|^3 \log |p - p_F| \]
specific heat: \[c_V(T) \sim T^3 \log T \]
static spin susceptibility: \[\chi^{(2)}(\mathbf{q}) = \chi^{(2)}(0) + c_3 |\mathbf{q}|^2 \log \frac{1}{|\mathbf{q}|} + O(|\mathbf{q}|^2) \]
in real space: \[\chi^{(2)}(\mathbf{r} - \mathbf{r}') \sim |\mathbf{r} - \mathbf{r}'|^{-5} \]
in general dimension: \[\chi^{(2)}(\mathbf{q}) = \chi^{(2)}(0) + c_d |\mathbf{q}|^{d-1} + O(|\mathbf{q}|^2) \]

Long-range correlations due to coupling to soft particle-hole excitations

For finite temperatures or finite magnetization particle-hole excitations are not soft \(\Rightarrow \) singularities are cut-off:

finite magnetization/field: \[|\mathbf{q}|^{d-1} \to (|\mathbf{q}| + m)^{d-1} \]
finite temperatures: \[|\mathbf{q}|^{d-1} \to (|\mathbf{q}| + T)^{d-1} \]
Landau-Ginzburg-Wilson free energy functional

\[\Phi(M) = \int dx dy \, M(x) \left[1 - \Gamma_t \chi^{(2)} \right] M(y) - \sum_{n=3}^{\infty} \frac{(-1)^n}{n!} \Gamma_t^{n/2} \int \chi^{(n)} M^n \]

\(\chi^{(n)} \) — \(n \)-point spin density correlation functions of reference system \(S_0 \)

Fermi liquid:

\[\chi^{(2)}(q, \omega) = \text{const} + |q|^{d-1} + \frac{\omega}{|q|} \quad (d < 3) \]

\[\chi^{(2)}(q, \omega) = \text{const} + |q|^2 \ln \frac{1}{|q|} + \frac{\omega}{|q|} \quad (d = 3) \]

\[\chi^{(n)}(q, 0) \sim |q|^{d+1-n} \]

\(\Rightarrow \) Fermi liquid singularities provide leading \(q \) dependence at QPT

Mechanism is very general, leads to singular LGW theory for all QPT with zero wavenumber order parameter
Resulting Landau-Ginzburg-Wilson functional

\[
\Phi(M) = \sum_{q, \omega} M^*(q, \omega) \left[t + c_d |q|^{d-1} + |q|^2 + \frac{\omega}{|q|} \right] M(q, \omega) \\
+ \int u^{(4)}(q, \omega) M^4 + ...
\]

- singular $|q|^{d-1}$ term is leading for $d \leq 3$
- higher order coefficients $u^{(4)}(q, \omega)$ contain stronger singularities
- $|q|^{d-1}$ term has unusual negative sign, $c_d < 0$
 \(\Rightarrow\) continuous ferromagnetic transition seems to be impossible
Order parameter field theory for dirty electrons

Dirty Fermi liquid singularities:

\[
\chi^{(2)}(q, \omega) = \text{const} - |q|^{d-2} + \frac{\omega}{|q|^2}
\]

\[
\chi^{(n)}(q, 0) \sim |q|^{d+2-2n}
\]

electrons are diffusive \((\omega \sim q^2)\) rather than ballistic \((\omega \sim q)\)

\[
\Phi(M) = \sum_{q, \omega} M^*(q, \omega) \left[t + c_d |q|^{d-2} + |q|^2 + \frac{\omega}{|q|^2} \right] M(q, \omega) + O(M^4)
\]

- generic sign of the singular term is ferromagnetic, \(c_d > 0\)
 \(\Rightarrow\) ferromagnetic QPT will be continuous

- power counting: Gaussian fixed point is stable

- non-mean field critical exponents (below \(d = 4\)):
 \(z = \delta = d, \ \nu = 1/(d-2), \ \eta = 4 - d, \ \beta = 2/(2 - d), \ \gamma = 1\)
1st order transition in clean ferromagnets

Generalized mean-field theory, taking the cut-off singularities into account

$$\Phi = tm^2 - vm^4 \log(1/m) + um^4$$

1st order transition because of negative sign of singular term

Power counting:
higher order terms irrelevant
mean-field theory essentially exact
Multicritical points and complicated phase diagrams

Including the effects of disorder and the various cut-offs leads to more sophisticated generalized mean-field theory.

\[u=1, \, v=0.5, \, \alpha=0.5, \, \beta=1 \]

\[u=1, \, v=0.5, \, \alpha=2, \, \beta=1 \]
Coupled field theory

- order parameter theory not very satisfying conceptually
 ⇒ all soft modes should be treated on the same footing
- power counting can be dangerous in a theory with singular vertices
- system has different time scales for critical fluctuations and fermionic soft modes

⇒ Coupled field theory for magnetization and fermionic soft modes

\[S[M, q] = S_{M}[M] + S_{q}[q] + S_{c}[M, q] \]

- \(S_{M}[M] \) local static magnetic LGW functional
- \(S_{q}[q] \) action of the soft fermionic particle-hole excitations
dirty case: well-known \(\text{NL}\sigma\text{M} \) (Wegner)
clean case: clean analog of the \(\text{NL}\sigma\text{M} \)
- \(S_{c}[M, q] \) coupling, terms of the form \(Mq, Mq^2, \ldots \)
Results from the coupled field theory

Clean Ferromagnets

- 1st order transition found in non-local LGW theory is induced by fluctuations due to the fermionic soft modes
- if this transition is only weakly 1st order it can be destroyed by order parameter fluctuations (which feed back into the fermionic modes)
- resulting fluctuation induced 2nd order transition has an upper critical dimension of \(d^c_+ = 3 \).

Dirty Ferromagnets

- fixed point found in non-local LGW theory is marginally unstable (coupling \(Mq^2 \) is marginal)
- critical exponents remain unchanged (strongly non-mean field), but complicated log. corrections to scaling arise
Conclusions

• coupling between the order parameter and soft fermionic particle-hole excitations has drastic influence on the itinerant ferromagnetic quantum phase transition

• clean electrons
 – transition can be of first order (MnSi, UGe$_2$) or
 – second order with mean-field exponents in 3D (ZrZn$_2$, Ni$_x$Pd$_{1-x}$)

• disordered electrons
 – transition generically of 2nd order
 – non-mean field exponents (URu$_{2-x}$Re$_x$Si$_2$)

Ferromagnetic QPT is much more interesting than previously thought