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ABSTRACT

We study the e ects of quenched weak disorder on quantum phasansitions
in disordered magnets. The presence of disorder in the system ¢@ad to a variety of
exotic phenomenag.g, the smearing of transitions or quantum Gri ths singularities.

Phase transitions are smeared if individual spatial regions can ordadepen-
dently of the bulk system. In paper I, we study smeared quantumhase transitions
in binary alloys A; «By that are tuned by changing the compositiorx. We show that
in this case the ordered phase is extended over all compositions 1. We also study
the composition dependence of observables. In paper Il, we imgate the in uence
of spatial disorder correlations on smeared phase transitions. As experimental
example, we demonstrate in paper Ill, that the composition-drive ferromagnetic-to-
paramagnetic quantum phase transition in Sr ,Ca,RuO;3 is smeared.

When individual spatial regions cannot order but uctuate slowly, he phase
transition is characterized by strong singularities in the quantum Giths phase. In
paper IV, we develop a theory of the quantum Gri ths phases in disalered ferromag-
netic metals. We show that the quantum Gri ths singularities are stronger than the
usual power-law quantum Gri ths singularities in insulating magnets. In paper V,
we present an e cient numerical method for studying quantum phae transitions in
disordered systems wittO(N) order parameter symmetry in the largeN limit. Our
algorithm solves iteratively the largeN self-consistent equations for the renormalized
distances from criticality.

Paper VI is devoted to the study of transport properties in the gantum
Gri ths phase associated with the antiferromagnetic quantum phae transition in a
metal. We nd unusual behavior of transport properties which is in gntrast to the

normal Fermi-liquid behavior.
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1. INTRODUCTION

1.1. PHASE TRANSITIONS AND CRITICAL PHENOMENA

A phase transition is the abrupt transformation of a thermodynant system
from one phase to another. Examples are the phase transitionswéter [2]. The
water can exist as a gas, liquid, or solid depending on temperaturecapressure as
shown in Fig.[1.1. The solid and gas phases are connected along the A where
they coexist and are in equilibrium. The liquid and solid phases are coruted along
the line AD, they also coexist and are in equilibrium on the coexistence &nAD.
Similarly, liquid and gas can also coexist. These two phases are sepaataby the
liquid-gas coexistence line AB. At point A, at which the three lines intesect, solid,
liquid, and gas all exist in equilibrium. This point is known as theriple point.

The phase transitions occurring when crossing coexistence lineg aharac-
terized by discontinuities in the rst derivatives of the Gibbs free energy across the
coexistence lines. They are calledst-order phase transitions. First order phase
transitions involve latent heatwhich is absorbed or released during the crossing of
the coexistence lines. The point B at which the liquid and gas phasesafvater be-
come identical is called theeritical point. It is characterized by acritical temperature
T. and acritical pressureP.. At temperatures aboveT. and pressures higher tha®.,
there is only one uid phase. The transition occuring at the critical pint is called
a second-orderor continuous phase transition. At continuous phase transitions, no
latent heat is released or absorbed and thest derivatives of the Gibbs free energy
are continuous.

Another example of phase transitions are magnetic phase transit& Just as

a uid can exist as a liquid, or a gas, a magnetic system can exist as artenagnet
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Figure 1.1: Schematic phase diagram of water.

or paramagnet. But, just as liquid and gas are not the only phase$ @ uid system,
the ferromagnetic and paramagnetic phases are also not the onlyot possible phases
of magnetic systems.

The most basic model of magnetic systems is the Ising model. The tsimodel
consists of a lattice ind > 1 dimensional space. The classical spin variab = 1
is attached to thei-th lattice site. In the presence of an external magnetic eld, the

model is described by the following Hamiltonian

H= J SS h S; (1.1)

wherelJ is the interaction between spins anth is a uniform external magnetic eld. In
the absence of the magnetic eld =0, for J > 0 and at temperaturesT < T, where
T, is the critical temperature, spins prefer to align in parallel; the coasponding phase
is called the ferromagnetic phase (Fig. 1.2a). Far < 0 and low temperatures, the
spins are antiparallel, and the system is in the antiferromagnetic pka (Fig.[1.2b).
At temperatures T > T, the system shows paramagnetic behavior (Fig.—1.2d)e.,
the spins uctuate between up and down. Di erent phases can beistinguished by

an order parameter a quantity that is zero in one phase (the disordered phase) and
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a) ferromagnet

by b v by by

b) antiferromagnet

by oy by by

¢) paramagnet

Figure 1.2: Magnetic systems. a) ferromagnet, b) antiferromagt) c¢) paramagnet,
spins uctuate in time.

non-zero in the other, ordered phase. In a ferromagnetic systethe order parameter
is the magnetisation per sitean = hS;i. m = 0 in the paramagnetic phase andn 6 0
in the ferromagnetic phase as shown in Fig.—1.3a.

At low temperatures T < T, the ferromagnet has two equivalent thermody-
namic states with magnetizationsm > 0 andm < 0. In the presence of an external
magnetic eld h 6 0, the eld energy will tend to align the spins with h. Therefore,
as h changes from being negative to positive, the sign of the magnetizar, m, will
also change abruptly. So, fol  T. the eld-driven transition between two up and
down phases is rst order. It turns into a continuous transition atT = T, (Fig. L.3b).

1.1.1. Landau Mean-Field Theory. Landau theory postulates that for a
given phase transition, the free energ¥ (known as the Landau free energy) is an

analytic function of the order parameterm and can be expanded in a power series

F = Fo+ tm?+ vm®*+ um*+ O(m®) hm; (1.2)
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Figure 1.3: Phase transition in a ferromagnet. a) Magnetisation as fanction of
temperature in the ferromagnetic Ising model, b) Phase diagram tie
ferromagnetic Ising model.

wheret;v;u are system parameters that may depend on external parametesuch
as temperature, pressure and chemical compositietc.. h is an external eld. The
correct physical value of the order parameter can be determinéy minimizing the
free energy. Landau theory only uses the average valuengfthus it can be understood
as a sophisticated mean- eld theory.

If v 80, Landau theory describes rst-order phase transitions. Intie absence
of the external eld, fort>t , wheret =9v2=32u, there is a minimum only atm =0
(Fig.L4a). Fort<t , asecondary minimum and maximum appear in addition to the
minimum at m = 0 (Fig. [.4b). As t is lowered further to the valuet® both minima
have the same value (Fig_Tl4c). Below, the secondary minimum is now the global
minimum, and the value of the order parametem which minimizes the Landau free
energyF jumps discontinuously fromm = 0 to a non-zero value (Fig[1.4d).

For v = 0, Landau theory describes continuous phase transitions. In ¢h
absence of external eld, and fot > 0, the Landau free energy has a single minimum

at m =0 (Fig. L.5h). Fort 0, the minima of F are at (Fig.[1.3b,c)

r

ot .
= (0 (1.3)
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Figure 1.4: First-order phase transition. The Landau free energgs a function of
order parameter for various temperatures.

Thus, according to Landau theory, criticality in the order paramegr is char-
acterized by a critical exponent = 1=2. The singularity in Eq. (L1.3) is an example
of critical singularities. Singularities also occur in the vicinity of the dtical point in

the following observables

Cijt ; (1.4)
ot (1.5)

and
me(h)  h* : (1.6)

Here, C is the specic heat, is the order parameter susceptibility, andm, is the
order parameter at the critical point. , and are called critical exponents. The
values of critical exponents within Landau theory are given in the Tae[1.1. They
are identical to the usual mean- eld values.

1.1.2. Breakdown of Landau Theory. Landau theory uses the average

order-parameter while neglecting uctuations about this averageThe e ects of these
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Figure 1.5: Second-order phase transition. The Landau free eggras a function of
order parameter for various temperatures.

uctuations can become important near the critical point and caus the Landau

theory to fail . The uctuations are described by the correlation @inction
G(f1; ) = hm(r)m(%)i  h m(¥)i hm(+)i : (1.7)

For translationally invariant system G(#q;+:) = G(t1 +) = G(¥). Near the the

critical point, G(¥) has the form [2]

G(¥) rd%exp( r=): (1.8)

The critical exponentis = 0in the Landau theory. The correlation length diverges

at the critical point as
it (1.9)

implying long-range correlations in space. Here,is the correlation length exponent.
In addition to the long-range correlations in space, there are angous long-

range correlations of the order parameter uctuations in time. Clese to the critical



Table 1.1: Critical exponents in the Landau mean eld theory.

crit. exp.
/2 1 3 0 0 1/2

point, the correlation time diverges as
c it % (1.10)
where z is the dynamical critical exponent.

The relative strength of the order-parameter uctuations can b estimated by

R
. d .
_ I dFG(R)]

Pio = R jtmme (1.11)

The criterion that P g be small P.g 1) for the validity of Landau theory is
called the Ginzburg criterion HB]. Substituting Egs. (1.3,1.8,1.9) into Eq(1.11), the

Ginzburg criterion takes the form
td 2 2 1. (1.12)

Thus, the Landau theory is valid in the limitt! O, if

2 +2

d> d; (1.13)

where d* is the upper critical dimension. Inserting mean- eld values = 1=2 and
= 1=2 givesd® = 4. Thus, according the Ginzburg criterion the Landau theory
breaks down ford < 4. Another critical dimension is the so-called lower critical

dimensiond . Belowd , no phase transition is observed in the system. In such a



case, no long range order is possible due to strong uctuationd. = 1; or 2 for Ising

and O(3) Heisenberg symmetries, respectively.

1.1.3. Landau-Ginzburg-Wilson Theory. As we have seen in the last
subsection, Landau theory breaks down below the upper criticalirdension d™ =
4 because of the strong order parameter uctuations. In ordeio describe phase
transitions more adequately one needs to generalize the Landaedrenergy function
(L.2) to a functional that depends on a spatially varying order pamaeter eld (r).
Expanding in both (r) and its gradient yields the Landau-Ginzburg-Wilson (LGW)

functional (for the casev = 0)

Z
SLON= 1 & A+ dr (OF+u ) (114)

The LGW theory is a nontrivial many-body problem which cannot be deed in
closed form. Wilson solved this problem for which he was awarded a NbPrize in
Physics in 1982H4|:|5]. He treated the Landau-Ginzburg-Wilson thgoby means of
a renormalization group (RG) [2] which is based on the Kadano scalin We will
discuss both scaling theory and RG in details below.

1.1.4. The Scaling Hypothesis. In this subsection, we will discuss the
scaling theory BZDB] The scaling hypothesis is based on the idQ& [7attltlose to
the critical point, the only relevant length is the correlation length. Let us consider
a system with a lattice constanta, close to ferromagnetic phase transition. The
neighboring spins are mostly parallel. Therefore we can replace a i@ neighboring
spins of sizeba by a single \renormalized" spin. If we do this everywhere in the
lattice, we get a system with a new lattice constanba,. If we now rescale all lengths
by a factor b, the distance from criticality t and eld h will be renormalized ag, = b''t

and h, = b"h. Rescaling length byb leads to the change of the free energy density



f by a factor ofb 9. f therefore ful lls the homogeneity relation

f(th) = b % (Bt " h) (1.15)

Because the length scale is reduced by the factor lpfcorrelation length is changed
by the same factor, °= =b. Therefore, the scaling form for the correlation length

has the form

(th)= b (bt b"h): (1.16)

Using scaling forms Eq.[{1.16,1.16), we can nd the scaling behavior thier-
modynamic functions and derive scaling relations.
As the rescaling factorbis arbitrary, we can choose it such thab'tt = 1. This

leads to the scaling forms

f(th) 19 g (h=th™); (1.17)

and

(Gh) t g (h=th™): (1.18)

Thus, in zero magnetic eld, the correlation length diverges as

O=1i (1.19)

with = 1=y.

The zero- eld magnetization can be found as
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m(t) = %L t(d yn)=y - (1.20)

Comparing the above equation with Eq.[(T1]3) gives the scaling relation
=(d ¥n); (1.21)

The magnetization at the critical point t = 0, with the choice of b = h ¥ in

Eqg. (T.I3), has the form
m  h(@ Y3 (1.22)

which gives Widom's scaling relationHS]

Yoo,
d yn

(1.23)

Similarly, the susceptibility (t) = @m=@hj tj @ 9 and gives Fisher's scaling

law [9],

=@2yn d); (1.24)

and the specic heatC(t) = T@f=@f jtj 2 jtj leads to Joshephson's

identity [

=2 d: (1.25)

Joshephson's scaling law is valid only below the upper critical dimension.
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Finally, using scaling relations derived above, we can obtain Rushbiais

identity [

+2 + =2; (1.26)
and Widom's identity

+ (+1)=2: (1.27)

Scaling theory was originally developed on a purely heuristic basis. Tadit
can be derived by means of the renormalization group. It is an extreely powerful
tool for analyzing experiments and numerical data.

1.1.5. Renormalization Group Theory. The renormalization group (RG)
method B&] is based on the idea that close to the critical point, theorrelation
length, , is the only important length scale, and that microscopic length scaeare
irrelevant. The fact that at the critical point the correlation length diverges causes
the critical behavior to be dominated by long-wavelength uctuatims. If we inte-
grate over uctuations having wavelengtha . . ba a a being lattice constant, the
behavior of the correlation function for distances > ba will not be changed. The
integration over short-wavelength uctuations assigns to the aginal system another
corresponding system having the same behavior at long distancd$e transforma-
tion between these systems is called a renormalization-group trémsnation (RGT).
It leads to a system with a new Hamiltonian with new coupling constanta/hich can
be obtained from the old one by the RG recursion relations. RGT careliterated by
integrating over uctuations having wavelenghtsba. . Ka etc..

The crucial ingredient of the RG method is existence oked points. A xed
point is a point where the Hamiltonian is mapped onto itself under the RG. Corre-

spondingly, at xed points the correlation length does not change under the RGT
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and thus it can be O orl . The xed pointwith = 1 isreferred to as ecritical xed
point, and a xed point with =0 as atrivial xed point. The behavior of the RG
ows, (i.e. the change of the Hamiltonian parameters under the RGT) determathe
phase diagrams. A xed point can be attractive, repulsive, or mixedIf the system
starts close to an attractive xed point, then the iterations bringit back to the xed
point. On the other hand, if the system starts close to a repulsivexed point, it is
driven away from that by the iterations. The xed point is mixed if the system is
repulsive in one direction and attractive in another direction. At thecritical point,
the RG xed point is repulsive in one direction and attractive in all othe directions.
Renormalization Group in the momentum space. As an example, let
us construct explicitly the RG transformations in the simple case ofhe Gaussian

model The model is described by the Landau functional in the momentunpace

Z

H = hm@O) +~

> dg [t + jai’lim(a)i®; (1.28)

jaj<

in the presence of external magnetic eldh. Here, =1=T |:| is a high momentum

cut o. This model is de ned only for t > 0, since there is nan* term to insure
stability for t < 0. However, the partition function is still singular att = 0. So, the
model represents approaching a phase transition from the diseréd side. To do RG
calculations, we need to implement three following steps:

(1) Coarse grain: We divide the uctuations into two components as:

8

2 m f 0<qg< =b

m(q) = (@ for ’ (1.29)
>
© (@) for =p<gc<

We set Planck's constant and Boltzmann constant to unity (~= kg = 1) in what follows.
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Then, we integrate out the short-wavelength uctuations (q) (Fig. L.6). The
functional integral in the partition function involves only integrations over indepen-

dent modes. We obtain

Z Z

Z =2y, Dm(q)exp hm(0) + !

5 dg [t + jaiZim(a)i® (1.30)
jaj< =b

where Z, is the non-singular part resulting from integration over .

(2) Rescale:Next, we need to rescale momenturg = b 1q% This leads to

z
HO= M)+ 5 da%b ¢ [t+ b AgTlm(ah: (1.31)
jaj<
(3) Renormalize: Finally, we rescalem = zmP such that coe cient in the

above Hamiltonian in front ofjq9? is recovered to £2. This leads to the renormalized

Hamiltonian
1Z
H°=  h%m(0) + > d'g® [t°+ jq3%lim(q%;?; (1.32)
jaj<
with the renormalized parameters
hO= hbt*92; 0= tb?: (1.33)

These are the recursion relations.

There is a unique xed point att = h = 0; called Gaussian xed point.
Comparing Eg. (1.3B) to Eq. [1.1b), we can identify the exponentg = 2 and y;, =
1+ d=2. Using these exponents in SeC._1.1.4, one can nd the critical exgnts

=1=2and =2 d=2.
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Figure 1.6: The reduction of momentum by a factobin the RG scheme.

RG methods for more complex models follow the same basic steps. tihe
technical implementation is di erent.

1.1.6. Quantum Phase Transitions. Quantum phase transitionsHZ] oc-
cur by varying a non-thermal parameter such as magnetic eld, pssure or chemical
composition at absolute zero temperature. The macroscopic ordsan be destroyed
by quantum uctuations which are in accordance with Heisenberg'sneertainty prin-
ciple. The critical point associated with a continuous quantum phasgansition is
called quantum critical point. Quantum phase transitions may seem kkan ab-
stract theoretical idea of little practical consequence becausésalute zero cannot
be reached. However, they are the key to explain a wide variety okperiments.
The quantum uctuations dominate the material's properties in the vcinity of the
quantum critical point not just at absolute zero but also at low but ron-zero temper-
atures. In metallic systems, they can cause strong deviations finche conventional
Fermi-Liquid behavior of normal metals|[13].

An experimental example of a quantum phase transition was found ithe
compound LiHoF, by Bitko et al. in 1996 [1]. The phase diagram of this compound is
shown in Fig.[I.T. The phase transition between the ferromagnetiadparamagnetic
phases can be achieved in two di erent ways:i)(thermal (classical) phase transition,

by varying the temperature at xed small external magnetic eld aad (ii) quantum
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Figure 1.7: Temperature-transverse magnetic eld phase diagraof LiHoF, after ﬂ].

phase transition, by changing external eld at absolute zero temgrature T = 0. As
pointed out above, quantum phase transitions are caused by quam uctuations.
In LiHOF 4 compound, these uctuations are caused by the transverse nmragic eld,
they increase with increasing eld and destroy the ferromagnetiader at the quantum
critical point.

To understand relations between classical and quantum phase tisations, let
us look at the qguantum-to-classical mapping. In classical statisat mechanics, static
and dynamic behaviors decouple. The kinetic and potential parts tfie Hamiltonian

commute, resulting in factorization of the partition function

Z Z
Z= dpe Hwn idge Hreet = 740 Z o (1.34)

The kinetic contribution to the free energy will usually not display anysingularities,
since it derives from the product of simple Gaussian integrals. Thdéoee, one can
study classical phase transitions using a time independent Land&inzburg-Wilson

theory such as equation (1.14).
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In contrast, in quantum mechanics the kinetic and potential partsof the
Hamiltonian do not commute. Thus, the partition function does notéctorize and one
must solve for the dynamics together with the thermodynamics. Térefore, quantum
mechanical analogs of the Landau-Ginzburg-Wilson theory need te formulated
in terms of space and time dependent elds. A simple example of suchgaantum
Landau-Ginzburg-Wilson functional has the form ﬁ5]

Z Z

Sl1=  d ' [@ (r; )+[r (r; P+r 2 )+ -

i 5 ;) 5 (1.35)

where and (r; ) are imaginary time and the order parameter eld, respectively.
r measures distance to the quantum critical point. At quantum phaes transitions,
the imaginary time acts as an additional coordinate. In addition to tke correlation
length , quantum system is characterized by the correlation length in imagany time
direction . As the transition is approached both the order parameter coragion

length and correlation time  diverge:
i i (1.36)

where z is the dynamical critical exponent.

At non-zero temperatures, the extension of the extra dimensias nite and
close to the critical point where > | the extra dimension cannot a ect the critical
behavior. In contrast, atT = 0, the extension in imaginary time direction is in nite,
and the critical behavior is described by a theory in higher dimensionThe quan-
tum phase transition in d dimensions is equivalent to some classical phase transition
in higher d + z dimensional space. If space and imaginary time enter the theory
symmetrically the dynamical exponentz = 1, but in general, it can be larger than

one.
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Let us now discuss properties of the system near a quantum critigaoint
qualitatively []. The schematic phase diagram is shown in Fig. 1.8. Thésdrdered
phase at nite temperaturesT can be divided into di erent regimes. For lowT and
r > 0, the extension in imaginary time direction < , equivalently T <r . In
this regime quantum mechanics is important and excitations are wellkeded quasi-
particles. Correspondingly, the regime is called \quantum disordett& For magnetic
transitions in metallic systems, this regime will be the usual Fermi-liquidegime.
For T >T.andr< 0, but > | the order is destroyed by thermal uctuations.
The corresponding regime is called \thermally disordered" regime (eixations are
well-de ned quasiparticles). In the \quantum critical" regime, bourded by crossover
linesT | rj?, properties are determined by unconventional excitation spectm of
the quantum critical ground state, where quasiparticle excitatios are replaced by a
critical continuum of excitations.

In the quantum critical regime, this continuum is thermally excited leding
to unconventional power-law temperature dependencies of obsbles. Quantum
critical behavior is cuto at high temperatures whenT exceeds a characteristic mi-
croscopic energy scale of the system. In a magnet this cuto is tigpical exchange
energy.

For any transition occurring at a nite temperature T,, quantum mechanics is
unimportant for jtj . T& % \because~! ¢ ksgT",wheret=(T Ty)=T.and~!.is
the quantum energy scale. Correspondingly, the critical behavigs described by the
classical theory.

Let us now discuss briey scaling at quantum phase transitions. Bause a
quantum phase transition ind spatial dimensions is related to a classical transition

in d+ z dimensions, the scaling form can be generalized as

f(rh;T)= b @If (rb™ ;hb"; TH): (1.37)
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Figure 1.8: Schematic phase diagram in the vicinity of a quantum critit@oint. The
horizontal axis represents the quantum control parametar, the vertical
axis is the temperatureT. T, is the phase boundary.

Using this homogeneity relation, we can see how quantum uctuatienresult in un-
conventional power-law temperature dependencies of physicdlservables. In the

absence of eldh =0, if we chooseb=r , we nd

f=r @8 Tr ?); (1.38)

or if we substitute b= T 2, we obtain

f = T@2=2g( T 122); (1.39)

Then, for the specic heatC = T@S=@at r = 0, we obtain the unconventional

relation

C(r=0;T) T%; (1.40)

in the quantum critical regime.
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1.2. PHASE TRANSITIONS IN THE PRESENCE OF DISORDER

Realistic materials always contain impurities, defects or other kindsf aisor-
der. Therefore, signi cant attention has been attracted by phse transitions in the
presence of quenched disord&]m 18]. In the following, we coasideak quenched
disorder i.e., time independent-disorder which does not qualitatively adlify the two
bulk phases separated by the transition. The question of how qudred disorder
in uences phase transitions has a long history. Initially, it was thoulgt that any
kind of disorder destroy continuous transitions, because in the ggence of disorder,
the system divides itself up into spatial regions which independentlyndergo the
phase transition at di erent temperatures. Correspondingly, tiere would not be sin-
gularities in observables (see ReﬂlQ] for a historical discussiorowever, later, it
became clear that phase transitions can remain sharp in the presenof disorder in
the system.

1.2.1. Harris Criterion. Harris @] found a simple heuristic criterion that
governs whether weak disorder changes the critical behavior ofaen clean critical
point. Here, we sketch the derivation of the Harris criterion. Let s consider a system
with quenched disorder which undergoes a second order phasensiion at a tem-
perature T2. Due to the presence of the disorder, the e ective transition teperature
T.(r) may be position dependent T.(r) is not a true phase transition temperature
but marks the point where the order parameter ar orders locally). The deviation

from the critical temperature T2 can be written as

Te(r)= Te(r) TO: (1.41)
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The typical value of the uctuations T(r), over a large volume with linear size.

can be estimated using the central limit theorem, yielding
Te(r) L %2 (1.42)

Harris observed that a sharp phase transition can only occur if thactuations
T(r) over a correlation volume ¢ are much smaller than the global distance from
the critical point T2. At the clean critical point | T T2 , therefore the criterion

for the stability of the clean critical point becomes
iT T 9Fr<iT TY; (1.43)
which is ful lled if
d> 2: (1.44)

The last inequality is called the Harris criterion. Thus, if the Harris crierion is
ful lled, weak disorder does not change the clean critical behaviorgHowever, non-
universal quantities such as the critical temperature can be chged.

1.2.2. Strong-Disorder Renormalization Group Theory. We now dis-
cuss the strong-disorder renormalization group methods used &udies of the critical
behavior of disordered systems. These methods are de ned onty flisordered sys-
tems and are performed in real space. Strong-disorder renolimation group cannot
be de ned for pure systems which do not feature spatial heteregeities.

The strong-disorder renormlization group was introduced by Ma, &gupta
and Hu E] for the random antiferromagnetic quantum spin chain. fe idea of
the strong-disorder renormalization group is to identify the strogest coupling in the

system. One then nds the ground state of the corresponding pgaof the Hamiltonian,
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and treats the coupling to the rest of the system perturbatively.Finally, one then
throws out the excited states involving the strong coupling, yielding new e ective
Hamiltonian. This renomalization procedure is repeated ad in nitum.

We now sketch the strong-disorder renormalization group procer in the
random transverse- eld Ising model developed by FishJJZZ]. Theahhiltonian of

the transverse- eld Ising model is given by

H = J Z 2, he x: (1.45)

Here, J; > 0 are the nearest neighbor interactions antd are random trans-
verse elds. X and ? are Pauli matrices representing the spin at site,

0 1 1

0o 1 | 0
X=%>O ]X; y=%o |£; Z=%>l O&:
10 0 1

i O
The orthogonal eigenstates corresponding to the operatof are

01 01

1 0
=X and j#i=@KX:
0 1
For the operator *, the orthogonal eigenstates are

i i =’—'|5’§J—#I and j | =J—|[J§I7:

The renormalization group procedure is as follows:

(1) Find the strongest coupling

maxf J;; hig: (1.46)
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Figure 1.9: Schematic of strong-disorder renormalization group @mation for spin
chain.

If the largest coupling is an interaction, for example = Js, then neighboring
transverse eldsh} and h can be treated as a perturbation to the term J; 3 3,
which has two degenerate ground statgs##i and j ™i . The two spins involved are
joined together into a spin cluster with an e ective transverse eld(Fig. [L.9)

hzhs
2 1,

: (1.47)

We now throw away the excited stateg "#i and j #"i of the spin cluster and treat

the cluster as an e ective spin whose moment is

3= 2t 3! (1.48)

If instead the strongest coupling is a transverse eld, for instaec = h3,
then the associate part oiH is h} % which has a ground statg !i and excited
statej i . The coupling of , to the rest of the system J; § 5 J, 5 % is treated

in second-order perturbation theory. This yields an e ective inteaction
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Jida

J1
1 hy

(1.49)

Throwing out , by neglecting its excited state leads to a new spin chain with one
fewer spin and new couplingl;.

The strong-disorder renormalization steps explained above areesthed in
Fig. 1.9. Under the repeated use of the decimation transformatisnEqs. (1.47,
[1.49), the energy scale is gradually decreased accompanied by aggeegation and
annihilation process of spin clusters. These steps are repeatedimditum.

When the strongest coupling is a eld, the corresponding cluster isnaihi-
lated. In contrast, if the largest one is an interaction, the cluster that it connects
are aggregated into one cluster. In the paramagnetic phase, @mtation dominates
as ! 0, and large clusters are not created. In the ferromagnetic plegashe aggre-
gation dominates as ! 0. A cluster of in nite size is formed at = 0. At the
quantum critical point annihilation and aggregation balance and an imite cluster
rst appears.

Because thel; and h¥ are random quantities, we need to study their probabil-
ity distributions. At each strong-disorder renormalization group &p these probabil-
ity distributions of log J and logh change. The corresponding ow equations for the
distribution functions were derived by Fisher[22]. The renormalizatio ow equations
display very interesting behavior. At the critical point, given by [log) ]ay = [log h*]ay,
here [::]o, denotes disorder average, the widths of the distributions diverges ! O.
Therefore, the critical xed point is called an in nite randomness xed point.

This type of critical point has unusual properties. For example, it dplays

activated scaling rather than conventional power-law scaling. Athte critical point
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the length of the clusters or renormalized bonds scales as
L log —2 : (1.50)

Here, ¢ is a microscopic energy scale and= 1=2 is known as the tunneling critical

exponent. The relation between time-scale and length-scale is thiagarithmic
log ; (1.51)

This implies that the dynamical exponentz is formally 1 . The magnetic moment of

a cluster scales as
0o .
log — ; (1.52)

with =1+ P 5)=2 equal to the golden mean.

The correlation length is found to scale like
ro; (1.53)

where the exponent = 2. Here, the distancer from criticality is de ned as

_ [logh*]ay  [logJ]ay
var(logh*) + var(log J) ’

(1.54)

where var(::) denotes the variance.

The strong-disorder renormalization group can also be used to dyse ther-
modynamic observables o criticality. Fisher ] found strong poer-law quantum
Gri ths behaviors of thermodynamic observables in the so-called Gths region. In

the next subsections, we discuss the Gri ths phase in more detail.
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1.2.3. Classi cation of Critical Points. We emphasize that the Harris
criterion is only a necessary condition for the stability of a clean critad point. It
is not a su cient condition because it only deals with average disordelbbehavior at
large length scale. Possible qualitative e ects at nite length scaleg@not covered by
the Harris criterion. Using the Harris criterion and strong-disorderenormalization
group analysis, we can classify critical points (Motrunich et al. [23]

The rst class includes systems whose clean correlation length craicex-
ponents ful | the Harris criterion. At the critical point, when the length scale
increases (coarse graining), the e ective disorder becomes snradled smaller with-
out bound. At large length scales, the system becomes asymptatly homogeneous.
Thus, disorder is renormalization group irrelevant at the critical pmt. The system is
then controlled by a pure xed point. An example is the classical thre-dimensional
Heisenberg model with the clean critical exponent  0:698 Eﬂ], which ful lls the
Harris criterion.

The second class contains systems whose clean critical exponemtoes not
ful | the Harris criterion. Under coarse graining, the e ective disader strength con-
verges, towards a nite level, and the system is then controlled by aite-disorder
xed point. The critical behavior is of conventional power-law typebut with a dif-
ferent critical exponent which ful lls the Harris criterion. An example is the three-
dimensional classical Ising model with the clean critical exponent  0:627 [25]
which does not ful Il the Harris criterion. In the presence of disordr, the critical
exponent is 0:684 ].

In the third class, the clean critical exponent also does not ful | te Harris
criterion. At the critical point, under coarse graining, the e ective disorder be-
comes larger and larger without bound. The system is controlled bynan nite-
randomness xed point. At the in nite-randomness critical point, the dynamical

scaling is activated (logarithmic) rather than power-law. Examples ithis class are:
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the one-dimensional random quantum spin chain, and one and twastensional ran-
dom quantum Ising systemslj 9].

1.2.4. Rare Region E ects.  We now discuss the e ect of rare strong dis-
order uctuations on phase transitions. Let us consider a randoydiluted classical
magnet (Fig.[I.I0). The dilution reduces the transition temperatw from its clean
value T. to the new value T.(p), where p is the vacancy concentration. However,
there will always be large spatial regions (rare regions) that are wd®d of impurities.
For temperaturesT,(p) < T < T, they can show local order even if the bulk system
is in the disordered phase. The locally ordered rare regions are ntdate but they
uctuate slowly. Griths showed that the rare regions can lead to asingularity in
the free energy in a whole parameter regiofh.(p) < T < T , which is now known
as the Griths phase [30]. The e ect of the rare regions depends othe e ective
dimension of the rare regions. Three cases can be distinguis [31]:

(i) If the rare regions are below the lower critical dimensionalityd, of the
problem, an isolated rare region cannot undergo the phase transit by itself. As
will be shown in Sec[C1.Z]5, the Griths singularity is only an essential om and the
resulting rare-region contributions to observables are small. Thigse is realized in
generic classical systems (where the rare regions are nite in all étions and thus
e ectively zero-dimensional). It also happens at some quantum pbka transitions such
as the transition in the diluted bilayer Heisenberg quantum antifernmagnet I
Here, the rare regions are equivalent to one-dimensional classielgisenberg models
which are belowd, = 2.

(ii) In the second class, the rare regions are exactly at the lowertozal dimen-
sion. In this case, the system shows strong power-law quantumi@rs singularities
(see Secd$. 1.2.6, 1.2.7). This case is realized, e.g., in classical Isingeteadth linear
defects [[34] and random quantum Ising models (each rare regiomsresponds to a

one-dimensional classical Ising model in imaginary time directiormzsga well as in
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Figure 1.10: Schematic plot of a diluted magnet. Circled shaded are@aire region)
is devoid of impurities.

the disordered itinerant quantum Heisenberg magnets (the raregions are equivalent
to classical one-dimensional Heisenberg models with % interaction) [31].

(i) Finally, in the third class, the rare regions are above the lower crital
dimension, i.e., they can undergo the phase transition independentisom the bulk
system. This leads to a smeared phase transition (see Sec. 1.2.8xarkples are:
classical Ising magnets with planar defectQBS] (the rare region® & ectively two-
dimensional) and itinerant quantum Ising magnet 7] wheredtrare regions are
equivalent to classical one-dimensional Ising models witlx 2 interaction.

1.2.5. Classical Griths E ects. Uncorrelated disorder at classical phase
transitions leads to exponentially weak classical Gri ths singularitieqthe singularity
in the free energy is only an essential one). The singularities in theoalynamic
observables can be estimated using optimal uctuation theory [339].

Let us consider the diluted classical magnet (Fig._1.110). The probiity for

the nding an impurity-free region of linear sizeLgr is
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P(Lrr) exp( bLRg): (1.55)

with b a constant that depends on the disorder strength. For tempetares T.(p) <

T < T, the system is in the Griths phase. In an external magnetic eldh, a rare
region of linear sizd_rr can be polarized ifh > k gT, where L2 is the magnetic
moment of a rare region. Using this condition, one can de ne a minimurolume of
a rare region that can be polarizedLd  kgT=h. The rare-region contribution to
the magnetization- eld curve can be estimated by summing over allgbarized rare
regions

Z 1
mRR(h) dLRRP(LRR)Lch{R exp( kaT:h) (156)

Lm

Thus, the rare-region contribution is singular, however it is expoméially weak.

The contribution of the rare regions to the magnetic susceptibility an be
estimated easily. The order parameter susceptibility (Lgrr) is proportional to L&%.
Thus, the rare region contribution to the susceptibility grows as a @wer of its linear
sizeLrr. The rare region contribution to the total susceptibility can be obained by

summing over all rare regions,

Z
RR dLrrP(Lrr) (Lrr): (1.57)

The power law increase of the susceptibility cannot overcome thepmnential drop
in the rare region densityP (Lrr). Thus, the rare region contribution to the order
parameter susceptibility is exponentially weak [40].

1.2.6. Quantum Griths E ects. We have seen in the subsection (1.2.5)

that the rare-region e ects are exponentially weak at classical pise transitions. In
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this subsection, we discuss the rare-region e ects at quantum g@ée transitions. At
quantum phase transitions quenched disorder is perfectly corrtdd in the imaginary
time direction which becomes in nitely extended at zero temperat@. This leads to
enhanced rare-region e ect 8].

For de niteness, we consider the random transverse- eld Ising odel with
random interactions and homogeneous eld. Let us assume thatehinteractions
are binary distributed random variables, so the interaction can takvaluesJ, or Jj
(Jn > J)). Because of the disorder, the critical eldh. will be betweenh., and h,,
critical elds of hypothetical systems withJ; J, or J; J,. The probability for
nding a rare region of linear sizel gr, which has only strong bonds is exponentially

small in its volume

P exp( bL%:): (1.58)

In the Griths phase hy, < h* < hy,, these rare regions are locally ordered. The

energy gap of a rare region is given by [41]

exp( CLig); (1.59)

wherec = log(h=J). Combining the last two Eqs. [1.58[1.59) leads to the power-law

density of states of the rare-region excitations in the low-energggime,

M "ot (1.60)

Here, = b=cis the non-universal Griths exponent. It varies systematically within
the Gri ths phase and vanishes at the critical point.
The power-law density of states (") leads to non-universal power-law quantum

Gri ths singularities of several thermodynamic observables. The are regions are
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equivalent to two-level systems with gap. The rare regions with energy gag > T
are in their quantum ground states while rare regions with gap< T are free. The

number n of free rare regions at temperaturd can be found as

Z
n(T) d ()e 7T=1+e ") T : (1.61)

The uniform static susceptibility can be estimated by summing Curie Seep-

tibilities for all free rare regions, yielding
(M=n(T)=T T *: (1.62)
The speci c heatC can be obtained from
Z
E d ()e T=1+e °T) T*; (1.63)
which gives

cC T: (1.64)

Knowing the specic heat, we can nd the rare region contribution b the

entropy as

S T: (1.65)

To determine the zero-temperature magnetization in a small ordeg eld h,

we note that rare regions with < h are (almost) fully polarized while the rare regions
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with > h have very small magnetization. Thus,

Zy,

m d () h: (1.66)
0

The power-law singularities[[1.6]1 E1.66) are called the quantum Gri tls singularities
Tt
1.2.7. Quantum Griths Singularities in Metals. Let us now discuss
rare-region e ects at quantum phase transitions in a disordered etal. The standard
model that describes quantum phase transitions in metals was inttaced by Hertz
]. He derived the model from a microscopic Hamiltonian of interactinelectrons
(Hubbard model) by integrating out the fermionic degrees of freeth in the partition
function. As the result, he obtained Landau-Ginzburg-Wilson ordeparameter eld
theories for the ferromagnetic and antiferromagnetic quantumhase transitions.

An important di erence between systems of localized spins and mdliia mag-
nets is that magnetic excitations are undamped in the localized spinstgms while
they are damped in the itinerant magnets. This is the result of the epling between
magnetic degrees of freedom and the gapless patrticle-hole exaitag in the metal.
The damping is re ected in the frequency-dependent term in the lradau-Ginzburg-

Wilson action. The Landau-Ginzburg-Wilson action of the clean transon is given

by [14]

Z Z h i
S= d d% (5 )(x ) (x5 )+u ) (1.67)

where (x; ) is the order parameter eld, magnetization for a ferromagnet ashstag-
gered magnetization for an antiferromagnet. It is a scalar for Isjnsymmetry, while

it has three components (1; »; 3) for a Heisenberg magnet. &; ) is the Gaussian
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vertex whose Fourier transform is

(ala)=r+g°+ (Q)'nj: (1.68)

Here,! , is a bosonic Matsubara frequency. The linear frequency dependercorre-
sponds to the overdamped dynamic of the system. This so-calledndau damping
is Ohmic. In contrast, for undamped dynamics the leading frequepdependence in
(L.68) would be! 2. The form of (q) depends on the type of the transition. For anti-
ferromagnetic transitions it is a constant (q) = ¢forq! 0 while for ferromagnetic
transitions (gq) 15qj@. In the former case, the lifetime of the spin- uctuations
(paramagnon$ is q independent re ecting the fact that the order parameter is not
a conserved quantity and paramagnons can decay locally. In the tett case, the
lifetime is g dependent. This is due to the fact that the order parameter, théotal
magnetization, is a conserved quantity in the ferromagnet. Relatian of a low q
excitations thus requires transporting the order parameter ove large distance which
takes a long time and has to di use over a large distance, in long time3he value
of a depends on the character of the electron motion in the system amduals 1 or
2 for ballistic and di usive ferromagnets, respectively. The e ect blong-range inter-
actions created by soft modes in the itinerant ferromagnet modisthe rare-region
e ects [42]. We will discuss dirty ferromagnetic metals in detail in PapgelV] Here,
we discuss antiferromagnetic metals.

Consider for example, an itinerant antiferromagnetic Heisenbergadel. The
randomness can be introduced by making a random function of position,r !
r + r(x). The rare regions are nite in thed space dimensions and in nitely large
in imaginary time. Let us consider a single large rare region which is locatlydered,
while the bulk system is in the disordered phase. In the presence @habing, the

action (L.67) contains the linear dependence of the frequenciesiebhis equivalent
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to a long-range interaction in imaginary time of the form 92, Thus, each
rare region is equivalent to an one-dimensional Heisenberg modellw# long-range
interaction 1= 2. This model is known to be exactly at its lower critical dimension.
Correspondingly, the characteristic energy of a rare region decreases exponentially
with its volume L&, resulting in power-law Gri ths singularities analogous to those
in the random transverse- eld Ising model[(1.61 E 1.66). Without daping, the in-
teraction in imaginary time direction would be short-ranged and the arresponding
one-dimensional Heisenberg model is below its lower critical dimensiomhus, the
characteristic energy" decreases as a power-law with its volume, leading to the ex-
ponentially small contributions to the thermodynamic observables.

In recent years, indications of quantum Gri ths phases have beewbserved
in experiments on a number of metallic systems such as magnetic samauctors
E@l@] Kondo lattice ferromagnetijddgﬂ] and transition natferromagnets

,149]. The phase diagram of Ni,V is shown in Fig[1.1l. Pure Nickel undergoes
a ferromagentic phase transition at 630K. By doping vanadium atosn the critical
temperature decreases. At constant temperature, the traiti®n can be tuned by
changing the concentration of vanadium atoms. At zero tempenate, the Ni; Vy
compound under goes a quantum phase transition at vanadium camtration of X,
11:4%. As shown in FiglZI.I?a , for concentrations slightly above (11 15%) the
temperature dependence of the magnetic susceptibility is describley non-universal
quantum Griths power laws for temperatures 30{300K. As shownin Fig. L.12b,
the magnetization- eld curves show non-linear behaviors above @D Gauss. These
behaviors are in very good agreement with the Gri ths singularities[.62) and [1.66).

1.2.8. Smeared Phase Transitions. In the last subsection, we have seen
that at lower temperatures, i.e., when damping is su ciently strong,itinerant Heisen-
berg magnets display power-law Gri ths singularities. Millis et al. Eli,] showed

that metallic Ising magnets show qualitatively di erent behavior.
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Figure 1.11: Temperature-composition magnetic phase diagram ofi;NV, (see
Ref. [48] for more details).

At zero temperature, each rare region is equivalent to a one-dinganal clas-
sical Ising model nite in the d space dimensions and in nite in imaginary time. The
interaction in the imaginary time direction is short-range without danping, while
Ohmic damping leads to a long-range=1?2 interaction. The one-dimensional Ising
model with 1= ? long-range interaction is known to have a phase transition [50].
Thus, each rare region undergoes the phase transition indepentlg i.e., individual
rare regions stop tunneling, leading to the smearing of the global @ke transition.
At higher temperatures but below a microscopic cuto scale, the daping is unim-
portant, i.e., the interaction is short range. In this case, the Ising model is ety
at its lower critical dimensiond, = 1. Correspondingly, the energy gap decreases
exponentially with its volume. Thus, the dissipationless quantum Isingnodel can
show quantum Gri ths singularities.

We now sketch the theory of smeared phase transitions in disorddrmetallic
Ising systems proposed by Vojta [17, 51]. Using optimal uctuatio theory, we can

study the thermodynamics for small order parameteM . Let us again assume that
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the disorder is introduced via dilution. The probability for nding a rare region of

width Lgg is given by

P exp( bL%:): (1.69)

Such rare regions develop static order if the local distance fromitarality ful lls
r <rLgr) < 0. Since rare regions are nite in space, using nite size-scaling

[52, 53], we can nd

rc(l—RR) = A:LRR ; (170)

with A < 0, Here, is the nite-size scaling shift exponent. Thus, the probability

for nding a rare region which becomes locally ordered at, is exponentially small

P(tc) exp( fird ); (1.71)

wherebis a constant. The total order parameter can be obtained by sumng over all
rare regions showing local orders i.g. > r . This yields an exponential tail towards

the clean critical point

M(t) exp( Brj ©): (1.72)

Thus, the global phase transition is destroyed by rounding, becs@ static order can
develop on isolated rare regions.

At non-zero temperatures, the static magnetic order on the rarregions is
destroyed, and a nite interaction of the order of the temperatte is necessary to
align them. This means that the sharp phase transition is recoveredlio estimate

the critical temperature T, that bounds the ferromagnetic phase we note that the
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Figure 1.12: Behavior of observables in the quantum Gri ths phase(a) The tem-
perature dependence of magnetic susceptibility of NiV, for di erent
Vanadium concentrations. Dotted lines represent ts to Eq. (1.62 The
solid lines represent a model that sums a quantum Gri ths law and a
Curie term (see Ref. [48] for more details). (b) Magnetization veaus
eld. The dashed lines represents ts to Eq. (1.66).

interaction between two rare regions drops o exponentially with tekir distancesx,
Eiwx € [51], where is the bulk correlation length. The typical distancexy,
between neighboring locally ordered rare regions can be estimateahf their density,
, S Xyyp 1=d M ¥ Therefore, the critical temperature dependence onis

thus

log(1=T.) exp( Hrj ¥ ): (1.73)

If we take a Ruderman-Kittel-Kasuya-Yosida type interaction intoaccount which
decays as £x" with distance but is not contained in Hertz's theory, ther dependence
of T. changes to a simple exponential [51].

Let us now consider classical smeared phase transitions. A cladsgystem

with uncorrelated disorder cannot show a smeared phase transitibecause all rare
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regions are of nite size and cannot undergo true phase transiti@t non-zero temper-
atures. However, if quenched disorder is perfectly correlated ime or more dimen-
sions then rare regions are in nitely extended. If the number of celated dimensions
deor IS high enough then large rare regions can undergo the phase tiios indepen-
dently of the bulk system. This leads to a destruction of the sharpransition by
smearing [17].

Let us consider a classical random Ising model (Fig. 1.13). Assuntat the
disorder is correlated in a su ciently large dimensiond.,; = 2 and it is distributed
randomly ind..n = d dcor dimension, so that the system undergoes a smeared phase
transition. Optimal uctuation theory for the behavior of the observable in the tail
can be developed along the same lines as the theory above. The omlgrdnce is that
the randomness is restricted ird,,, dimension. The dimensionalityd in Eqgs. (1.72,

1.73) therefore needs to be replaced loy,,, yielding
M(r) e B ® . (1.74)

and

log(1=Tc)  exp( Birj “=~): (1.75)

1.3. FERMI LIQUIDS AND NON FERMI LIQUIDS

1.3.1. Landau Fermi-Liquid Theory. The Fermi-liquid theory is a pheno-
logical model of interacting fermions that describes the normalate of most metals at
low temperatures [54]. The theory of Fermi-liquids was developed byhdau in 1956,
and later re ned by Abrikosov et al. (see e.g. [55]). According to the Fermi-liquid
theory, a gas of interacting fermionic particles is equivalent to a sgsn of almost

non-interacting quasiparticles
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Figure 1.13: Randomly layered magnet: disorder is correlated in twonaensions.

Based on the idea of turning on the interactions between particlesliabati-
cally, Landau suggested that the excited states of the interactinsystem correspond
one-to-one to the excited states of the noninteracting systerap that the total par-
ticle number, spin, and momentum are conserved. However, dynga properties,
such as mass, magnetic moment etc. are renormalized to new valuesagine, start-
ing with a noninteracting system with one particle in statek; added to the ground
state Fermi sea. Turning on the interactions, the particle becorsedressed" by in-
teractions; this results in a state with the characteristics of a pécle in an excited
state with de nite momentum k, and spin . However, it is not a true eigenstate of
the interacting Hamiltonian. It is called a quasiparticle.

The Fermi-liquid theory is valid if the typical excitation energyi.e. T, is much
larger then the rate of the change of the Hamiltonian (because of adiabatic turning
on of the interactions), and the lifetime of the quasiparticle s is long compared to

1, otherwise it will decay away during its birth. Thus, there is an enengwindow
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where the Fermi-liquid theory makes sense,

! T: (1.76)

life

Within Fermi-liquid theory, the lifetime is inversely proportional to the square of the

L'/ T2 Thus, there is always a temperature range at low temper-

temperature,

atures where Eq. (1.76) is ful lled. Within the Fermi-liquid theory the behavior of
observables shows universal temperature dependencies (sea€ra.2) [56].

1.3.2. Metals Near a Quantum Ciritical Point. The Fermi-liquid theory
has been very successfully in describing the low-temperature beioa of normal met-
als. However, some experimental measurements show strongiagens from Fermi-
liquid behavior (e.g. [13]). Non Fermi-liquid behavior is often observea toccur near
a quantum critical point. For example, such non Fermi-liquid behaviowas observed
experimentally in the CeCy xAu, compounds [57]. In these compounds, the phase
transition is tuned by changing the gold concentration. The quantm critical point
is found at a concentrationx. 0:1. For concentrationsx < X ¢, the system is in a
non-magnetic phase, while fox > x ., the system is in the antiferromagentic phase.
Fig. (1.14a) shows specic heat data in the vicinity of the quantum dtical point
plotted as C=T. The specic heat shows al log(T) form between 0.06 K and 2.5 K,
indicating non Fermi-liquid behavior. Non Fermi-liquid behavior is obsered also in
resistivity data shown in Fig. (1.14b). Far away from critical point, br concentrations
x = 0:5 andx = 1 system shows Fermi-Liquid behaviorj.e., resistivity T2, At
the critical point, non Fermi-liquid behavor is observed with  T.

1.3.3. Semi-Classical Boltzmann Theory. In this subsection, we discuss
transport phenomena in metals [58] within the semi-classical Boltzma transport

formalism.
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Table 1.2: Behaviors of observables in the Fermi-liquid.

Speci ¢ heat C T
Entropy S T

Pauli susceptibility const
Electrical resistivity T?

In semi-classical approximation, an electron wavepacket is constted from a
superposition of plane wave states, so that its sizk in space is much smaller then its
mean free pathl, i.e., the length traveled by electrons between successive collisions.
This allows us to consider electrons as point-like quasiparticles. Indar to assign a
mean wave numbelk, to the wave packet, electrons should be localized ki space,
i.e. dk k. According to the Heisenberg uncertainty principledkdr 1, which
implies that the mean wave length of the electron = 2 =k should be much smaller
than the mean free pathl: l.

A macroscopic system contains of the order of ¥Celectrons; therefore it is im-
possible to solve the equations of motion for each electron and atstical treatment
is needed. It is useful to know what electrons do \on average" ardss important
what each particular electron does. The Boltzmann transport e@tion describes the
time evolution of the electron distribution function f (r; k;t), i.e., the occupancy of
state k at position r and time t. The distribution function can change due to three
reasons: diusion, drift and collisions. The diusion is caused by anyrgdient in
electron concentration, e.g@f=@mwhereas the drift (di usion in k space) is caused
by external forces. The collisions are due to \internal" forces beten electrons. The
time evolution of the electron distribution function is given by Boltzman transport

equation
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Figure 1.14: Low-temperature begavior of the CeGu,Aux compound. (a) Specic
heat, plotted as C=T versus log({) for di erent concentrations of Au
atoms. (b) The resistivity as a function of temperatureT for the
concentrations of Au: X = 0:5, x = X, = 0:1 and x = 1. Data taken

from Ref. [57].

or, ot et o . (1.77)

@t_ Y @ @ @tcoll .

Here, on the right hand side, the rst and second terms correspd to the changes of
the electron distribution function f due to the di usion and drift, respectively. The
last one is the collision term, which depends on the microscopic scaitg mechanism.
The total local rate of change of the distribution must vanish in a gady state.
Assume there is elastic scattering only, from statgki to state jk4. The

scattering probability Py odk®is given by

Pk odkO: fk(l fko)Zkk odko: (178)
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Here,Z o is transition amplitude. Summing over all statek®from which the particle

may come and into which it may go, we obtain

Z

i
er [fFro(l i) fr(@  Fro)]Zwcodk®: (1.79)

@tcoll

Combining the two Egs. (1.77, 1.79) gives a nonlinear integrodi ereial equation for

the distribution function

Z
Vi of k,%f+ [fro(l  fi) fr(@  fr0)]Zwodk®=0: (1.80)

It is clear that nding a complete solution of this equation must be begnd
feasibility in most cases. Hence, approximations must be made. A yetommon
simpli cation is the linearization for small deviations from equilibrium, i.e., fy =
f2+ f, wheref? is the equilibrium Fermi-Dirac distribution function. Substituting
the approximatedfy into Eq. (1.81), and keeping terms to leading order irf , gives

the linearized Boltzmann equation in the form

y
f f
Vi %{T K%: [(Fe TO)  (Feo FO)]Zicodk®: (1.81)

While we discussed only elastic scattering above, a similar equation withodi ed
transition rates Z o is obtained for inelastic scattering. Transition rate< o can be
calculated from the microscopic Hamiltonian using Fermi's golden rule.

The task of nding a solution of a linearized inhomogeneous integraldiz-
mann equation is a typical problem of applied mathematics. It is well lown that the
solution can be formally constructed be applying a variational princip to a general

trial function [58]. For this approach it is convenient to introduce a Bw function
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de ned by

k@—f'

k

(1.82)

k IS a measure of the deviation of the electron distribution from equilibrm. By

de ning the scattering operator P

Z
PG)=  dk¥::)Pio; (1.83)

one can write the right side of the Boltzmann Eq. (1.81) a8 =T. In the same way,
X is de ned such that X =T matches the left side of the Eq. (1.81). This leads to the

new alternative formulation of the Boltzmann equation in the form

X=P (1.84)
De ning an inner product by
z
h; i= dk ¢ k: (1.85)
leads to
h:Xi=h ;P i: (1.86)

The variational principle states that among all functions which satiy this
condition, the solution of the integral equation maximizes ;P i. Alternatively, it

can be formulated as follow: the solution of the integral Eqg. (1.86)\@s the minimal



44

value to the functional

h ;P i
h ;Xiz~

(1.87)

The variational principle can be formulated in thermodynamics and inrains-
port properties as well. In the thermodynamics, the variational pnciple states that
in the steady state the currents in the sample are such that the #opy production
takes its maximum value [58].

According to the variational principle, the electrical resistivity in the steady
state is given by as minimum of a functional of

. h;Pi
" h ;X (E =1)i2’

(1.88)

whereE is the external electrical eld which is related to the change of th& vector
ask = E.

Thus, the electrical resistivity is the extremal value of the variatiaal function
in unit electric eld. Similarly, the variational principle can be applied to aher
transport properties such as the thermal conductivity, the Peler coe cient and the

thermopower [58].

1.4. SUMMARY

In this section, an introduction was given to classical and quantumhase
transitions (Section. 1.1). We derived the critical behavior of obseable quantities
near the phase transition within the Landau mean- eld approach. & also showed
that for dimensionsd < 4 the Landau theory breaks down; and we discussed the
Landau-Ginzburg-Wilson theory which works for dimensiond < 4. In addition, we

discussed the scaling theory to characterize critical behavior agdve an introduction
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to the renormalization group method in momentum space which can lused to solve
the Landau-Ginzburg-Wilson theory.

Section 1.2 was devoted to a discussion of how disorder can a ectgb transi-
tions. We saw that disorder can have much more dramatic e ects ajuantum phase
transitions than on classical phase transitions. The impurities andedects may lead
to strong-disorder phenomena including power-law quantum Gri tts singularities,
in nite-randomness critical points and the smearing of the phasadnsition. Quan-
tum Gri ths singularities are caused by rare spatial con gurations of the disorder
(rare regions) that uctuate very slowly. As a consequence, obs/ables display sin-
gular behavior not just at criticality but in a whole parameter region rar the critical
point which is called the quantum Gri ths phase. If rare regions showstatic order,
i.e., they undergo the phase transition independently of the bulk systg they lead
to a smearing of the global phase transition. We also brie y discussehe strong-
disorder renomalization group which can be used to study the critichehavior of the
observable quantities on disordered system.

In the Section 1.3, we considered the Fermi-liquid theory which desdues
the behavior of observable quantities in normal metals at low tempatures. We
showed that the strong quantum uctuations near quantum phas transitions can
cause signi cant deviations from the Fermi-liquid behavior of normametals. In
addition, we introduced the semi-classical Boltzmann transport #ory which can be
used to study the transport properties near quantum phase trsitions in metals.
We also discussed the solution of the Boltzmann transport equatidsy means of a

variational principle.
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ABSTRACT

Phase transitions in random systems are smeared if individual spdtr@gions
can order independently of the bulk system. In this paper, we stydsuch smeared
phase transitions (both classical and quantum) in substitutional lbys A; «By that
can be tuned from an ordered phase at composition= 0 to a disordered phase at
x = 1. We show that the ordered phase develops a pronounced tailahextends over
all compositionsx < 1. Using optimal uctuation theory, we derive the composition
dependence of the order parameter and other quantities in theiltaof the smeared
phase transition. We also compare our results to computer simulatis of a toy model,

and we discuss experiments.
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1. INTRODUCTION

When a phase transition occurs in a randomly disordered system,eonf the
most basic questions to ask is whether the transition is still sharp, i,eassociated
with a singularity in the free energy. Naively, one might expect thatandom dis-
order rounds or smears any critical point because di erent spafiaegions undergo
the transition at di erent values of the control parameter. This epectation turns
out to be mistaken, as classical (thermal) continuous phase tratisns generically
remain sharp in the presence of weak randomness. The reason gt th nite-size
region cannot undergo a true phase transition at any nonzero tgmrature because
its partition function must be analytic. Thus, true static long-range order can only
be established via a collective phenomenon in the entire system

Recent work has established, however, that some phase transisaare indeed
smeared by random disorder. This can happen at zero-temperetuquantum phase
transitions when the order parameter uctuations are overdamgd because they are
coupled to an (in nite) heat bath.[51, 59] As the damping hampers th dynamics, suf-
ciently large but nite-size regions can undergo the phase transibn independently
from the bulk system. Once several such regions have developttis order, their
local order parameters can be aligned by an nitesimally small mutual interaction.
Thus, global order develops gradually, and the global phase tratgn is smeared.
Classical thermal phase transitions can also be smeared providée disorder is per-
fectly correlated in at least two dimensions. In these cases, indiviallslabs" of nite
thickness undergo the phase transition independently of the bullystem.[35, 60]

The existing theoretical work on smeared phase transitions foasson situa-
tions in which a sample with some xed degree of randomness is tundudugh the
transition by changing the temperature (for classical transitionjsor the appropriate

guantum control parameter such as pressure or magnetic eldaff quantum phase
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transitions). However, many experiments are performed on suilstional alloys such
as CePd ,Rhy or Sr; ,Ca,RuO;. These materials can be tuned from an ordered
phase (ferromagnetic for the two examples) at composition = 0 to a disordered
phase atx = 1 while keeping the temperature and other external parametersed,
i.e., they undergo a phase transition as a function of composition. &composition
parameter x actually plays a dual role in these transitions. On the one hand is
the control parameter of the phase transition. On the other haty changingx also
changes the degree of randomness. If such a composition-tupdgse transition is
smeared, its behavior can therefore be expected to be di erertan that of smeared
transitions occurring at xed randomness.

In this paper, we investigate the properties of composition-tunedmeared
phase transitions in substitutional alloys of the type A «Bx. We show that the
ordered phase extends over the entire composition range< 1, and we derive the
behavior of the system in the tail of the smeared transition. Our peer is organized
as follows. In Sec. 2, we consider a smeared quantum phase traosiin an itinerant
magnet. We use optimal uctuation theory to derive the compositio dependence of
the order parameter, the phase boundary, and other quantitiesn Section 3 we brie y
discuss how the theory is modi ed for smeared classical transitios systems with
correlated disorder. Section 4 is devoted to computer simulation§atoy model that
illustrate and con rm our theory. We conclude in Sec. 5 by comparingomposition-
tuned smeared transitions with those occurring at xed randomrss. We also discuss

experiments.

2. SMEARED QUANTUM PHASE TRANSITION

2.1. Model and Phase Diagram. In this section we investigate the ferro-

magnetic or antiferromagnetic quantum phase transition of itinerma electrons with
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Ising order parameter symmetry. In the absence of quenchedthbbmness, the Landau-
Ginzburg-Wilson free energy functional of this transition ird space dimensions reads
[14, 15] 7 7
S= dydz (¥)(y;2 (@+u dy *(y): (1.1)

Here, is a scalar order parameter eld,y (y; ) comprises imaginary time

. . . . R R Ry
and d-dimensional spatial positiony, dy dy , d

, and u is the standard
quartic coe cient. ( Yy;z) denotes the bare inverse propagator (two-point vertex)

whose Fourier transform reads
(ata)=r+ §a°+ o(@)jlnj : (1.2)

Here, r is the distance from criticalityy , is a microscopic length scale, antd, is a

Matsubara frequency. The dynamical part of @;! ») is proportional to j! ,j. This

overdamped dynamics re ects the Ohmic dissipation caused by theupling between
the order parameter uctuations and the gapless fermionic excit@ns in an itinerant

system. The damping coe cient (q) is g-independent for an antiferromagnetic
transition but proportional to 15qj or 15qj? for ballistic and di usive ferromagnets,
respectively.

We now consider two materials A and B. Substance A is in the magnetic
phase, implying a negative distance from criticalityro < 0, while substance B is
nonmagnetic withrg > 0. By randomly substituting B-atoms for the A-atoms to
form a binary alloy A; 4By, we can drive the system through a composition-driven
magnetic quantum phase transition.

A crucial role in this transition is played by rare A-rich spatial regions They

can be locally in the magnetic phase even if the bulk system is honmatice In

YStrictly, one needs to distinguish the bare distance from criticality that appears in (1.2) from
the renormalized one that measures the distance from the true dtical point. We suppress this
di erence because it is unimportant for our purposes.
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the presence of Ohmic dissipation, the low-energy physics of eaalths region is
equivalent to that of a dissipative two-level system which is known tandergo, with
increasing dissipation strength, a phase transition from a uctuang to a localized
phase.[61] Therefore, the quantum dynamics of su ciently large ra regions com-
pletely freezes,[36] and they behave as classical superspins. AbzZemperature,
these classical superspins can be aligned by @mitesimally small residual inter-
action which is always present as they are coupled via the uctuatienof the para-
magnetic bulk system. The order parameter is thus spatially very imdmogeneous,
but its average is nonzero for ank < 1 implying that the global quantum phase
transition is smeared by the disorder inherent in the random positienof the A and
B atoms.[17, 18, 51]

At small but nonzero temperatures, the static magnetic order othe rare re-
gions is destroyed, and a nite interaction of the order of the temgrature is necessary
to align them. This restores a sharp phase transition at some tratioen temperature
T.(x) which rapidly decreases with increasing but reaches zero only ak = 1. If the
temperature is raised abovd, the locally ordered rare regions act as independent
classical moments, leading to super-paramagnetic behavior. A sleof the resulting
phase diagram is shown in Fig. 1.

2.2. Optimal Fluctuation Theory. In this section, we use optimal uctu-
ation theory [62, 63, 64] to derive the properties of the tail of themeared quantum
phase transition. This is the composition range where a few rare regs have devel-
oped static magnetic order but their density is so small that they & very weakly
coupled.

A crude estimate of the transition point in the binary alloy A, xBx can be
obtained by simply averaging the distance from criticality,ro,, = (1  X)ra + Xrg.

The transition point corresponds tor,, = 0. This gives the critical compaosition in
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Magnetic

phase

Figure 1: (Color online) Schematic temperature-composition phaskagram of a bi-
nary alloy A; 4By displaying a smeared quantum phase transition. In the
tail of the magnetic phase, which stretches all the way t& = 1, the rare
regions are aligned. Abovd,, they act as independent classical moments,
resulting in super-paramagnetic (PM) behaviorx? marks the critical com-
position in average potential approximation de ned in (1.3).

\average potential approximation,”

o= ra=(rg  ra): (1.3)

Let us now consider a single A-rich rare region of linear site;r embedded
in a nonmagnetic bulk sample. If the concentratiorx,,c of B atoms in this region
is below some critical concentratiorx.(Lrgr ), the region will develop local magnetic
order. The value of the critical concentration follows straightfawardly from nite-size
scaling,[52, 53]

Xe(Lrr) = X? DLpgg ; (1.4)

where is the nite-size shift exponent andD is a constant. Within mean- eld
theory (which should be qualitatively correct in our case becausedltlean transition

is above its upper critical dimension[14]), one nds =2 and D = §=(rg ra).
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Sincex.(Lrr) Mmust be positive, (1.4) implies that a rare region needs to be larger
than Lnin = (D=x2)* to develop local magnetic order.

As the last ingredient of our optimal uctuation theory, we now andyze the
random distribution of the atoms in the sample. For simplicity, we assue that the
lattice sites are occupiedndependentlyby either A or B atoms with probabilities 1 x
and x, respectively. Modi cations due to deviations from a pure randomidtribution
(i.e., clustering) will be discussed in the concluding section 5. The praftulity of
nding Ng = NXjoc Sites occupied by B atoms in a spatial region with a total of

N L% sites is given by the binomial distribution
. — N N NgNp -
P(N; Xioc) = Ng 1 x) X"B (1.5)

We are interested in the regimex > x 2 where the bulk system will not be magnetically
ordered butXx,. = Ng=N < X (Lrr) such that local order is possible in the region
considered.

To estimate the total zero-temperature order parameteM in the tail of the
smeared transition (where the rare regions are very weakly cougjewe can simply

sum over all rare regions displaying local order

yA 1 Xc(LrR)
M dLgr dXioc M(N; Xj0c)P (N; Xioc) - (1.6)

L min 0

Here,m(N; X,oc) is the order parameter of a single region ¢ sites and local compo-
sition Xjoc; and we have suppressed a combinatorial prefactor. We now armdythis
integral in two parameter regions, (i) the regime where is somewhat larger tharx?

but not by too much, and (ii) the far tail of the transition at x ! 1.
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If x is not much larger thanx?, the rare regions are expected to be large, and

we can approximate the binomial distribution (1.5) by a Gaussian,

2
P(NiXoo) = P —exp Noe 2

PN N (1.7

To exponential accuracy inx, the integral (1.6) can now be easily performed in
saddle point approximation. Neglectingm(N; Xoc), which only modi es power-law
prefactors, we nd that large rare regions of sizé gz = D(2 d)=d(x x%)]and
maximum possible B-concentrationx,,c = X2 DL g dominate the integral. Inserting
these saddle point values into the integrand yields the compositionmendence of the

order parameter a$
(x_ xQ)?

M exp C X1 %)

(1.8)

whereC = 2(D=d)® (2  d)* 2 2is a non-universal constant.

Let us now analyze the far tail of the smeared transitiory ! 1. In this regime,
the binomial distribution cannot be approximated by a Gaussian. Natheless, the
integral (1.6) can be estimated in saddle-point approximation. We dthatfor x ! 1,
the integral is dominated by pure-A regions of the minimum size thatgrmits local
magnetic order. This meand. gr = Lmin = (D=x9)¥ and xj,c = 0. Inserting these
values into the integrand of (1.6), we nd that the leading compositin dependence

of the order parameter in the limitx ! 1 is given by a non-universal power law,

e

M (1 x)tmn =(1  x)©O= (1.9)

We thus nd that M is nonzero in the entire composition range 0 x < 1, illustrating

the notion of a smeared quantum phase transition.

“This result is valid for d < 2 which is ful lled for our transition. In the opposite case, the
integral over Lgr is dominated by its lower bound, resulting in a purely Gaussian dependace of
M onx x¢.
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So far, we have focused on the zero-temperature order paraene Other
guantities can be found in an analogous manner. Let us, for examptetermine the
phase boundary, i.e., the composition dependence of the criticahtperature T,. As
was discussed in Sec. 2.1, the static magnetism of the rare regionslastroyed at
nonzero temperatures. Consequently, magnetic long-range erdn the sample can
only develop, if the rare regions are coupled by an interaction of therder of the
temperature. The typical distance between neighboring locally oeded rare regions
can be estimated from their density, , asry, =M ¢ Within the Landau-
Ginzburg-Wilson theory (1.1,1.2), the interaction between two rareegions drops o
exponentially with their distancer, E;,y  exp( r= ), where yis the bulk correlation
length. This leads to a double-exponential dependence Bf on x for compaositions
somewhat abovex?, i.e., In(1=T,) expfC(x x9)? % =dx(1 x)]g. For x ! 1,
we nd In(1=Ty) (1 x) “=~=9. However, in a real metallic magnet, the locally
ordered rare regions are coupled by an RKKY-type interaction thadecays as a
power law with distance,E;y r 9, rather than exponentially.[65] (This interaction
is not contained in the long-wavelength expansion implied in (1.2).) Thefore, the
composition dependence of the critical temperature takes themsa form as that of

the magnetization,

X XO 2 d=
T, exp C% (1.10)
for compositions somewhat above? and
T (I x)tme =(1  x)@=" (1.11)

in the far tail of the smeared transition,x ! 1.
We now turn to the order parameter susceptibility. It consists ofwo di er-
ent contributions, one from the paramagnetic bulk system and orfeom the locally

ordered rare regions. The bulk system provides a nite, non-critad background
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throughout the tail of the smeared transition. Let us discuss theare region contri-
bution in more detail. At zero temperature, the total order paraneter M is nonzero
for all x < 1. The rare regions therefore always feel a symmetry-breakingdive

eld which cuts o any possible divergence of their susceptibilities. Weonclude
that the zero-temperature susceptibility does not diverge anyveme in the tail of the
smeared transition. If the temperature is raised abovE,, the relative alignment of the
rare regions is lost, and they behave as independent large (clas§ioaoments, lead-
ing to a super-paramagnetic temperature dependence of the seistibility, 1=T
(see Fig. 1). At even higher temperatures, when the damping ofdéhquantum dy-
namics becomes unimportant, we expect the usual non-univergplantum Gri ths

power-laws, T 1, where is the Griths exponent.[17, 18, 66]

3. SMEARED CLASSICAL PHASE TRANSITION

Classical (thermal) phase transitions with uncorrelated disorderacnot be
smeared because all rare regions are of nite size and can thus noidergo a true
phase transition at any nonzero temperature. However, pertedisorder correlations
in one or more dimensions lead to rare regions that are in nitely exteled in the
thermodynamic limit. If the number of correlated dimensions is high eugh, these
in nitely large rare regions can undergo the phase transition indepéently of the
bulk system, leading to a smearing of the global phase transition.[6Dkhis happens,
for example, in a randomly layered Ising magnet, i.e., an Ising model Wwitisorder

correlated in two dimensions.[35]
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In this section, we discuss how the theory of Sec. 2 is modied for dbe
smeared classical phase transitions. For de niteness, we consideclassical Landau-

Ginzburg-Wilson free energy ind dimensions,

y y
S= dy (Wr @ ()+u dy “y): (1.12)

As in the quantum case, we now consider a binary \alloy" A By of two materials A
and B. The atoms are arranged randomly iml, dimensions, while they are perfectly
correlated ind, = d d, dimensions. For example, itl, =1 and dy = 2, the system
would consist of a random sequence of layers, each made up of onlgtédms or only
B atoms.

If the correlated dimensiond, is su ciently large, the \alloy" undergoes a
smeared classical phase transition as the compositianis tuned from 0 to 1 at a
(xed) temperature at which material A is magnetically ordered,rpn < 0, while
material B is in the nonmagnetic phaserg > 0. The optimal uctuation theory for
the behavior in the tail of the smeared transition can be developedoag the same
lines as the theory in Sec. 2. The only important di erence stems fno the fact that
the randomness is restricted tal, dimensions. The dimensionalityd in egs. (1.8)

and (1.9) therefore needs to be replaced lus , leading to

X XO 2 d? =
M exp C( x(1C) % (1.13)
for compositions somewhat above? and
M (1 x)tmo=(1  x)@xD%° (1.14)

for x I 1. The same substitution ofd by d, was also found for smeared classical

transitions tuned by temperature rather than composition.[60]
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4. COMPUTER SIMULATIONS

To verify the predictions of the optimal uctuation theory in Sec. 2and to
illustrate our results, we have performed computer simulations oftay model, viz., a
classical Ising model withd space-like dimensions and one time-like dimension. The
interactions are between nearest neighbors in the space-like direxs but in nite-
ranged in the time-like ones. This ¢ + 1)-dimensional toy model retains the pos-
sibility of static order on the rare regions (which is crucial for the t@nsition being
smeared) but permits system sizes large enough to study expatigily rare events.
The Hamiltonian reads

1 X

H= - Sy; S
hy;zi;; ©

X

|~

3ySy: S0 (1.15)
y;; ©

Herey and z are d-dimensional space-like coordinates and is the time-like coor-
dinate. L is the system size in time direction andy;zi denotes pairs of nearest
neighbors on the hyper-cubic lattice in spacely is a quenched random variable hav-
ing the binary distribution P(J)=(1 x) (J Jy)+x (3 J) with J,>J,. In
this classical modeL plays the role of the inverse temperature in the corresponding
quantum system and the classical temperature plays the role ofd@lguantum tuning
parameter. Because the interaction is in nite-ranged in time, theiime-like dimen-
sion can be treated in mean- eld theory. Fol. !'1 | this leads to a set of coupled

P
mean- eld equations for the local magnetizationsn, = (1=L ) Sy. . They read
X
my =tanh  [Jymy + m, + h] ; (1.16)

where the sum is over all nearest neighbors of siieand h ! 0 is a very small
symmetry-breaking magnetic eld which we typically set to 10%2. Ifall 3,  Jy, the

system undergoes a (sharp) phase transition a, = J, + 2d, and if all 3,  J,, it
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undergoes the transition atT, = J, + 2d. In the temperature rangeT, > T > T |, the
phase transition can therefore be tuned by compositiaa

The mean- eld equations (1.16) can be solved e ciently in a self-corgtency
cycle. Using this approach, we studied systems in one, two, and ¢ar space dimen-
sions. The system sizes were up to L=10000 in 1d, and up ko= 100 in 2d and
3d. For each parameter set, the data were averaged over a largember of disorder
realizations. Details will be given with the individual results below.

Figure 2 shows an overview over the magnetizatidi as a function of compo-
sition x for a (3+1)-dimensional system at several values of the classi¢amperature
in the interval T, >T >T,.

The gure clearly demonstrates that the magnetic phase extendsgni cantly
beyond the \average potential" valuex? = (T, T)=(T, T,). In this sense, the
magnetic phase in our binary alloy benets from the randomness. Iagreement
with the smeared phase transition scenario, the data also show thisl (x) develops
a pronounced tail towardsx = 1. (By comparing di erent system sizes, we can
exclude that the tail is due to simple nite-size rounding.[60]) We pedrmed similar
simulations for systems in one and two space dimensions, with analogaesults.

To verify the theoretical predictions of the optimal uctuation theory devel-
oped in Sec. 2, we now analyze the tail of the smeared phase traiositin more
detail. Figure 3 shows a semi-logarithmic plot of the magnetizatiohl vs. the com-
position x for a (1 + 1)-dimensional system, a (2 + 1)-dimensional system, ana
(3 + 1)-dimensional one. In all examples, the data follow the theotieal prediction
(1.8) over at least 2 orders of magnitude i in a transient regime of intermediate
compositionsx.

We also check the behavior of the magnetization for compositionsryeclose
to x = 1. Since (1.9) predicts a non-universal power law, we plot oK) vs.

log(1 x) for a (3 + 1)-dimensional system in Fig. 4. The gure shows that tle
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Figure 2: (Color online) MagnetizationM vs compositionx for a (3 +1)-dimensional
system havingJ,, = 20, J; = 8 and several values of the classical tempera-
ture T. The data represent averages over 100 samples of ¢ize 100. The
values of the critical concentration in \average potential approxnation,”
x?, are shown for comparison.

magnetization tail indeed decays as a power of (1x) with x ! 1. The expo-
nent increases with increasing temperature in agreement with thegaliction that it
measures the minimum SizéN min Ld. a rare regions needs to have to undergo
the transition independently. The inset of Fig. 4 shows a t of the egonent to
Ld.  [XUT)] 32 =[(T, T)XTn T)] *2. The equation describes the data rea-
sonably well; the deviations at small exponents can be explained byetifact that our
theory assumes the rare-region size to be a continuous variableiethis not ful lled
for rare regions consisting of just a few lattice sites.

Our computer simulation thus con rm the theoretical predictions inboth com-
position regions in the tail of the transition. In a transient regime abve x¢, we ob-
serve the exponential dependence (1.8) while the magnetizatiom fo! 1 follows the

non-universal power law (1.9).
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Figure 3: (Color online) logM) vs x in the tail of the transition for three example
systems: (i) (3 +1)-dimensional system withL = 100; J,, = 20;J, = 8, and
T = 23, (ii) (2 + 1)-dimensional system with L = 100;J, = 15;J, = 8,
and T = 18, and (iii) (1 + 1)-dimensional system with L = 10000, J;, =
11;J, =8, and T = 12:8. All data are averages over 100 disorder con gu-
rations. The solid lines are ts to (1.8), with the t intervals restrict ed to
x 2 (0:25;0:55) in (1+1) dimensions, (0.6,0.72) in (2+1) dimensions and
(0.7,0.82) for the (3+1)-dimensional example.

5. CONCLUSIONS

In summary, we have investigated phase transitions that are tudeéby changing
the compositionx in a random binary alloy A; 4By where pure A is in the ordered
phase while pure B is in the disordered phase. If individual, rare A-ridpatial regions
develop true static order, they can be aligned by an in nitesimal redual interaction.
This results in the smearing of the global phase transition, in agreemt with the
classi cation put forward in Ref.

As an example, we have studied the quantum phase transition of amnierant

Ising magnet of the type A «Byx. At zero temperature, the ordered phase in this
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Figure 4: (Color online) logM) vs log(1 x) for a (3 + 1)-dimensional system with
L = 100;J, = 20;J, = 8 and several temperatures. All data are averages
over 100 disorder con gurations. The solid lines are ts to the powdaw
(1.9). The inset shows the exponent as a function of temperatyreith the
solid line being a t to [x%(T)] 2.

binary alloy extends over the entire composition range < 1, illustrating the notion
of a smeared quantum phase transition. Upon raising the tempertat, a sharp phase
transition is restored, but the transition temperature T.(x) is nonzero for allx < 1
and reaches zero only right ak = 1 (see Fig. 1). Using optimal uctuation theory,
we have derived the functional forms of various thermodynamic servables in the
tail of the smeared transition. We have also brie y discussed smest classical phase
transitions that can occur in systems with correlated disorder, ahwe have performed
computer simulations of a toy model that con rm and illustrate the heory.

Although our results are qualitatively similar to those obtained for smared

phase transitions occurring at xed randomness as a function oémperature or an
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appropriate quantum control parameter, the functional formsf observables are not
identical. The most striking di erence can be found in the far tail of he transition.
In the case of composition-tuning, the order parameter vanishe@s a non-universal
power of the distance from the end of the tailX = 1), re ecting the fact that the
minimum rare region size required for local magnetic order is nite. Inontrast, if the
transition occurs at xed composition as a function of temperatug or some quantum
control parameter, the order parameter vanishes exponentig[yl, 60] because the
minimum size of an ordered rare region diverges in the far tail. These atences
illustrate the fact that the behavior of observables at a smearedhpse transition is
generallynot universal in the sense of critical phenomena; it depends on detaifstoe
disorder distribution and how the transition is tuned. Only the quedbn of whether
or not a particular phase transition is smeared is universal, i.e., detamed only by
symmetries and dimensionalities.

Let us briey comment on the relation of our theory to percolation iedas.
The optimal uctuation theory of Sec. 2.2 applies for compositiong larger than the
percolation threshold of the A-atoms. Because the A-clustersedisconnected in
this composition range, percolation of the A atoms does not play aleoin forming
the tail of the ordered phase at largex. Instead, distant rare regions are coupled via
the uctuations of the paramagnetic bulk phase and, in metallic maggts, via the
RKKY interaction. Percolation does play a role, though, in the crossrer between
the inhomogeneous order in the tail of the transition and the bulk aler at lower x.

We note in passing that the behavior of a diluted system (where B regsents
a vacancy) with nearest-neighborinteractions is not described by our theory. In this
case, the A-clusters are not coupled at all for compositionslarger than the A per-
colation threshold. Therefore they cannot align, and long-rangeder is impossible.

As a result, the super-paramagnetic behavior of the locally ordetrelusters extends
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all the way down to zero temperature. This was recently discussea detail on the
example of a diluted dissipative quantum Ising model.[67]

In the present paper, we have assumed that the A and B atoms atistributed
independently over the lattice sites, i.e., we have assumed that tleeare no correla-
tions between the atom positions. It is interesting to ask how the selts change if
this assumption is not ful lled, for example because like atoms tend toluster. As
long as the correlations of the atom positions are short-rangedfcesponding to a -
nite, microscopic length scale for clustering), our results will not eémgequalitatively.
All arguments in the optimal uctuation theory still hold using a typic al cluster of
like atoms instead of a single atom as the basic unit. However, such stlring will
lead to signi cant quantitative changes (i.e., changes in the non-universal constants
in our results), as it greatly increases the probability of nding largdocally ordered
rare regions. We thus expect that clustering of like atoms will enhae the tail and
move the phase boundaryT.(x) towards larger x. A quantitative analysis of this
e ect requires explicit information about the type of correlations letween the atom
positions and is thus relegated to future work.

Let us nally turn to experiment. Tails of the ordered phase have ben ob-
served at many quantum phase transitions. However, it is often halear whether
these tails are an intrinsic e ect or due to experimental di culties sich as macro-
scopic concentration gradients or other macroscopic sample inhogeneities. Recent
highly sensitive magneto-optical experiments on §r, Ca,RuO3 have provided strong
evidence for a smeared ferromagnetic quantum phase transittonThe behavior of
the magnetization and critical temperature in the tail of the smeagd transition agree
well with the theory developed here. Moreover, the e ects of cltexing discussed
above may explain the wide variation of the critical composition betves about 0.5

and 1 reported in earlier studies.[68, 69, 70] We expect that our saned quantum

XL. Demko et al., unpublished.
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phase transition scenario applies to a broad class of itinerant syste with quenched
disorder.
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ABSTRACT

We investigate the in uence of spatial disorder correlations on sraeed phase
transitions, taking the magnetic quantum phase transition in an itineant magnet
as an example. We nd that even short-range correlations can hava dramatic
e ect and qualitatively change the behavior of observable quantitee compared to
the uncorrelated case. This is in marked contrast to conventionaritical points,
at which short-range correlated disorder and uncorrelated dister lead to the same
critical behavior. We develop an optimal uctuation theory of the qiantum phase
transition in the presence of correlated disorder, and we illustratthe results by
computer simulations. As an experimental application, we discusseterromagnetic

guantum phase transition in Sy 4 Ca,RuOs.

Published in Europhysics Letters97, 20007 (2012).
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1. INTRODUCTION

Quenched disorder has various important consequences in corsigghmatter.
For example, disorder can change the universality class of a critigabint [71, 72] or
even change the order of a phase transition [73, 74, 75].

In theoretical studies, the disorder is often assumed to be uncelated in
space even though many sample preparation techniques will proéusome degree of
correlations between the impurities and defects. As long as the pelations are short-
ranged, i.e., characterized by a nite correlation lengthg;s, this assumption is usually
justi ed if one is interested in the universal properties of critical pints. (There are
exceptions for special, ne-tuned local correlations [76]). The rean why short-
range correlated disorder leads to the same behavior as uncorrethdisorder can
be easily understood within the renormalization group framework. tdler repeated
coarse graining, a nonzero disorder correlation lengthjs decreases without limit.
The disorder thus becomes e ectively uncorrelated on the large lgilh scales that
determine the critical behavior.

A formal version of this argument follows from the Harris criterion 20]. It
states that a clean critical point is stable against weakincorrelated disorder if its
correlation length critical exponent ful lls the inequality d > 2 whered is the space
dimensionality. If the inequality is violated, the disorder is relevant ad changes
the critical behavior. According to Weinrib and Halperin [77],spatially correlated
disorder leads to the same inequality as long as its correlations dedagter than
r 9 with distance r. Thus, short-range correlated disorder and uncorrelated dister
have the same e ect on the stability of a clean critical point.

In this letter, we demonstrate that spatial disorder correlationsre much more
important at smearedphase transitions, a broad class of classical and quantum phase

transitions characterized by a gradual, spatially inhomogeneous set of the ordered
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phase [17]. Speci cally, we show that short-range correlated disler and uncorre-
lated disorder lead to qualitatively di erent behaviors. The disordercorrelations do
not only in uence quantities usually considered non-universal suds the location of
the phase boundary, they also change the functional dependeraf the order param-
eter and other quantities on the tuning parameters of the transibn, as indicated in
Fig. 1. We propose that this mechanism may be responsible for theusually wide
variations reported in the literature on the properties of the fewmagnetic quantum
phase transition (QPT) in Sr; xCaxRuOs.

In the following, we sketch the derivation of our theory, compute lservables,
and illustrate them by simulations. We also discuss the generality of pundings,

and we compare them to experiment.

2. SMEARED QUANTUM PHASE TRANSITION

For de niteness, we consider a magnetic QPT in a metallic system with
Ising order parameter symmetry. In the absence of quenched alider, the Landau-

Ginzburg-Wilson free energy functional of this transition is given by14, 15]

z z
S= dydz (Y)(y;2 @+u dy “(y); (2.1)

where is the order parameter eld,y (y; ) comprisesd-dimensional spatial
position y and imaginary time , the integration means dy Rdy ROH d, and
u is the standard quartic coe cient. The Fourier transform of the Gaussian vertex
(y;2z) reads

(aln)=r1+ 50+ o(a)j nj (2.2)
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Figure 1: (Color online) Schematic of the zero-temperature magdimation-
composition curve M vs x) and the nite-temperature phase boundary
(T, vs x) at a smeared quantum phase transition in a random binary alloy
A; «By. The cases of uncorrelated, correlated, and anti-correlated diger
are contrasted.

Here,r is the distance from criticalityy o is a microscopic length, and , is a Matsub-
ara frequency. The dynamical partof (g;! ) is proportional to j! ,j. This re ects the
Landau damping of the order parameter uctuations by gapless al&onic excitations
in a metallic system. The coe cient ¢(q) is g-independent for an antiferromagnetic
transition but proportional to 1=5qj or 15qj? for ballistic and di usive ferromagnets,
respectively.

We now consider a random binary alloy A 4By consisting of two materials
A and B. Pure substance B has a non-magnetic ground-state, implg a positive
distance from quantum criticality, rg > 0. Substance A has a magnetically ordered
ground state with r, < 0. By randomly substituting B atoms for A atoms, one can

drive the system through a QPT from a magnetic to a nonmagnetic gund state.

YStrictly, one needs to distinguish the bare distance from criticality that appears in (2.2) from
the renormalized one that measures the distance from the true dtical point. We suppress this
di erence because it is unimportant for our purposes.
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Due to statistical uctuations, the distribution of A and B atoms in t he alloy
will not be spatially uniform. Some regions may contain signi cantly mag A atoms
than the average. If the local A-concentration is su ciently high, such regions will
be locally in the magnetic phase even if the bulk system is nonmagnet®Because the
magnetic uctuations are overdamped, the quantum dynamics ofusiently large
such locally magnetic spatial regions completely freezes (for Isingranetry [36]). At
zero temperature, these rare regions thus develop static mago®rder independently
of each other. This destroys the sharp QPT by smearing [17, 18]5and is manifest
in a pronounced tail in the zero-temperature magnetization-conagition curve [78].

At any nonzero temperature, the static magnetic order on individal, inde-
pendent rare regions is destroyed because they can uctuate vl@ermal excitations.
Therefore, a nite interaction between the rare regions of the der of the thermal
energy is necessary to align them. This restores a conventionahgh phase transi-
tion at any nonzero temperature. However, the smeared chatac of the underlying
QPT leads an unusual concentration dependence of the criticahtg@erature T, which
displays a tail towards largex [51, 78].

The e ects of disorder correlations can be easily understood at aaitative
level. For positive correlations, like atoms tend to cluster. This inceses, at xed
composition, the probability of nding large A-rich regions comparedo the uncorre-
lated case. The tail of magnetization-composition curve therefbecomes larger (see
Fig. 1). In contrast, like atoms repel each other in the case of retiye correlations
(anti-correlations). This decreases the probability of nding largeA-rich regions and

thus suppresses the talil.
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3. OPTIMAL FLUCTUATION THEORY

To quantify the inuence of the disorder correlations, we now delep an
optimal uctuation theory [51, 78]. We focus on the \tail* of the smeared transition
(large x) where a few rare regions show magnetic order but their interactie are
weak because they are far apart.

We roughly estimate the transition point in the alloy A, 4By, by setting the
average distance from criticality to zeror, = (1 X)ra + xrg = 0: This de nes the

critical composition in \average-potential" approximation,

ng rA:(rB rA): (23)

For compositionsx > x 2, static magnetic order can only develop on rare, atypical
spatial regions with a higher than average A-concentration. Spesally, a single A-
rich rare region of linear sizd_gr can show magnetic order, if the local concentration
Xioc Of B atoms is below some critical valug.. Because the rare region has a nite
size, the critical concentration is shifted from the bulk valu?®: According to nite-

size scaling [52, 53]

Xe(Lrr) = X? DLy (2.4)

where is the nite-size shift exponent andD is a non-universal constant. In a
three-dimensional itinerant magnet, takes the mean- eld value of 2 because the
clean transition is above its upper critical dimension. A (Lgrr) must be positive,
a rare region must be larger tharL i, = ( D=x8)1: to show magnetic order.

In the tail of the smeared transition, the magnetically ordered ra regions are

far apart and interact only weakly. To nd the total magnetization M one can thus
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simply sum over all magnetically ordered rare regions. This gives

Z 1 Xc(LrR)
M dLgr dXiocP (N; Xi0c)M(N; Xioc) ; (2.5)

L min 0

whereP (N; Xoc) is the probability for nding a region of N sites and local composition
Xioc (i.€., a region containingNg = NXj,. atoms of type B), and m(N; Xjoc) is its
magnetization

Let us analyze the spatial distribution of atoms in the sample to detmine the
probability P(N;Xoc). Speci cally, let us assume that the random positions of the
A and B atoms are positively correlated such that like atoms form clters of typical
correlation volume (number of lattice sites)Vgs 1+ a 3 where s is the disorder
correlation length anda is a geometric prefactor. The probabilities for nding A and
B clusters in the sample are 1 x and x, respectively. The numbem, of correlation

clusters contained in a large spatial region dfl sites N Vyis) IS approximately
Ng  N=Vgs = N=(1+ a §) (2.6)

The probability P (N; xoc) for nding a region of N sites and local composition
Xioc IS therefore equal to the probabilityPgs(ng; ng) for nding ng = xng clusters
of B atoms among all theny, clusters contained in the region. It can be modeled by

a binomial distribution
n
I:)clus(ncl; nB) = nC| (1 X)n°| Nex"ne (2.7)
B

We now distinguish two cases, (i) the regime whepeis not much larger thanx?, and

(ii) the far tail of transition at x! 1
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(i) If x is just slightly larger than x?, rare regions are large and the probability

(2.7) can be approximated by a Gaussian

1 (Xloc X)2

P p ex Nel —7———+
clus ~ 2 x (1 X):nc| p cl 2X(1 X)

(2.8)

We estimate the integral (2.5) in saddle point approximation. Negletrtg subleading
contributions from m(N; X,oc); we nd that rare regions of sizeLgz = D(2  d)=[d(x
x9)] and compositionx.(Lrr ) dominate the integral. The resultingM (x) dependence

reads
C (x x9)?2 &=

M ;
TP Wragy x@ %)

(2.9)

where C = 2(D=d)* (2 d)% 2 2 is a non-universal constant. In this regime,
varying the disorder correlation length thus modi es the non-univesal prefactor of
the exponential dependence d¥l on x.

(i) An even more striking e ect occurs in the tail of the transition for x ! 1:
As rare regions cannot be large in this regime, the binomial distributio(2.7) cannot
be approximated by a Gaussian. However, within saddle point apprioxation, the
integral (2.5) is dominated by rare regions containing only A atoms ahhaving the
minimum size permitting local order. InsertingLrr = Lmin = (D=x%)** andxoc =0
into (2.5), we nd that the composition dependence of the magnetion is given by
the power law,

M (1 x) (x! 1); (2.10)

with = aLd;, =(1+ a J,). In this regime, the disorder correlations thus modify the
seeming critical exponent of the order parameter. The exponewlue is given by the
minimum number of correlation clusters necessary to form a magilly ordered
rare region. The results for uncorrelated disorder [78] are reeved by substituting

g¢is = 0 into (2.9) and (2.10).
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So far we have assumed that a typical disorder correlation clustef A atoms
is smaller than the minimum rare region size required for magnetic omde~or larger
disorder correlation length gjs Lmin; @ single correlation cluster is already large
enough to order magnetically. As a result, (almost) all A atoms coribute to the total
magnetization. Correspondingly, the composition dependence bktorder parameter
is given by

M (1 x): (2.11)

To combine the power laws (2.10) and (2.11) for di erent ranges ofjs, we construct
the heuristic formula

= (alf, + a §)=(1 + a §) (2.12)

which can be used to t experimental data or simulation results.

Other observables such as the nite-temperature phase boungeacan be found
in similar fashion. As discussed above, &t 6 0, individual rare regions do not de-
velop a static magnetization. Instead, global magnetic order arise&ia a conventional
(sharp) phase transition at some transition temperaturél. which can be estimated
from the condition that the interaction energy between the rareegions is of the order
of the thermal energy. To determine the interaction energy, weote that in a metallic
magnet, the rare-regions are coupled by an RKKY interaction whicfalls o0 as r ¢
with distancer. As the typical distance between neighboring rare regions behaves
r M ¥4 [51], the composition dependence of the critical temperature is dogous

to that of the magnetization. In particular,

T(x) 1 x) (2.13)

in the tail of the smeared transition,x ! 1.
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4. SIMULATIONS

We now verify and illustrate the theoretical predictions by perforimg com-
puter simulations of a toy model [51, 60]. Its Hamiltonian is motivatedy the so-
called quantum-to-classical mapping [12] which relates a quantuningse transitions
in d space dimensions to a classical transition ith+ 1 dimensions. The extra space
dimension corresponds to imaginary time in the quantum problem. Ceaquently,
we consider a (3+1)-dimensional classical Ising model on a hypebau lattice with
three space dimensions and a single imaginary time-like dimension. Théehaction
in the time-like direction is long-ranged as thg! ,j frequency dependence in (2.2)
corresponds to a % 2 in imaginary time. In the toy model, we replace this inter-
action by an in nite-range interaction in time direction, both on the same site and
between spatial neighbor$. This correctly reproduces the smeared character of the
phase transition due to static magnetic order on the rare regiong.he Hamiltonian

of the toy model takes the form

1 X 1 X
H= C JoSy: S;: 0 C 3ySy. Sy 0; (2.14)
hy;zi;; © yi; ©
wherey and z are space coordinates, is the time-like coordinate, andS,. = 1.

L is the system size in time andy;zi denotes pairs of nearest neighbors in space.
Jy is a binary random variable whose value], or J;, is determined by the type of
atom on lattice sitey. The values at di erent sitesy and z are not independent,
they are correlated according to some correlation functiof(y z). The average
concentrations ofJy,-sites andJ;-sites are 1 x and X, respectively.

Treating the time-like dimension within mean- eld theory, which is exatbe-

cause of the in nite range of the interactions, a set of coupled nbmear equations

ZEven though the bare action (2.1, 2.2) does not have an interactiorbetween spatial neighbors
at di erent imaginary times , such a coupling will be generated in perturbation theory (or under
RG) from the short-range spatial interaction and the long-rangeinteraction in time.



75

P
emerge for the local magnetizations, = (1=L ) S,

1 P
my = tanh _I_—(Jymy +  ,Jom;+ h): (2.15)

cl

Here, the z-sum is over the nearest neighbors of sitg, and h is a tiny symmetry-
breaking magnetic eld. According to the quantum-to-classical nyaping, the classical
temperature T is not related to the physical temperature of the underlying quamnim
system (which is encoded ik ) but rather some quantum control parameter that
tunes the distance from the quantum phase transition.

The local mean- eld equations (2.15) can be solved e ciently in a setfensistency
cycle. In the two clean limits with eitherJ, = J, or J, = J, for all y, the phase
transition occurs at T, = Jy, +6Jp and T, = J, + 6Jg, respectively. We choose a
classical temperature betweef;, and T, and control the transition by changing the
compositionx.

To generate the correlated binary random variables representitige site occu-
pations, a version of the Fourier- Itering method [79] is implementedThis method
starts from uncorrelated Gaussian random numbets, and turns them into correlated
Gaussian random numbersy characterized by some correlation functio®(r). This
is achieved by transforming the Fourier components,~of the uncorrelated random

numbers according to

v = q) %uq; (2.16)

where(q) is the Fourier transform of C(r). The v, then undergo binary projection to

determine the occupation of sitg/; the site is occupied by atom A ify, is greater than

a composition-dependent threshold and by atom B if, is less than the threshold.
In the majority of our calculations, we focus on attractive shortange disorder

correlations of the formC(r) = exp( r2=2 3.). Figure 2 shows examples of the
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Figure 2: (Color online) Examples of the atom distribution in a plane of 3% sites
for several values of the disorder correlation lengthys = 0; 1:0; 2:0 from
left to right (x = 0:5).

resulting atom distributions for several values of the disorder calation length s.
The formation of clusters of like atoms is clearly visible.

We now discuss the results of the mean- eld equations (2.15). Figur3
presents the total magnetizationM as function of compositionx for several val-
ues of 4s with all other parameters held constant. At a given compositiorx, the
magnetization M increases signi cantly even for small 4s of the order of the lattice
constant. Moreover, the seeming transition point (at whichM appears to reach 0)
rapidly moves towards larger compositions, almost reaching= 1 for a correlation
length 4is = 2. Inset (a) of Fig. 3 shows a plot of logM versus log(1 x) con rming
the power-law behavior (2.10) in the tail of the transition. The depedence on s Of
the exponents extracted from these power laws is analyzed in inset (b) of Fig. 3.
It can be tted well with the heuristic formula (2.12).

In addition to the attractive (positive) correlations, we now brie y consider the
case of anti-correlations (like atoms repel each other). We modke anti-correlations
by a correlation function having valuesC0) = 1, C(r) = c for nearest neigh-

bors, andC(r) = 0 otherwise. The positive constantc controls the strength of the
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Figure 3: (Color online) MagnetizationM vs. compositionx for several values of the
disorder correlation length 45 using one disorder realization of 256sites,
Jy =20, 3, =8, Jg=1, Ty = 24:25, andh = 10 19, Also shown is one
curve for the case of anti-correlations (128sites), for details see text. Inset
(a): log-log plot of M vs. (1 x) conrming the power-law behavior in
the tail of the smeared transition. The tail exponent shown in inset (b)
agrees very well with (2.12) as shown by the solid t line.

anti-correlations. A characteristic magnetization-composition awe for such anti-
correlated disorder (withc = 1=6) is included in Fig. 3. The data show that the
magnetization is reduced compared to the uncorrelated case, atiek tail becomes
less pronounced. Analogous simulations using di erent values ofshow that this
e ect increases with increasing strength of the anti-correlationss indicated in Fig.

1.

5. CONCLUSIONS

In summary, we have studied the e ects of spatially correlated disder on

smeared phase transitions. We have found that even short-randisorder correlations
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(extending over just a few lattice constants) lead to qualitative mdi cations of the
behavior at smeared transitions compared to the uncorrelatedss including changes
in the exponents that characterize the order parameter and theritical temperature.
In other words, systems with uncorrelated disorder and with shbrange correlated
disorder behave di erently

This is in marked contrast to critical points, at which uncorrelated @sorder
and short-range correlated disorder lead to the same critical bahor. (Long-range
correlations do change the critical behavior [77, 80].) What causekig di erence
between critical points and smeared transitions? The reason is theritical behavior
emerges in the limit of in nitely large length scales while smeared trangins are
governed by a nite length scale, viz., the minimum size of ordered rarregions.
This renders the renormalization group arguments underlying theegeralized Harris
criterion [20, 77] inapplicable.

The majority of our calculations are for the case of like atoms atting each
other. For these positive correlations, large locally ordered raregions can form
more easily than in the uncorrelated case. Thus, the tail of the siaeed transition is
enhanced; and the phase boundary as well as the magnetizatiomeumove toward
larger x as indicated in Fig. 1. We have also briey considered the case of like
atoms repulsing each other. These anti-correlations suppresstformation of large
locally ordered rare regions compared to the uncorrelated cases @&result, the phase
boundary and the magnetization curve will move toward smallex. In addition
to short-range correlations, we have also studied long-range pwaw correlations
which are interesting because they lead to a broad spectrum of dkrssizes. Detailed
results will be published elsewhere [81].

Turning to experiment, our results imply that smeared phase trainigons are
very sensitive to slight short-range correlations in the spatial pa®ns of impurities

or defects. In particular, an analysis of the data in terms of critidaexponents will
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give values that depend on these correlations. We believe that a pitde realization of
the e ects discussed in this paper can be found in S, Ca,RuO;. This well-studied

material undergoes a ferromagnetic QPT as a function of Ca comtetion. Because
S «Ca,RuO3 is a metallic system with Ising spin symmetry, the transition is ex-
pected to be smeared [51]. Interestingly, the reported experimahphase diagrams
(see Fig. 4) and magnetization curves show unusually large variatenNot only does
the apparent critical composition change betweern 0.5 and 1; the functional form
of the magnetization curves also varies. Although part of these digpancies may
be due to the di erence between Im and bulk samples [82], large variahs within

each sample type remain. We propose that disorder correlations,..elustering or

anti-clustering of like atoms may be responsible for at least part ohése variations.

Figure 4: (Color online) Experimental temperature-composition pise diagrams of
S, «CaRuO;. Data from Hosaka et al. [83], Schneider et al. [84],
Wissinger et al. [82], and Khalifah et al. [85] are for thin Ims while those
of Kiyama et al. [70], and Cao et al. [68] are for bulk samples. Published
magnetization curves show similar variations.
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Finally, we emphasize that even though we have considered the QPT itm-
erant magnets as an example, our theory is very general and slibbe applicable
to all phase transitions smeared by disorder including QPTs [59, 887], classical
transitions in layered systems [35, 60] and non-equilibrium transitig [88]

We thank I. Kezsmarki for helpful discussions. This work has beeupported

in part by the NSF under grant No. DMR- 0906566.



81

[1l. DISORDER PROMOTES FERROMAGNETISM: ROUNDING OF
THE
QUANTUM PHASE TRANSITION IN SR 1 x CAxRUO ;

L. Demlo%?, S. Borcacs®#, T. Vojta>®, D. Nozadzé&, F. Hrahshelf, C. Svobod§, B.

Dora 8, H. Yamade®, M. Kawasakit®!+12, Y. Tokura', and I. Kezsmarki

!Department of Physics, Budapest University of Technologyna Economics and
Condensed Matter Research Group of the Hungarian Academy&¢diences, 1111
Budapest, Hungary
2Multiferroics Project, ERATO, Japan Science and Technolog Agency (JST), c/o
Department of Applied Physics, University of Tokyo, Tokyo 113-8656, Japan
3Department of Physics, Budapest University of Technologyna Economics and
Condensed Matter Research Group of the Hungarian Academy&¢diences, 1111
Budapest, Hungary
“Multiferroics Project, ERATO, Japan Science and Technolog Agency (JST), c/o
Department of Applied Physics, University of Tokyo, Tokyo 113-8656, Japan
SMax-Planck-Institut far Physik Komplexer Systeme, Nethitzer Str. 38, 01187
Dresden, Germany
5Department of Physics, Missouri University of Science andeEhnology, Rolla, MO
65409, USA
"Department of Physics, Budapest University of Technologya Economics and
Condensed Matter Research Group of the Hungarian Academy&¢diences, 1111
Budapest, Hungary
8Max-Planck-Institut far Physik Komplexer Systeme, Nethitzer Str. 38, 01187
Dresden, Germany
9National Institute of Advanced Industrial Science and Teaiology (AIST),

Tsukuba, Ibaraki 305-8562, Japan



82

10Cross-Correlated Materials Research Group (CMRG), RIKEN Avanced Science
Institute (ASI), Wako 351-0198, Japan
IWPI-AIMR, Tohoku University, Sendai 980-8577, Japan
2Department of Applied Physics, University of Tokyo, Tokyo]l10-8656, Japan
BDepartment of Physics, Budapest University of Technologya Economics and
Condensed Matter Research Group of the Hungarian Academy&¢diences, 1111

Budapest, Hungary

ABSTRACT

The subtle interplay of randomness and quantum uctuations at lowtem-
peratures gives rise to a plethora of unconventional phenomena sgstems rang-
ing from quantum magnets and correlated electron materials to ubicold atomic
gases. Particularly strong disorder e ects have been predicted toccur at zero-
temperature quantum phase transitions. Here, we demonstratieat the composition-
driven ferromagnetic-to-paramagnetic quantum phase transitioin Sr; ,Ca,RuOs is
completely destroyed by the disorder introduced via the di erent inic radii of the
randomly distributed Sr and Ca ions. Using a magneto-optical teclgue, we map
the magnetic phase diagram in the composition-temperature spacéVe nd that
the ferromagnetic phase is signi cantly extended by the disordemd develops a pro-
nounced tail over a broad range of the composition. These ndings are explained
by a microscopic model of smeared quantum phase transitions in itragt magnets.
Moreover, our theoretical study implies that correlated disordeis even more powerful

in promoting ferromagnetism than random disorder.

Published in Physical Review Letters108, 185701 (2012).
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Classical or thermal phase transitions generally remain sharp in thesence
of disorder, though their critical behavior might be a ected by therandomness. On
the other hand, zero-temperature quantum phase transitions 21 16, 89] { which
are induced by a control parameter such as the pressure, cheahicomposition or
magnetic eld { are more susceptible to the disorder. Neverthelessost disordered
quantum phase transitions have been found sharp as the corretat length charac-
terizing the spatial uctuation of the neighboring phases divergeat the transition
point.

In recent years, it has become clear that the large spatial regiofree of ran-
domness, which are rare in a strongly disordered material and hafeer referred to
asrare regions can essentially change the physics of phase transitions [17]. Close
a magnetic transition, such rare regions can be locally in the magnetlty ordered
phase { with slow uctuations leading to the famous Gri ths singularities [30] { even
if the bulk system is still nonmagnetic. These rare regions are exinely in uential
close to quantum phase transitions. and expected to dominate thleermodynamics.
They give rise to the the so-called quantum Gri ths phases [17, 18,0 as recently
observed in magnetic semiconductors [43], heavy-fermion systgdig], and transition
metal alloys [48].

When the rare regions are embedded in a dissipative environment tbesor-
der e ects are further enhanced. For example, in metallic magnetthe magnetiza-
tion uctuations are coupled to electronic excitations having arbitarily low energies.
This leads to an over-damped uctuation dynamics. Su ciently strong damping
completely freezes the dynamics of the locally ordered rare regidid$], allowing
them to develop a static magnetic order. It has been predicted [5that this mecha-
nism destroys the sharp magnetic quantum phase transition in a distered metal by
rounding and a spatially inhomogeneous ferromagnetic phase apggeaver a broad

range of the control parameter.
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The family of perovskite-type ARuUQ; ruthanates (with A an alkaline earth
ion) o ers an ideal setting to test these predictions. SrRu@is a ferromagnetic metal
with a Curie temperature of Tc = 165 K. On the other hand, no long-range magnetic
order develops in CaRu@ and recent studies indicate paramagnetic behavior or the
presence of short-range antiferromagnetic correlations in theogind state [90]. It is
demonstrated that tiny Co doping can drive the system to a low-temperature spin-
glass state [91], however, the ground state of CaRy@ still under debate. Earlier
studies of the transport, thermal and magnetic properties of $r,Ca,RuO; solid
solutions revealed that the compositiorx is an e cient control parameter and the
substitution of the Sr ions by the smaller Ca ions gradually suppresséhe ferromag-
netic character and with it the Curie temperature [68, 69, 70, 92]. dlvever, estimates
of the critical Ca concentration at whichT¢ vanishes show large variations depending
on the way of the assignment, experimental methodology and salasynthesis (e.g.
bulk crystals versus thin Ims with strain due to lattice mismatch with the substrate).
In addition, the random distribution of Sr and Ca ions introduces sting disorder in
the exchange interactions controlling the magnetic state.

To investigate the magnetic properties of Sr,Ca,RuO;z with high accuracy,
we have grown a composition-spread epitaxial Im of size 10 mm mm and thickness
200nm ( 500 unit cells) on a SrTiQ (001) substrate [93, 94] which sets the easy
magnetization direction normal to the Im plane [95]. The Ca concenation changes
linearly from x=0.13 to 0.53 along the long side of the sample, as shownkhig. la.
The large atomically- at area observed in the atomic force microspe image (Fig. 1a)
demonstrates the high quality of this Im.

The composition and temperature dependence of the magnetic pesties of
the S, «Ca,RuOs; Im were probed by a home-built magneto-optical Kerr micro-
scope equipped with a He- ow optical cryostat. Its magneto-ojtal Kerr rotation for

visible light is dominated by the charge transfer excitations betweethe O 2p and
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Figure 1. (Color online) Morphology and magnetic characterization fo the
composition-spread Sr 4Ca,RuO; epitaxial Im. (a) Photographic im-
age of the 10 4mm? Im with the local concentration, x, indicated along
the composition-spread direction. The large terraces of monoeatic lay-
ers in the atomic force microscope image demonstrates the high bfyaof
the Im. (b) The contour plot of the remanent magnetization 1) over
the composition-temperature phase diagram. The dotted mesh ise mea-
sured data set used for the interpolation of the surface. The femagnetic-
paramagnetic phase boundaryJc(x), derived from the susceptibility and
magnetization data (see text for details) is also indicated by the blaand
grey symbols, respectively(c) Schematic of the magnetism in the tail of
the smeared transition. The spins on Sr-rich rare regions (brightléds)
form locally ordered "superspins”. Their dynamics freezes due tbé cou-
pling to electronic excitations which also tends to align them giving riseot
an inhomogeneous long-range ferromagnetic order.

Ru 4d ty4 states [83]. The large magnitude of the magneto-optical Kerr e gcbeing
the consequence of strong spin-orbit coupling in ruthenates [96]asvfound to be
proportional to the magnetization measured by a SQUID magnetoeter on uniform
thin Ims. We have performed all these experiments using a red laséliode. The
resulting precisions of the magnetizationMl) and susceptibility ( ) measurements
were 6 10 g per Ru atom and 8 10 * gT ! per Ru atom, respectively. Since

the composition gradient of the sample is about:04 mm !, the spatial resolution,
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20 m, of our microscope corresponds to a resolution of  0:001 in the com-
position, allowing us to achieve an exceptionally ne mapping of the magtization
versus the control parameter of the quantum phase transitionSee Supplemental
Material at [97] for more details on the sample preparation, chartarization, and on
the experimental methodology.

An overview of the results is given in Fig. 1b which shows a color contou
map of the remanent magnetizatiorM as a function of the temperatureT and the
composition x. It was obtained by interpolating a large collection ofM (x) and
M (T) curves measured at constant temperatures and concentrai® respectively.
The data clearly show that the area of the ferromagnetic phase @rthe magnitude
of the low-temperature magnetization are gradually suppresseditkv increasing X.
Figure 2 displays the temperature dependence of the magnetizatiand susceptibil-
ity for selected compositions. With increasing, the upturn region in the magne-
tization curves signi cantly broadens and the width of the ac susptibility peaks
increases. This already hints at an unconventional smearing of tiparamagnetic-to-
ferromagnetic phase transition at higher values of the composition The critical
temperature, Tc (X) in Fig. 1b, separating the ferromagnetic and paramagnetic stage
in the composition-temperature phase diagram was identi ed with tb peak posi-
tions in the susceptibility and in the rst derivative of magnetization using both the
temperature and the concentration sweeps.

The Tc(x) line in Fig. 1b does not show a singular drop at any concentra-
tion, instead it grows a tail extending beyondx = 0:52 where the zero-temperature
magnetization is about three orders of magnitude smaller than thetiration value
for SrRuQOs. Similar behavior is also observed in the low-temperature magnetiza
M as a function of the composition,x, as shown in Fig. 3a. (We found that all

M (x) curves measured below T=6 K collapse onto each other without ametectable
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Figure 2: (Color online) Temperature dependence ¢&) the remanent magnetization
M and (b) ac susceptibility for selected compositionss. The main panel
of (b) focuses on the regiox & 0:4, and the inset displays representative
susceptibility curves over the full range ok. Both the magnetization and
susceptibility curves show the continuous suppression of the femagnetic
phase with increasing« and the broadening of the transition.

temperature variation.) M (x) has an in ection point at x  0:44 followed by a pro-
nounced tail region in which the magnetization decays slowly towardarger x. The
existence of an ordered ferromagnetic moment is further con real by the hysteresis
in the M (B) loops even atx = 0:52 (see the inset of Fig. 3a). Thus, the evolution of
both the magnetization and the critical temperature withx provide strong evidence
for the ferromagnetic-to-paramagnetic quantum phase transiin being smeared.
How can the unconventional smearing of the quantum phase tratisn and
the associated tail in the magnetization be understood quantitately? As the mag-
netization uctuations in a metallic ferromagnet are over-dampedsu ciently large
Sr-rich rare regions can develop true magnetic order (see Fig. &een if the bulk sys-
tem is paramagnetic [36, 51]. Macroscopic ferromagnetism arisesdiese these rare
regions are weakly coupled by an e ective long-range interaction [428]. To model
this situation, we observe that the probability for nding Ns, strontium and Nca
calcium atoms in a region oN = Ng, + N¢, unit cells (at average compaositiorx) is

given by the binomial distribution P(Ns,; Nca) = NN& (1 x)NsrxNea, Such a region
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Figure 3: (Color online) The smearing of the quantum phase transitio in
S xCayRuO;. (a) The composition dependence of the remanent mag-
netization M at selected temperatures. The inset shows that the hysteresis
in the eld loops at T=4.2K gradually vanishes towards largerx but still
present even atx  0:52. (b) Semilogarithmic plots of the magnetization
and the transition temperature Tc as functions of the control parameter in
the tail region. The symbols represent the experimental data whilgolid
lines correspond to the theory which predictg, = 0:38 as the location of
the quantum phase transition in the (hypothetical) clean system.

orders magnetically if the local calcium concentratiox,,c = Nca=N is below some
threshold x.. Actually, taking nite-size e ects into account [78], the condition reads
Xioc <X A=L2; wherelLgg is the size of the rare region, and A is a non-universal
constant. To estimate the total magnetization in the tail of the tansition (X > x ),
one can simply integrate the binomial distribution over all rare regiamful lling this

condition. This yields [78], up to power-law prefactors,

(X Xc)? d=2

M/ exp C )

(3.1)

where C is a non-universal constant. This equation clearly illustrates the rion of
\smeared" quantum phase transition: the order parameter vanes only atx = 1 and
develops a long, exponential tail upon approaching this point. As; represents the

composition where the hypothetical homogeneous (clean) systéraving the average
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ion size would undergo the quantum phase transition, the extensiar the ferromag-
netic phase beyond, is an e ect of the disorder. Starting from atomic-scale disorder
our theory is applicable as long as a large number of clusters are pedbwithin the
experimental resolution, so that the measured quantities repres an average over
the random cluster distribution. The smooth dependence of the rgaetization onx
together with the small spot size of the beam<(300 m?) veri es that this is indeed
the case. Based on the given spot size the upper bound for theitygd cluster size is
estimated to be 1-2 m? (see Supplemental Material).

As a direct test of our theory we t the lowest-temperatureM (x) data with
Eqg. (3.1). We take the spatial dimensionalityd = 3 due to the large thickness of the
sample far beyond the spin correlation length in the system. As careldiscerned in
Fig. 3b, the magnetization data in the tail k & 0:44) follow the theoretical curve
over about 1.5 orders of magnitude down to the resolution limit of thenstrument.
For the critical composition of the hypothetical clean system, wehltain x. = 0:38,
though the quality of the t is not very sensitive to its precise value lecause the
drop in M occurs over a rather narrowx interval. The composition dependence of
the critical temperature Tc can be estimated along the same lines by comparing the
typical interaction energies between the rare regions with the tgmerature and the
same functional dependence ox was found [78]. The experimental data in the tail
region follow this prediction with the samex. = 0:38 value, as can be seen from the
corresponding tin Fig. 3b.

To summarize, we have studied the paramagnetic-to-ferromagdmequantum
phase transition of Sy ,Ca,RuO3; by means of a composition-spread epitaxial Im.
We found that the disorder signi cantly extends the ferromagnet phase. Moreover,
the phase transition in this itinerant system does not exhibit any ofhe singulari-
ties associated with a quantum critical point. Instead, both the mgnetization and

critical temperature display pronounced tails towards the parangnetic phase. The
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functional forms of these tails agree well with the predictions of otheoretical model.
Our calculations also show that disorder, if correlated over a few ircells, is even
more powerful in promoting an inhomogeneous ferromagnetic pleasWe thus con-
clude that our results provide, to the best of our knowledge, therst quantitative

con rmation of a smeared quantum phase transition in a disordereghetal. We ex-
pect that this scenario applies to a broad class of itinerant systemsgith quenched
disorder.

We thank A. Halbritter and G. Mihaly for fruitful discussions. This work was
supported by KAKENHI, MEXT of Japan, by the Japan Society for the Promotion
of Science (JSPS) through its \Funding Program for World-Leadindgnnovative R&D
on Science and Technology (FIRST Program)”, by Hungarian Resea Funds OTKA
PD75615, CNK80991, K73361, Bolyai program, AMOP-4.2.1/B-09/1/KMR-2010-
0002, as well as by the NSF under grant No. DMR-0906566.
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ABSTRACT

We present a theory of the quantum Gri ths phases associated wiit the ferro-
magnetic quantum phase transition in disordered metals. For Isingi®m symmetry, we
study the dynamics of a single rare region within the variational instaton approach.
For Heisenberg symmetry, the dynamics of the rare region is studieising a renor-
malization group approach. In both cases, the rare region dynamids even slower
than in the usual quantum Gri ths case because the order paranter conservation
of an itinerant ferromagnet hampers the relaxation of large magte clusters. The
resulting quantum Gri ths singularities in ferromagnetic metals are $ronger than
power laws. For example, the low-energy density of state¢ ) takes the asymptotic
form exp[f ~log( o=)g*®]= with ~ being non-universal. We contrast these results
with the antiferromagnetic case in which the systems show powemlajuantum Grif-
ths singularities in the vicinity of the quantum critical point. We also compare our

result with existing experimental data of ferromagnetic alloy Ni 4 V.

Published in Physical Review B85, 174202 (2012), selected as an Editor's Suggestion.
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1. INTRODUCTION

The low-temperature behavior of quantum many-particle systemsan be sen-
sitive to impurities, defects, or other kinds of quenched disordefThis e ect is es-
pecially important near quantum phase transitions, where uctuabns in time and
space become connected. The interplay between static disordactuations and large-
scale quantum uctuations leads to much more dramatic e ects at uantum phase
transitions than at classical phase transitions, including quantum ths singulari-
ties, [30, 99, 100] in nite-randomness critical points featuring gonential rather than
power-law scaling, [22, 101] and the smearing of the transition.[51]

The Gri ths e ects at a magnetic phase transition in a disordered sygtem are
caused by large spatial regions (rare regions) that are devoid ofparities and can
show local magnetic order even if the bulk system is globally in the panagnetic
phase. The order parameter uctuations induced by rare regionselong to a class
of excitations known asnstantons. Their dynamics is very slow because ipping the
rare region requires a coherent change of the order parameteepoa large volume.
Gri ths showed [30] that this leads to a singular free energy, not jat at the transition
point but in a whole parameter region, which is now known as the Gri tts phase. In
classical systems, the contribution of the rare regions to therrdgnamic observables
is very weak. However, due to the perfect disorder correlations {rmaginary) time,
Gri ths e ects at quantum phase transitions are enhanced and led to power-law
singularities in thermodynamic quantities (for reviews see, e.g., Refd7, 18]).

The systems in which quantum Gri ths behavior was originally demonstated
[22, 99, 100, 101] all have undamped dynamics (a dynamical expaing = 1 in the
clean system). However, many systems of experimental importainvolve supercon-
ducting [102] or magnetic [13, 103, 104, 105] degrees of freedoapted to conduction

electrons. This leads to overdamped dynamics characterized by laann dynamical
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exponentz > 1. Studying the e ects of the rare regions in this case is, therefgran

important issue. It has been shown that metallic Ising antiferromagets can show
quantum Gri ths behavior at higher energies, where the damping is k&s important.

[66] In contrast, the quantum Gri ths singularities in Heisenberg artiferromagnets
are caused by the dissipation and occur at lower energies. [31]

In recent years, indications of quantum Gri ths phases have beenbserved in
experiments on a number of metallic systems such as magnetic semdttectors,[43,
44, 45] Kondo lattice ferromagnets, [46, 47] and transition metédrromagnets.[48, 49]
All these experimental observations of quantum Gri ths phases i in ferromagnets
rather than in antiferromagnets. However, in contrast to antif’lomagnets, a complete
theory of quantum Gri ths phases in ferromagnetic metals does royet exist.

In this paper, we therefore develop the theory of quantum Gri ths e ects in
ferromagnetic metals with both Ising and Heisenberg symmetries. e/ ¢how that the
quantum Griths singularities do not take power-law form, in contrast to those
in antiferromagnets.[17, 18] The rare-region density of states Hmves as ()
exp[f ~log( o=)g*®]= in the low-energy limit, where ~ plays a role analogous
to the non-universal Griths exponent. This means that the Grit hs singular-
ity is stronger than a pure power law. This kind of density of states &ls to
non-power-law dependencies on the temperatuie of various observables, includ-
ing the specic heat, C  exp[f ~log(To=T)g*®], and the magnetic susceptibility,

exp[f ~log(To=T)g*>®]=T. The zero-temperature magnetization- eld curve be-
haves asM  exp[f ~log(Ho=H)g*>®].

The paper is organized as follows. In Sec. 2, we introduce the modedndau-
Ginzburg-Wilson order parameter eld theories for ferromagneti¢sing and Heisen-
berg metals. In Sec. 3, we study the dynamics of a single rare regidior the Ising
case, we use a variational instanton calculation, and for Heisengesymmetry, we

use a renormalization group theory of the quantum nonlinear sigmaadel with a
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damping term. In Sec. 4, we average over all rare regions and c#dte observables
in the ferromagnetic quantum Gri ths phase. In Sec. 5, we compar our predictions
with existing experimental data. Finally, we conclude in Sec. 6 by disssing the dif-
ference between ferromagnetic and antiferromagnetic quantu@ri ths singularities

as well as some open questions.

2. THE MODEL

Rare region e ects in disordered metallic systems are realized both lising
magnets [66] and in Heisenberg magnets. [31] In the following, we sider both cases.
Our starting point is a quantum Landau-Ginzburg-Wilson action of tke itinerant
ferromagnet [14, 15)Y

S = Sstat + Sdiss + Sdyn ; (4.1)

where the static part has the form

Z Z h i

Sw=E d &t )l (P50 @)
0

Here, Eq is a characteristic energy (assumed to be of the order of the banadth in
a transition metal compound or the order of the Kondo-temperaire in anf -electron
system). We measure lengths in units of the microscopic length scaje t > 0 is the
bare distance of the bulk system from criticality. (r; ) is the dimensionless order
parameter eld. It is a scalar for the Ising model, while it has three aqoponents

( 1; 2; 3) for a Heisenberg magnet.

YWe set Planck's constant and Boltzmann constant to unity (~ = kg = 1) in what follows.
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We consider disorder coupled to the square of the order parameteThe

corresponding action has the form

Z Z

Suiss = Eo d d*r V(r) %(r; ); 4.3)
0

whereV (r) is the disorder potential.

The dynamical part of Eq. (4.1) isSyyn = Séi)n + Sézy)n where

Z Z

S =Eo 2 d  dri@ (r; ) (4.4)
0

corresponds to the undamped dynamics of the system with the ctedynamical ex-
ponent z = 1, while

Z . .
s@ - lx i i d3qJ (q;!n)Jz.
B, jaj?

- n

(4.5)

describes overdamped dynamics with conserved order parametelean dynamical
exponentz = 2 + a), which stems from the coupling to the conduction electrons. In
Eq. (4.4), . is a microscopic time, and in Eq. (4.5), parametrizes the strength
of the dissipation. (q;! ) is the Fourier transform of the order parameter (r; )
in momentum and Matsubara frequency. The value i depends on the character
of the electron motion in the system and equals 1 or 2 for ballistic and dsive

ferromagnets, respectively.

3. DYNAMICS OF A SINGLE RARE REGION

In this section, we study the dynamics of a single droplet formed onrare

region of linear sizeL. This means, we consider a single spherical defect of radlus
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at the origin with potential V(r) = V forr <L, and V(r) = 0 otherwise. We are
interested in the caseV > 0, i.e., in defects that favor the ordered phase.

The e ective dimensionality of the model de ned by Eq. (4.1) ide =3+ z:
Thus, the clean model (4.1) is above its upper critical dimensiord{ = 4), implying
that mean- eld theory is valid. The mean- eld equation for a static ader parameter

con guration o(r) is [36]

r2 o(r)+[t+V(r)] o(r)+ §(r)=0; (4.6)
with solution 8
2 0 for r<L
o(r) = S (4.7)

Sbe M for > L

This implies that the order parameter is approximately constant in tle regionr < L
and decays outside of it.

To study the dynamics of the droplet, we start from the variation&instanton
approach.[37] In the simplest case, the droplet maintains its shapée collapsing
and reforming. In order to estimate the action associated with thiprocess, we make

the ansatz

(n )= o) (): (4.8)

R
Here, $(r) must be chosen suchthat d® (r; )is time independent because of order
parameter conservation in an itinerant ferromagnet. This can beothe by introducing
5(r) = o(r)(@ Ar) such that the g = 0 Fourier component is canceled.A is a

constant to be determined. In the limit of a large rare region,.t >> 1, we nd

A= o) 1ol (@9)
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In the following subsections, using ansatz Eq. (4.8), we separatealiscuss the dy-
namics of the droplet in itinerant Ising and Heisenberg ferromagnet

3.1. Itinerant Ising Model. We now calculate the tunneling rate between
the \up" and \down" states of a single rare region in an itinerant Isirg ferromagnet
by carrying out variational instanton calculations.[37, 106] To estimite the instanton
action, we use the ansatz Eq. (4.8) (which provides a variational ppr bound for the
instanton action) with ( )= 1for ! 1 . Inserting this ansatz into the action

Eq. (4.1) and integrating over the spatial variables yields, up to catant prefactors,

Z
Se  LP d[ 22 )+ *()]; (4.10)

and

Z
sy L d@ () (4.11)

The part of the action corresponding to the overdamped dynamidsecomes

o d

T : (4.12)

2 2

m
where the dimensionless dissipation strength L 32, In order to estimate the

action Egs. (4.10) to (4.12), we make the variational ansatz

2(5 49,

0

(4.13)

D_|Q.

Summing all contributions, we obtain the instanton action

S L3=o+ L3+ L3*?%l0g(o=m): (4.14)
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Minimizing this action over the instanton duration gives ¢ L 2= . Corre-
spondingly, the actionisS L "2, Then, the bare tunneling rate or tunnel splitting
behaves as

exp( S) exp( const L 3): (4.15)

Thus, the bare tunneling rate decays exponentially with.®*2 in the itinerant Ising
ferromagnet unlike the tunneling rate in the itinerant Ising antiferomagnet,[36, 37]
which decays exponentially withL2. The extra factor L2 can be understood as
follows. To invert the magnetization of a rare region of linear size, magnetization
must be transported over a distance of the order &f, because the order parameter
conservation prevents local spin ips. The rare region dynamics tis involves modes
with wave vectors of the order ofy 1=L. Since the part of the action corresponding
to the overdamped dynamics Eq. (4.5) is inversely proportional to omentum ¢, we
obtain an extra factorL? in the action Eq. (4.12).

Within renormalization group methods,[61] the instanton-instantoninterac-

tion renormalizes the zero-temperature tunneling rate to

en ) (4.16)

This implies that at zero temperature, the smaller rare regions with< 1 continue
to tunnel with a strongly reduced rate, while the larger rare regian( > 1) stop to
tunnel and behave classically, leading to super-paramagnetic bglua.

3.2. ltinerant Heisenberg Model. A particularly interesting case are itin-
erant Heisenberg ferromagnets because quantum Gri ths phaséave been observed
experimentally in these systems.[47, 48, 49] We now study the dynasof a single

rare region in an itinerant Heisenberg ferromagnet. We make the satz

(n )= on(); (4.17)
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Here,n( ) is a three-component unit vector. After substituting Eq. (4.17)into the

action Eq. (4.1) and integrating over the spatial variables, we obia

Z

z n() n(9
2 2 0 .
S gn dl@n()]+ 2 dd W, (4.18)
where the dimensionless coupling constagt L* and L 3*2 as before. Because

there is no barrier in a system with continuous order parameter symetry, the static
part of the action is constant. Therefore, we cannot solve the giblem within the
variational instanton approach. Instead, rotational uctuations must be taken into
account.

We calculate the characteristic relaxation time of the rare region bg renor-
malization group analysis of the action Eq. (4.18). As shown in Sec. for weak
damping g, there are two di erent regimes, where the behaviors of the re-
laxation times are di erent. Particularly, for energies! larger than some crossover
energy! . =g, undamped dynamics is dominant, and the relaxation time of the
rare region has the form

s L% (4.19)

which leads to a power-law dependence of the rare-region chagagdtic energy onL,

L 3 (4.20)

For energied I ., overdamped dynamics dominates the system properties,

and the relaxation time of the rare region behaves as

exp[const L 39]: (4.21)
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This results in a characteristic energy of

exp[ const L 3%3]: (4.22)

Thus, the behavior of the characteristic energy in the itinerant Hesenberg magnet is
the analogous to that of the tunneling rate in the Ising model discsed above.

We can now roughly estimate the sizé& . of the rare region corresponding to
the crossover of the two regimes. By comparing Egs. (4.19) and44), we nd for
small

L. [log(const= )= [¥C*a . (4.23)

For small rare regionsL < L ., the undamped dynamics dominates systems prop-
erties and the characteristic energy is given by Eq. (4.20), while far > L ., the
damping term is dominant and the characteristic energy is determideéby Eq. (4.22).
For large damping 0, the overdamped dynamics dominates the system
properties for all energied . Correspondingly, the characteristic energy is given by

Eq. (4.22).

4. OBSERVABLES

In the last section, we have seen that metallic Ising ferromagnetgssglay mod-
I ed Gri ths behavior at higher energies [Eq. (4.15)], while at asymptamatically low
energies, the rare regions freeze and lead to a smeared phasesit@on [Eq. (4.16)].
For Heisenberg ferromagnets, we have found conventional beioa at higher energies
[Eq. (4.20)], and modi ed Gri ths behavior at low energies [Eq. (4.22)].Correspond-
ingly, we expect modi ed Griths singularities in thermodynamic quantities at low
energies for itinerant Heisenberg ferromagnets, while for metallisihg ferromagnets

they should occur at higher energies.
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In this section, we use the single-rare-region results of Sec. 3 tady the
thermodynamics in these ferromagnetic quantum Griths phases. To do so, we
need to estimate the rare-region density of states. By basic cométorics (see, e.g.,
Refs. [17, 18]), the probability for nding an impurity-free rare regon of volumeL?
is P exp( bL® with b being a constant that depends on the disorder strength.
Combining this and Eq. (4.22) gives the density of states (of the Heisberg system)

in the low-energy regime as
1 ~ —\n3=(at+3) 1.
() —exp[f Tlog(o=)9 l: (4.24)

Here, , is a microscopic energy scale, and the non-universal exponént b2+ =3=
plays a role similar to the usual quantum Griths exponent. The samedensity of
states follows from Eq. (4.15) for the higher-energy regime of th&ng model. Thus,
in ferromagnetic metals, the rare-region density of states doestntake power-law
form, in contrast to the one in antiferromagnets.

We can now nd observables using the rare-region density of stat&q. (4.24).

The numbern of free rare regions at temperaturd behaves as

Z
n(T) d (Je "=1+e )

exp[f ~log(To=T)g* @ ]; (4.25)

where Ty is a microscopic temperature scale.
The uniform static susceptibility can be estimated by summing Curie Seep-

tibilities for all free rare regions, yielding

(T)= n(T)=T %exp[f ~log(To=T)g> @ ]: (4.26)
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The dependence of the moment of the rare region on its energy leads to a subleading
correction only.
The contribution of the rare regions to the specic heatC can be obtained

from

Z
E d ()e T51+e )

T exp[f ~log(To=T)g*®*7]; (4.27)

which gives C  exp[f ~log(To=T)g* @3 ]. Knowing the specic heat, we can
nd the rare region contribution to the entropy as S exp[f ~log(To=T)g*®3].

To determine the zero-temperature magnetization in a small ordeg eld H,
we note that rare regions with < H are (almost) fully polarized while the rare
regions with > H have very small magnetization. Thus,

Z y

m d () exp[f ~logHo=H)g>@3]; (4.28)
0

whereH, is a microscopic eld (again, the moment of the rare region leads to als
leading correction). The zero-temperature dynamical suscepility can be obtained
by summing the susceptibilities of the individual rare regions using thdensity of
states Eq. (4.24),
Z
()= d () (;); (4.29)

0

where the dynamical susceptibility of a single rare region in Heisenlgemetals at

zero temperature is given by [107]

2

«( +10; )= ; (4.30)
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where is the moment of the rare region. Substituting Eqg. (4.30) into Eqg. (29) we
nd

(! +i0) exp[f ~logj! o=!jg> @ ]; (4.31)

(I+i sgn())
=

where! ¢ is a microscopic frequency. This result can be used to estimate thare
region contribution to the NMR spin relaxation time T;. Inserting Eq. (4.31) into

Moriya's formula [108] for the relaxation rate yields

1=T, IT—Zexp[f ~logj! o=! jg*> @ ]: (4.32)

5. EXPERIMENT

Recently, indications of a quantum Gri ths phase have been obseed in the
transition metal ferromagnet Ni V. [48, 49] The behavior of the thermodynamics
has been described well in terms of the power-low quantum Grithsisgularities
predicted for an itinerant antiferromagnet (and the transverseeld Ising model).
Here, we compare our new theory of ferromagnetic quantum Grilis phases with
the experimental data given in Refs. [48, 49]. The residual resistiyiof Ni; 4V
close to the quantum phase transition is rather high.? Thus, we choosea = 2
for a di usive ferromagnet. Figure 1 shows the behavior of the sceptibility as a
function of temperature. The curves corresponding to the coentrations x = 13:0%
and x = 15:0% (which are far away from the critical concentratiorx, 11:5%) are
described better by power laws rather than our modi ed quantum @ ths behavior
Eq. (4.26), at least aboveT 10K (the low-temperature upturn is likely due to
freezing of the rare regions). For concentrations = 12:07% andx = 12:25%, our

theory ts better than power-law Gri ths singularities and extend s the t range from

ZA. Schroeder, private communications
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30{300K down to 5{300K. The curves corresponding to the conugations x = 11:4%
and x = 11:6% can be tted by Griths power-laws only in the temperature range
30 to 300 K, our new functional form Eq. (4.26) does not improve &t of these
curves.

We also compared the prediction Eq. (4.28) for a modi ed magnetiziain- eld
curve with the data given in Refs. [48, 49]. We found that the ts tgpower-laws and
to the modi ed quantum Gri ths behavior Eq. (4.28) cannot be distin guished.

Let us also point out that the susceptibility data in the temperaturerange
below 20K can be tted reasonable well by Eq. (4.26); see details in Fid. Further
experiments may be necessary to decide whether our theory apglia this region.

Overall, our theory does not signi cantly improve the description othe data
of Refs. [48, 49] over the temperature range where Griths belvéor is observed.
A possible reason is that the relevant rare regions are too small. Abrcentrations
x = 13:0% andx = 15:0%, they have moments of about 5 g and 1 g,
respectively. Correspondingly, the e ect of the order parameteransport cannot
play any role, whereas our functional forms arise for large raregiens where the
order parameter transport limits the relaxation of the rare regionA possible reason
why the curves corresponding to the concentrations = 11:4% andx = 11:6% can
not be described by our theory afT < 30K might be that the curves are actually

slightly on the ordered side of the quantum phase transition.

6. CONCLUSIONS

In summary, we studied the dynamics of rare regions in disorderedetals
close to the ferromagnetic quantum phase transition, considerirtge cases of both
Ising and Heisenberg spin symmetries. The overall phenomenologysiilar to the

well-studied antiferromagnetic quantum Gri ths behavior. [31, 37,51, 66] Namely,
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Figure 1: (Color online). Temperature dependence of the suscigiity of Ni ; 4V
for di erent Vanadium concentrations. Solid and dotted lines repreent ts
to Eq. (4.26) in the di erent temperature ranges 5 to 300 K and 1 t®0
K, respectively (data from Ref. [48]).

for Ising symmetry at low temperatures, the overdamping causes ciently large
rare regions to stop tunneling. Instead, they behave classicallyatiing to super-
paramagnetic behavior and a smeared quantum phase transitionn tontrast, at
higher temperatures but below a microscopic cuto scale, the danmy is unimpor-
tant and quantum Gri ths singularities can be observed. In contrest to the Ising
case, the itinerant Heisenberg ferromagnet displays quantum Giihs singularities
when damping is su ciently strong, i.e., at low temperatures. Above acrossover
temperature, conventional behavior is expected.

Although the phenomenologies of the ferro- and antiferromganetcases are
similar, the functional forms of the quantum Gri ths singularities are di erent. In
ferromagnetic quantum Gri ths phases, the tunneling rate (or claracteristic energy)

of a rare region decays as expfonst L 23] with its linear size L, where a is
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equal to 1 or 2 for ballistic and di usive ferromagnets, respectivelyThis leads to the
modi ed nonpower-law quantum Gri ths singularities in thermodynamic quantities,
discussed in Sec. 5, in contrast to the power-law quantum Griths iggularities
in itinerant antiferromagnets. The reason is the following. Becausef the order
parameter conservation in the itinerant quantum ferromagnet,hte damping e ects
are further enhanced as the dimensionless dissipation strengthfor a rare region of
linear sizeL is proportional to L33 rather than L3.

In strongly disordered system, where our theory is most likely to @by, the
motion of the electron is di usive. Correspondingly, we expe@ = 2. In hypothetical
systems with rare regions, but ballistic dynamics of the electrong, would take the
value 1.

In our explicit calculations, we have used Hertz's form [14] of the oed
parameter eld theory of the itinerant ferromagnetic quantum ptase transition. How-
ever, mode-coupling e ects in the Fermi liquid lead to an e ective longange spatial
interaction between the order parameter uctuations. [98, 109110] In the order-
parameter eld theory, this leads to a nonanalytic momentum depetence of the
static action Eq. (4.2). The e ects of this long-range interaction o the existence
and energetics of a locally ordered rare region were studied in detiail Ref. [106].
This work showed that the long-range interactions only produce bleading correc-
tions to the droplet-free energy. Therefore, including these lofrgnge interactions in
the action Eq. (4.1) will not change the results of the present pape

Let us now turn to the limitations of our theory. In our calculations, we
assumed that the droplet maintains its shape while collapsing and refieing. Cor-
respondingly, our calculation provides a variational upper bound fahe instanton
action. There could be faster relaxation processes; however, ithiard to image the
droplet dynamics to avoid the restriction coming from the order pameter conser-

vation. We treated the individual, locally ordered rare regions as ingendent. But,
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in a real metallic magnet, they are weakly coupled by a Ruderman-K#t-Kasuya-

Yosida (RKKY), interaction which is not included in the Landau-Ginzbug-Wilson

action Eqg. (4.1). At the lowest temperatures, this RKKY interactiins between the
rare regions induces a cluster glass phase. [65] Finally, our theoryed not take the
feedback of the order parameter uctuations on the fermions intaccount. It has

been found that for some quantum phase transitions, the LandaBinzburg-Wilson

theory breaks down su ciently close to the transition point due to this feedback.
[42, 111] For strongly disordered systems, this question has natdm addressed yet,
it remains a task for the future.

Turning to experiment, our theory does not signi cantly improve tre descrip-
tion of the data of Ni; V. [48, 49] We believe that the main reason is that our
theory is valid for asymptomatically large rare regions where the oed parameter
transport plays an important role, whereas the experimental aessible rare regions
in Ni; xVy are not large enough for the order parameter conservation to mate
their dynamics. We expect our theory can be applied in systems wlepne can

observe Gri ths singularities at lower temperatures leading to largerare regions.

7. APPENDIX: RENORMALIZATION GROUP THEORY

In this section, we show the derivation of Egs. (4.19) and (4.21) bgmormal-
ization group (RG) analysis. At low temperatures, the action Eq. (48) is formally
equivalent to a quantum non-linear sigma model [112] in imaginary time We can set
n()=(C (); ()),where ()=( 1(); 2()) represents transverse uctuations.

After expanding in  and keeping terms up toO(g 2), O( 2), we nd [112]
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Z di
S= g%+ lj j~()j
z 2 4
d! ,d! »d! L
% §J!1J glals ~ ()~ (T)~o(lg)~o( t1 2 13):

(4.33)

We now consider the case of the small damping g. Two di erent energy
regimes can be distinguished: (i) larger than some crossover energy, =g,
implying that the undamped dynamics dominates the systems propess, and (ii)
! I ., when the damping term is dominant.

(i) Because the contribution of the undamped dynamics is dominant ithis
regime, we neglect the damping term and renormalize To construct a perturbative
renormalizaition group, consider a frequency region [ ; ] ( is a high energy cut
0 ), and divide the modes into slow and fast ones, (*+) = ~<(! )+ ~>('). The
modes = (! ) involve frequency =b<!< =k and are kept. We integrate out the
short-wavelength uctuations > (! ) (with frequencies in the region <!< =b
and =b <! < ) in perturbation theory using the propagator h~"(! )~y(! 9i =

o (I +19=qg!?.

After applying standard techniques, we nd that this coarse graimg changes
the coupling constantg to g, = g+ l4(b), wherelg(b) = (2 ) (b 1). After
rescaling °= =b and renormalizing 4 9= <( )= 4, we obtain the renormalized
coupling constant in the form

°=b ' i0: (4.34)
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To nd the rescaling factor ¢, we averagen over the short wavelength modes” and

obtain

i~ =h( ; + i;:::;pl ( <+ >)?i’
P
=(L h(>)47=2+0(g N( 1::5 1 (<)) (4.35)

Thus, we identify

g=1 h(>)%i"=2+0(g %=1 lo( , O(g ?): (4.36)

g

Correspondingly, the renormalized coupling constant given in Eq. .@4) becomes

¢°=b g I4(b): (4.37)

Setting b= 1+ |, and integrating Eq. (4.37) gives the recursion relatiog(l) =
g(0)e '. To nd the relaxation time, we run the RG to g(I) = 1 and use €. This
gives

s L% (4.38)

(i) In the same way, for low energie$ I ., we neglect the term correspond-
ing to the undamped dynamics and renormalize the coe cient. We nd that is
not modi ed by the perturbation, i.e., = , and the eld rescaling factor is

given by

| (b

=1 +0( % (4.39)




110

wherel (b =2 log(b). Then, we nd the recursion relation ()= (0) 4 1.

This leads to the relaxation time

exp[const L 39]: (4.40)
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TRANSITIONS IN THE LARGE N LIMIT
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ABSTRACT

We develop an e cient numerical method to study the quantum criti@al be-
havior of disordered systems wittO(N) order-parameter symmetry in the large N
limit. It is based on the iterative solution of the large N saddle-point equations com-
bined with a fast algorithm for inverting the arising large sparse rarmm matrices. As
an example, we consider the superconductor-metal quantum pgeatransition in dis-
ordered nanowires. We study the behavior of various observablesar the quantum
phase transition. Our results agree with recent renormalization gup predictions,
I.e., the transition is governed by an in nite-randomness critical poitp accompanied
by quantum Griths singularities. Our method is highly e cient becaus e the nu-
merical e ort for each iteration scales linearly with the system sizeThis allows us
to study larger systems, with up to 1024 sites, than previous meatks. We also dis-
cuss generalizations to higher dimensions and other systems inclgdthe itinerant

antiferomagnetic transitions in disordered metals.

Submitted to Computer Physics Communications (2013).
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1. INTRODUCTION

Randomness can have much more dramatic e ects at quantum pleagansi-
tions than at classical phase transitions because quenched disors perfectly corre-
lated in the imaginary time direction which needs to be included at quaom phase
transitions. Imaginary time acts as an additional coordinate with innite extension
at absolute zero temperature. Therefore, the impurities and defts are e ectively
very large which leads to strong-disorder phenomena including pawaw quantum
Gri ths singularities [30, 99, 100], in nite-randomness critical points characterized
by exponential scaling [22, 101], and smeared phase transitions [SEQr example,
the zero-temperature quantum phase transition in the random &nsverse- eld Ising
model is governed by an in nite-randomness critical point [22] feating slow acti-
vated (exponential) rather than power-law dynamical scaling. It is accopanied by
quantum Gri ths singularities. This means, observables are expeetl to be singular
not just at criticality but in a whole parameter region near the criticd point which
is called the quantum Gri ths phase.

Quantum Gri ths singularities are caused by rare spatial con guraions of
the disorder. Due to statistical uctuations, one can always nd patial regions (rare
regions) which are impurity free. The probabilityP (Vgr) to nd such a rare region is
exponentially small in its volumeVggr, P(Vrr) exp( b\kr) with bbeing a constant
that depends on the disorder strength. Close to a magnetic phasansition, the rare
region can be locally in the magnetic phase while the bulk system is stillmonagnetic.
When the characteristic energy of such a rare region decays exponentially with its
volume, exp( cVkr) (as in the case of the transverse- eld Ising model), the re-
sulting rare-region density of states has power-law form( ) 1 where = b=c
is the non-universal Gri ths exponent. takes the value zero at the quantum critical

point and increases throughout the quantum Gri ths phase. The ggular density of
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states of the rare regions leads to quantum Gri ths singularities oseveral thermody-
namic observables including order-parameter susceptibility, T 1!, specic heat,
C T ;entropy, S T ;and zero-temperature magnetization- eld curvan h
(for reviews see, e.g., Refs. [17, 18]).

Many interesting models in statistical mechanics and eld theory cdain some
integer-valued parameteN and can be solved in the largeN limit. Therefore, the
large N method is a very useful tool to study classical and quantum phaseansi-
tions. An early example is the Berlin-Kac spherical model [113] whidh equivalent
to a classicalO(N) order parameter eld theory in the large N limit [114]. Anal-
ogously, the quantum spherical model [115, 116, 117] has beeeduto investigate
quantum critical behavior. In both casesN is the number of order parameter com-
ponents. Another potential application of the large N method are SU(N) Kondo
models [118] with spin-degeneraci. In all of these cases, the partition function
can be evaluated in saddle point approximation in the limitN 1, leading to
self-consistent equations. In clean systems, these equations o&en be solved ana-
lytically. However, in the presence of disorder, one obtains a largember of coupled
self-consistent equations which can be solved only numerically.

In this paper, we develop a new e cient numerical method to study mtical
behavior of disordered system witlO(N ) order-parameter symmetry in the large N
limit. We apply this method to the superconductor-metal quantum pase transi-
tion in disordered nanowires. Using a strong-disorder renormalizah group, it has
recently been predicted that this transition is in the same universalt class as the
random transverse- eld Ising model. We con rm these predictionsaumerically. We
also nd the behaviors of observables as a function of temperatuand an external
eld. They follow the expected quantum Griths power laws. We consder up to
3000 disorder realizations for system sizés= 256 and 1024. The paper is organized

as follows: In Sec. 2 we introduce the model: a continuum Landau-Gburg-Wilson
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order-parameter eld theory in the presence of dissipation; andengeneralize the the-
ory to quenched disordered systems. Then, we discuss the présticcritical behavior
of this model and derive the large N formulation. In Sec. 3, we review an existing
numerical approach to this model. In Sec. 4, we present our nuneal method to
study the quantum critical behavior. We discuss the results in Ses, and we compare
them to the behavior predicted by the strong-disorder renormaligion group. Sec. 6
is devoted to the computational performance of our method. Fillg, we conclude in
Sec. 7 by discussing and comparing our numerical method to the eixig one. We

also discuss generalizations to higher dimensions and other models.

2. THE MODEL

We start from the quantum Landau-Ginzburg-Wilson free-energyunctional
foran N component vector order parametelr in one space dimension. For a clean
system with overdamped order parameter dynamics the Landauk@burg-Wilson

action reads’

1Z Zit h u i
S=5 dx d ' 2(x; )+ J[@ (x; )P+ N (%)
0
T X z Z Z.:
to At bk (6 ) (5.1)

where is the bare distance from criticality. and J are the strength of dissipation
and interaction, respectively. u is the standard quartic coe cient. h is a uniform
external eld conjugate to the order parameter.' ;! ) is the Fourier transform
of the order parameter (x; ) with respect to imaginary time, and! , =2 nT is a

Matsubara frequency. The above action witiN = 2 order parameter components

YWe set Planck's constant and Boltzmann constant to unity (~ = kg = 1) in what follows.
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(equivalent to one complex order parameter) has been used to ddse [119] the
superconductor-metal transition in nanowires [120]. This transiin is driven by pair-
braking interactions, possibly due to random magnetic moments tpgped on the wire
surface [120], which also introduce quenched disorder in the nan@virThe action
(5.1) can be generalized tal = 3 space dimensions andN = 3 order parameter
components, in this case, it describes itinerant antiferromagnetiguantum phase
transitions [14, 15].

In the presence of quenched disorder, the functional form of E¢p.1) does
not change qualitatively. However, the coupling constants becomandom functions
of position x. The full e ect of disorder can be realized by settingg = = 1 while
considering the couplings and J to be randomly distributed in space [121]. The
quantum phase transition in zero external eld can be tuned by chrging the mean
of the ; distribution, —

Recently, the model (5.1) has been investigated by means of a stgedisorder
renormalization group method [107, 122]. This theory predicts tihdhe model falls
in the same universality class as the one-dimensional random traesse- eld Ising
model which was studied extensively by Fisher [22]. Thus, the phasensition is
characterized by an in nite-randomness critical point at which thedynamical scaling
is exponential instead of power-law. O criticality, the behaviors ofobservables are
characterized by strong quantum Gri ths singularities.

Let us focus on the Griths phase on the disordered side of the tmasition,
where the distance from criticality = ¢ > 0. The strong-disorder renormal-
ization group predicts the disorder averaged equal-time correlatidunction C(x) to

behave as [22]

expl (x=) (27 *=4=(x= )
=)

C(x) (5.2)
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for large distancesx. Here, is the correlation length which diverges as | |
with = 2 as the critical point is approached. The disorder averaged ordparameter

as a function of the external eldh in the Griths phase has the singular form [22]
‘(h) h: (5.3)

Here, is the non-universal Gri ths exponent which vanishes at criticality as
with critical exponent = 1=2. Right at criticality, the theory predicts logarithmic

behavior rather than a power law [22],
' (h) [log(ho=h] * : (5.4)

P_ .
Here, the exponent = (1 + = 5)=2 equals to the golden mean, antiy is some
microscopic energy scale.
The average order parameter susceptibility as a function of temgadure T in

the disordered Gri ths phase is expected to have the form [22]
(my T * (5.5)

with the same  exponent as in Eq. (5.3).

Our goal is to test the strong-disorder renormalization group pdkctions by
means of a numerical method. As a rst step, we discretize the domuum model
(5.1) in space and Fourier-transform from imaginary time to Matsubara frequency

I n. The discretized Landau-Ginzburg-Wilson action has the form
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S_I)Q_ X h _'|~(' ),2+ \]..I~(' ) . (' )-2+ i'l_\_(' )‘4|
_2i:1! il 0 n)l i] 0 n i+1 0+ n)J 2NJ|-nj
X hrx 5 |
+ 2 M=t n)i h~(0) ; (5.6)
i=1 [

where L is the system size. The nearest-neighbor interactiods > 0 and the mass
terms ; (bare local distances from criticality) are random quantities. The ritical
behavior of the model (5.6) can be studied in the limit of a large numbef order
parameter componentdN . In this limit, the above action can be reduced to a Gaus-
sian form. This can be done in several ways, for example by decorsipg the square
of each component of the order paramete}h-(k)(! n)j? into its averageHh 2i and uc-
tuation j~N0 )iz =0 D2 = B A+ -0 )2 Substituting this into the
guartic term of the action (5.6) and using the central limit theoremthe quartic term

can be replaced byi 2ij'~(! ,)j2. This leads to the Gaussian action

X X

0)]
I
N —

. . X_
I"'j ()M + 8 nj )= a)+ h . ~(0): (5.7)

=1 1nq i=1

The coupling matrix is given by

Mij = Jiger Jjig 2+ (ri+2J3) i (5.8)

The renormalized local distance; from criticality at site i must be determined self-

consistently from
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whereh ?i is given by

X VS
H2i=T [M+jl,jl]*+ h? M; Mt (5.10)
'n k=1
Here, 1 is the identity matrix. In the presence of disorder, the self-consent equa-
tions (5.9) at dierent sites are not identical. We thus arrive at a larg number

of coupled non-linear self-consistent equations. Therefore, nental techniques are

required to solve them.

3. EXISTING NUMERICAL APPROACH

In this section, we review the numerical method proposed by Del Mstro
et al. [123] to study the model (5.7) at zero temperature and in the absee of
an external eld (h = 0). The matrix M is spectral decomposed in terms of its

orthogonal eigenvectors/; and eigenvalues; as

X
Mij Vik = Vik «: (5.11)
=1

Using this decomposition, the inverse matrix in Eqg. (5.10) can be wrih as

Vi Vi

—_— 5.12
k+J! nJ ( )

M+ jlnj1]; t=
k=1
At zero temperature the sum over Matsubara frequencies in Egs.Q0) turns
into an integral which can be performed analytically. This leads to theelf-consistent
equations (forh = 0),
VS

(Vj)?log 1+ — + ; r;=0: (5.13)
j=1 )
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Here, for convergence of the frequency integral, an ultra violeuto , is intro-
duced. Numerical solutions to Eq. (5.13) were obtained by an iteiah process using
a modi ed Powell's hybrid method. The method works well for large disthces from
criticality and small system sizes, but it becomes computationally phibitive near
criticality where the correlation length becomes of order of the system size. This
problem can be partially overcome by implementing a clever iterative lse-join-patch
procedure. However, the system side is still limited because large matrices need to
be fully diagonalized which require$D(L3) operations per iteration. Therefore, for
large L the method gets very slow.

As the result, the largest sizes studied in Ref. [123] welte= 128. The authors
analyzed equal time correlations, energy gap statistics and dynamal susceptibilities
and found them in agreement with the strong-disorder renormaliian group predic-

tions [107, 122]. The method was also used in Ref. [124] to study thenductivity.

4. METHOD

We now present a novel numerical method to study the model (5.@) non-zero
temperatures. Its numerical e ort scales linearly with system size (per iteration)
compared with the L3 scaling of the numerical method outlined in Sec. 3. The basic
idea of our method is that, forh = 0, we only need the diagonal elements of the
inverse matrix M 1! to iterate the self-consistent Eq. (5.9). The numerical e ort for
nding the diagonal elements of the inverse of a sparse matrix is musmaller than
that of a full diagonalization. Combining Eqgs. (5.9) and (5.10), the stem of self-
consistent equations at non-zero temperatureB, and in the presence of an external

eld h, reads
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X hS
=27 [M+2nT 1 '+ TM;t+h? MMt + e (5.14)
n=1 k=1
Here, m = (2T ) ! with an ultra-violet cuto frequency ,. To solve these

equations (5.14) iteratively, we nd the inverses of the tridiagonalmatrices M;; +
2nT 1] and Mj; using the fast method proposed in Ref. [125]. This algorithm is
summarized in Sec. 8. In zero external eld, we only need the diagdrelements
of [Mj +2 nT 1] * and the number of operations per iteration scales linearly with
system sizd_, while it scales quadratically in the presence of a eld because o6 0,
full inversion of the matrix is required.

Once the full set ofr; has been obtained, we can compute observables from
the quadratic action (5.7). Let us rst consider observables in th@bsence of an
external eld. The equal-time correlation function C(x) = H ()" 1( )i averaged

over disorder realizations can be obtained from Eq. (5.7),

X xo

C(x) = I_T—x 2M+2nT 1] L. +M. L (5.15)

i+ x i+ x

where the overbar indicates the average over disorder con gai@ns. Similarly, in the
zero external eld, we can calculate the order parameter susdc#glity as a function
of temperature. The disorder-averaged order parameter segtibility (T) can be
expressed as
> X
(T) - T Mikl : (516)
i=1 k=1

“We use open boundary conditions.
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In the presence of an external eld, we need to include in the solution of
Eq. (5.14). We can then compute the order-parametess: eld curve. The disorder-
averaged order parameter reads
I
()= ¢ Myt (5.17)
i=1 k=1
We note that the number of operations to calculate observablesrfone disorder
con guration scales quadratically with the system siz&. However, this needs to be
done only once, outside the loop that iterates the self-consisteaguations. At low
temperatures, according to Eq. (5.14), we need to invert a hugeimber of matrices
[Mj +2 nT 1] per iteration (one for each Matsubara frequency). Naively, ormaight
therefore expect the numerical e ort to scale linearly in £T. However, these matrices
are not very di erent. We can therefore accelerate the methodybcombining them

appropriately. This is explained in Sec. 9.

5. RESULTS

In this section, we report results of our numerical calculations ohe model
(5.7). We consider the interactions); to be uniformly distributed on (0; 1) with mean
J = 0:5 and the bare local distances from criticality ; to be Gaussian distributed
with mean — and variance 0.25.

An advantage of our method is that it gives direct access to the tgmerature
dependencies of observables. For example, we calculate the zeldorder parameter
susceptibility as a function of temperature for various values of ¢hcontrol parameter

according to Eq. (5.16). At low temperatures, the Gri ths power law (5.5) describes
the data very well (see Figure 1). The non-universal Griths expoment can be
determined from ts in the temperature rangeT =10 3 1.5 10 2. Figure 2(a)

shows how varies as the distance from criticality = < changes. The power law
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Figure 1: (Color online) Order-parameter susceptibility versus temperatureT for
various distances from criticality in the Griths phase. All data are
averaged over 3000 disorder con gurations with system size= 256. The
solid lines represent ts to the Gri ths power law (5.5), (T) T 1, over
the temperature rangeT =10 * 1.5 10 2.

describes the data well with the critical point . = 0:85(3), and exponents
=2:0(2) and =0:51(2). Here, the number in brackets indicates the uncertainty
in the last digit. These results are consistent with the predictions dRefs. [107, 122].
We also compute the order parameter as a function of an externald at
T =10 3 for various (Figure 3). The o -critical data ( > 0) are described by the
Gri ths power law (5.3) with an exponent . At the critical point, the ' (h) curve
follows the logarithmic dependence (5.4) with exponents= 0:51(2) and = 1:61(2).
The value for exponent is in agreement with the predicted one [107, 122]. The
values of the Gri ths exponent match those extracted from susceptibility data (see
Figure 2 (a)). The deviation near the critical point may be due to thdact that the
correlation length becomes comparable to the system size and espondingly causes

nite-size e ects in the data.
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Figure 2: (Color online) a) The Gri ths exponent versus distance from criticality
. The solid line is a t to the power law . b) The correlation
length obtained by analyzing correlation function data versus distance
from criticality. The solid line is a t to a power law, resulting in a critical
point of .= 0:85(3) and the correlation length exponent = 2:0(2).

In addition, in the absence of an external eldh, for system sizd. = 1024; we
compute the disorder-averaged correlation functions (5.15) atmperatureT = 10 3
for various values of (see Figure 4). The values of correlation length can be
extracted by tting the data to Eq. (5.2). We nd good agreement of the data with
Eqg. (5.2) for distances betweenx = 5 and some cuto at which the curves start to
deviate from the zero-temperature behaviors due to temperati e ects and where
curves start to become noisy because correlations become dor@daby very rare
large clusters.

Figure 2(b) shows how the correlation length changes with distance from
criticality . The data can be tted to the power law | | , as expected [22]. By

tting, we extract the critical point = 0:85(3) and exponent = 2:0(2). The
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Figure 3: (Color online) Order parameter versus external eldh for various . The
data are averaged over 3000 disorder con gurations of systeines. = 256.
Inthe eld range h=10 4“to2 10 3, the dotted and solid lines represent
ts to Eq. (5.4) and the Gri ths power law (5.3), respectively.

values of exponent and critical point . are in agreement with those obtained from

(T)yand ' (h).

6. COMPUTATIONAL PERFORMANCE

In this section, we discuss the execution time of our method for soig the self-
consistent Egs. (5.14) iteratively {.e., the time needed to get a full set of renormalized
distances from criticality ri). In our method, the time per iteration scales linearly
with the system sizeL in the absence of an external eld because the operation
count is dominated by the matrix inversion. Thus, the disorder-avaged execution
timet niL for a single disorder con guration, wheren;; is the number of iterations
needed for convergence of the self-consistent Egs. (5.14). Tiaenber of iterationsn;,
depends on the disorder con guration, it is larger for a disorder adization which has

locally ordered rare regions with smaller . In the conventional paramagnetic phase,
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Figure 4: (Color online) The equal-time correlation functions for seval values of .
All data are averaged over 3000 samples of size= 1024 at T =10 3. The
solid lines are ts to Eg. (5.2). Inset: Deviations of correlation funiton
at xed value of = 0:7 due to temperature e ects and statistical error
of an average over disorder con gurations. The data represeut by circles
and stars are averaged over the same 1000 disorder con guragoat T =
0:0025 andT =10 3, respectively. The curves represented by triangles are
averaged over di erent set of 1000 disorder con gurations af = 10 3.

i :e:, for larger values of away from criticality, locally ordered rare regions are almost
absent, therefore the number of iterations;; is a constant. Thus, in the conventional
paramagnetic phase, the execution time is expected to scale lineanlith the system
size,t L. Figure 5 shows that it indeed scales linearly with the system size for

= 1. In contrast, in the quantum Gri ths phase, where locally ordered rare regions
are present,n; is expected to be large and to become larger close to criticality. If we
compare two di erent system sizes in the quantum Gri ths phase, he larger system
is expected to have locally ordered rare region with higher probabilityrhus, in the
guantum Griths phase the number of iterations n; is expected to be a function
of system sizeL, which we model a:; LY with some non-negative exponeny.

Therefore, in the quantum Gri ths phase the execution time does at scale linearly
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Figure 5: (Color online) At the temperatureT = 10 ° and in the zero eld h = 0,
execution time for a single disorder con guratiort versus system size for
= 06and =1. All data are averaged over 1000 disorder realizations.
The solid lines represent ts to the power-law. (times measured omdntel
Core i5 CPU)

with the system size but it behaves as LY. Figure 5 shows that for = 0:6 in
the quantum Gri hts phase, the disorder averaged execution timé does not scales
linearly with L but behaves as power law  LY* with y = 0:6.

Because our method performs the Matsubara sums numerically, ethe ort
increases with decreasing temperaturé. As shown in Sec. 9, this increase is only

logarithmic in 1=T if we approximately combine higher Matsubara frequencies.

7. CONCLUSIONS

In summary, we have developed an e cient numerical method for stlying
quantum phase transitions in disordered systems wit@ (N ) order parameter symme-
try in the large N limit. Our algorithm solves iteratively the large N self-consistent

equations for the renormalized distances from criticality using theast method of
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Ref. [125] for the necessary matrix inversions. We have applied auethod to the
superconductor-metal quantum phase transition in nanowires drstudied the criti-
cal behavior of various observables near the transition. Our rd&iare in agreement
with strong-disorder renormalization predictions [107, 122] thathte quantum phase
transition is governed by in nite-randomness critical point accomanied by quantum
Gri ths singularities.

Let us compare the performance of our method with that of the nieod pro-
posed in Ref. [123] and outlined in Sec. 3. The main di erence is how teems over
the Matsubara frequencies in the self-consistent equations (5.8)e handled. The
method of Ref. [123] works afl = 0 where the Matsubara sum becomes an integral.
This integral is performed analytically which saves computation timeHowever, the
price is a complete diagonalization of the coupling matrisM which is very costly
(O(L3) operations per iteration). Moreover, observables af 6 0 are not directly
accessible.

In contrast, our method performs the Matsubara sum numericallywhich allows
us to use the fast matrix inversion of Ref. [125] (which needs juSt(L) operations per
iteration) instead of a full diagonalization. Furthermore, we can daulate observables
at T 6 0. However, our e ort increases with decreasing . Thus, the two methods
are in some sense complimentary. The method of Ref. [123] is faahle for small
systems when trueT = O results are desired. Our method works better for larger
systems at moderately low temperatures.

We also emphasize that all our results have been obtained by corgieg the
self-consistent equations (5.9) by means of a simple mixing schemevelk better
performance could be obtained by combining our matrix inversion seime with the
solve-join-patch algorithm [123] for convergence acceleration.

Our method can be generalized to higher-dimensional problems. Tkelf-

consistent equations can be solved in the same way, using a fast noet for inverting
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the arising sparse matrices. For two dimensional systems, one lcbuse the methods
given in Refs. [126, 127] for which the cost of inversion @(N32), where N is a
total number of sites. We therefore expect the cost of our methl to scale ad\Y*3=2
or N2 in the quantum Griths and quantum paramagnetic phases, respduovely.
For three dimensional systems, sparse matrices can be invertedd(N ) operations
[127], correspondingly the cost of our method is expected to bekaasNY*?> (N is
number of sites) in the quantum Gri ths phase. In the quantum parmamagnetic phase
it should scale asN?2.

A possible application of our method in three dimensions is the disoraer
itinerant antiferromagnetic quantum phase transitions [107, 122]The clean tran-
sition is described by a Landau-Ginzburg-Wilson theory which is geradization of
the action (5.1) to d = 3 space dimensions andN = 3 order parameter components
[14, 15]. Introducing disorder leads to random mass terms as in thase of the

superconductor-metal quantum phase transition in nanowires.

8. APPENDIX: INVERSION OF TRIDIAGONAL MATRIX

In this section we sketch the fast method for the inversion of a tridgonal
matrix outlined in Ref. [125]. The cost of nding the diagonal elementsf the inverse
matrix is O(L) operations while inverting the full matrix costsO(L?) operations. The
basic idea is that the inverse matrix of the tridiagonal matrixM; can be represented

by two sets of vectorsy; and u;: M; ' = uv;. Let diagonal and o diagonal elements

j
of matrix M beM; = & and Mii+1 = M+ = I, respectively. By combining a
UL decomposition of the linear system fov and a UL decomposition oM ;; , one can

determine the set of vectors

1 _ b b

Vi= —;
dy

I=2; ;n; (5.18)
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where

dy = a,; d = g i=n 1 1 (5.19)

The set of vectorsu; can be found by combining a LU decomposition of the

linear system foru and a LU decomposition oMMj; , yielding

1 bﬂ i+1 bn .
u, = ; uy, i = —; 1=1; 'n 1; 5.20
" nVn " n i nVn ( )
where
1= & i =g i I =2; n: (5.21)

Finding both sets of vectors need®(L) operations, consequently the number
of operations to extract the diagonal element; ' = uyv; of inverse matrix scales

linearly with L while the cost of nding the full inverse matrix M; L= uy isO(L?).

9. APPENDIX: ACCELERATION OF METHOD

In this section we propose an approach to accelerate the summatiover the
Matsubara frequencies in our method. The idea is based on the faloat the critical
behaviors are dominated by low-frequencies, correspondingly ontatrices associated
with low Matsubara frequencies! , have dominant contributions in Eq. (5.14). At
higher! ,,, consecutive matrices change very little. Therefore, instead afiding diago-
nal elements of f1; +2 Tn 1] * for each Matsubara frequenciels,, we invert matrices
corresponding ton = 1;:::;100 and correspondingly calculating the sum of rst 100
terms in Eq. (5.14) exactly. Then, we approximate sum of the remamy terms cor-

responding ton > 100 (higher Matsubara frequencies) in the following way: we nd
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diagonal elements ofifl; +2 Tn 1] * corresponding to the midpoints of subintervales
obtained by dividing interval n = 10'** +1;:::;10*2 (I = 1;:::;l09,,(m=100)) into 90
subintervales of width 10. Then, we approximate appropriate sum in Eq. (5.14) by
summing over terms calculated at midpoints multiplied by 10 In this case, numeri-
cal e ort scales logarithmically as log,(1=T) compared with =T scaling in the case
of exact summation. To check the magnitude of errors arising due this approxima-
tion, we have compared observables calculated exactly and usingeleration method
for the system with sizeL. = 256 and control parameter .= 0:6 at the temperature

T =10 3. We have found that arising errors are less than:D%.
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VI. TRANSPORT PROPERTIES IN ANTIFERROMAGNETIC
QUANTUM
GRIFFITHS PHASES
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ABSTRACT

We study the electrical resistivity in the quantum Gri ths phase assciated
with the antiferromagnetic quantum phase transition in a metal. Theresistivity is
calculated by means of the semi-classical Boltzmann equation. Weoshthat the
scattering of electrons by locally ordered rare regions leads to aggithar temperature
dependence. The rare-region contribution to the resistivity vareeasT with tem-
perature T; where is the usual Gri ths exponent which takes the value zero at the
critical point and increases with distance from criticality. We nd similar singular
contributions to other transport properties such as thermal r&@stivity, thermopower
and the Peltier coe cient. We also compare our results with existing xperimental

data and suggest new experiments.

Published in Europhysics Letters95, 57010 (2011).
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1. INTRODUCTION

Quantum phase transitions [12] occur at zero temperature whem &xternal
parameter such as magnetic eld, pressure or chemical compogitis varied. They
are driven by quantum rather than thermal uctuations. At continuous quantum
phase transitions, i.e., quantum critical points, the quantum uctwations driving the
transition diverge and become scale invariant in space and time. Thkesictuations
dominate the material's properties in the vicinity of the quantum criti@al point at
low but non-zero temperatures. In metallic systems, they can cael strong deviations
from the conventional Fermi-Liquid behavior of normal metals [13].

Impurities, defects or other kinds of quenched disorder can signantly modify
the low temperature behavior of quantum many-particle systems.The interplay
between dynamic quantum uctuations and static disorder uctudions leads to much
more dramatic e ects at quantum phase transitions than at classat thermal phase
transitions, including quantum Gri ths singularities [30, 99, 100], in nite randomness
critical points featuring exponential instead of power-law scaling 22 101] and the
smearing of the phase transition [51]. These unconventional phemena are caused
by large spatial regions (rare regions) that are devoid of impuritieand can show
local order even if the bulk system is in the disordered phase. Thectuations of
these rare regions are very slow because they require changing dinder parameter in
a large volume. Griths showed that this leads to a singular free engy in a whole
parameter region which is now known as the Gri ths phase. The proability P(LY)
for nding an impurity-free rare region with linear sizeL in a disordered system is
exponentially small in its volumeL9, P(LY)  exp( cLY) with ¢ being a constant
that depends on the disorder strength. In systems in which the ahacteristic energy

of such a rare region decays exponentially with its volume, exp( bL"); the

resulting density of states is of power-law type, () / 1 where = c=bis the
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non-universal Griths exponent. It varies systematically within the Griths phase
and vanishes at the critical point. The power-law density of states( ) leads to
non-universal power-law quantum Gri ths singularities of severalthermodynamical
observables including the specic heatC T ; and the magnetic susceptibility,

T 1. The zero-temperature magnetization- eld curve behaves &4 H (for
reviews, see Refs. [17, 18]).

Quantum Gri ths phases have been predicted to occur not only in loalized
magnets but also in metallic systems [31, 66, 122], but clear-cut exipgental veri ca-
tions have been absent for a long time. Only recently, quantum Gri hs phases have
been observed in experiment in a number of systems such as magn&miconductors
[43, 44, 45], Kondo lattice ferromagnets [46, 47] and transition nadtferromagnets
[48]. The lack of experimental evidence for quantum Gri ths phases metals may
be (at least partially) due to the theories being incomplete: while thehermodynam-
ics in quantum Gri ths phases is comparatively well understood, vey little is known
about the experimentally important and easily accessible transpoproperties.

In this Letter we therefore study the electrical resistivity in the grgantum Grif-
ths phase of an antiferromagnetic metal by means of the semi-@sical Boltzmann
equation approach. In the same manner, we also investigate otheansport proper-
ties such as the thermal resistivity, the thermopower and the Peéir coe cient. We
nd that the scattering of the electrons by spin- uctuations in the rare regions leads
to singular temperature dependencies not just at the quantum itical point but in
the entire antiferromagnetic quantum Gri ths phase. The rare region contribution
to the resistivity variesas / T with temperature T, the contribution to thermal
resistivity behaves as W / T 1, and the thermopower and the Peltier coe cient

behave as S/ T *! and | T *2; respectively.
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2. MODEL AND METHOD OF SOLUTION

Let us now sketch the derivation of these results. The transpogroperties
of the itinerant antiferromagnetic systems we are interested in nabe described by
a two-band model consisting o and d electrons [128, 129]. The Hamiltonian has
the form H = Hg + Hy + Hg 4; whereHg and Hy are the Hamiltonians ofs and d
electrons, respectivelyHs 4 corresponds to the exchange interaction betweenand
d electrons. Only thes electrons contribute to the transport properties. They are
scattered by the spin- uctuations of thed electrons which are assumed to be in the
antiferromagnetic quantum Gri ths phase. The contribution to th e resistivity from
the scattering by the spin- uctuations stems from thes d exchange interaction term

of the Hamiltonian

Z
Hs g=g drs(r) S(r); (6.1)

where g is the coupling betweers and d electrons. s and S are the spin densities of
the s and d electrons, respectively.

Close to an antiferromagnetic transition in three-dimensional spactransport
properties can be treated within a semi-classical approach usingetBoltzmann equa-
tion because quasiparticles are still (marginally) well de ned. For siplicity, we also
assume that the spin- uctuations are in equilibrium, i.e., we neglect @g e ects. This
approximation is valid if the system can lose momentum e ciently by Umkapp or
impurity scattering as is the case in a dirty antiferromagnetic systa. The linearized
Boltzmann equation in the presence of an electric el& and a temperature gradient

r T; but zero magnetic eld can be written as [58]

vk%f_le vk@—sz @k

@ll(l @t scatt ' (6l2)
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wheref ? is the equilibrium Fermi-Dirac distribution function. The rst and second

terms correspond to the rate changes of the electron distributicfunction f, due to

the di usion and electric eld E, respectively. The last one is the collision term. Let

the stationary solution of the Boltzmann equation bd = ff k(@f:@;;'); where
k IS a measure of the deviation of the electron distribution from equilibrm. Then

the linearized scattering term due to the spin- uctuations has théorm [129, 130]

@I Zg2 X 0 0 n n O n "
- = = foo(l fo)n olm (k k=% 0 0
@t ., T kol AN Mo)im ( ko ko) k k©)
1 X
= 7 Po("k "o « OF (6.3)
kO

wheren("x  "yo) is the Bose-Einstein distribution function and is the total dy-

namical susceptibility of the spin- uctuations of thed electrons.

3. ELECTRICAL RESISTIVITY

In order to calculate the electrical resistivity we consider Ziman's vational

principle [58]. The resistivity is given as the minimum of a functional of  [58]Y

RR . #

1 ( 02 Kdkdk®

[ =min =R G (6.4)
Vi k@—tdk

where

Eoz i d' Peo(!) ("ko "k *+!): (6.5)

YWe set Plank's constant, electron's charge and Boltzmann constan~ = e = kg = 1 in what
follows.
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Quantum Gri ths e ects in disordered metallic systems are realized bth in
Heisenberg magnets [31, 43] and in Ising magnets. In the latter eathey occur in a
transient temperature range where the damping is unimportant . In the following,
we consider both cases.

As we are interested in the rare-region contribution to the resistity in the
Gri ths phase, we need to nd the rare region dynamical susceptillity which is
simply the sum over the susceptibilities of the individual rare regionslhe imaginary
part of the dynamical susceptibility of a single cluster (rare regiondf characteristic
energy inthe quantum Gri ths phase of a disordered itinerant quantum Heignberg
antiferromagnet is given by

2

Im «(g;!; )= WFZ(Q); (6.6)

where is the moment of the cluster and is the damping coe cient which results
from the coupling of the spin- uctuations and the electrons. (T) plays the role of the
local distance from criticality. For high temperatures T ; (T) T and for low
temperatures T ; (T) :F (q)is the form factor of the cluster which encodes
the spatial magnetization pro le. For random quantum Ising modelghe imaginary
part of the dynamical magnetic susceptibility of a single cluster (r&region) is given
by

2

Im a(g;!s) = tanh o— [( 1) ( + DIF*a): (6.7)

To get the total rare-region susceptibility, we integrate over all are regions

using the density of states ( );

Z

Im (q;!)= . d (O)m a(a;!; ); (6.8)
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where is an energy cut-o . The precise functional form ofF (q) is not known, since
every cluster has a di erent shape and size. However, we can ndapproximately
by analyzing the Fourier transform of a typical local magnetizatiompro le of the rare
region. Consider a rare region of linear size (located at the origin). Following Millis
et al. [36], the order parameter is approximately constant for < L; while for large
r>L; itdecays ase ™ =r; where is the bulk correlation length. Taking the Fourier
transform we nd that F (q) depends onl' via the combinationjQ qjlog( 1) only,
where Q is the ordering wave vector. Correspondingly, from Eg. (6.8), wend that
the rare region contribution to the zero-temperature susceptilty in the quantum

Gri ths phase can be expressed as

Im (q;!)/j 'j *sgn€)X[(a Q)°log(! ")I; (6.9)

where X is a scaling function. The precise form of the logarithmic correction @ -
cult to nd and beyond the scope of this paper. For random quantm Ising models,
the susceptibility has the same structure as Eq. (6.9) [66]. It is cle#nat the scaling
function X will give only logarithmic corrections to the temperature dependercof
the resistivity in our further calculations.

To minimize the resistivity functional (6.4), we need to make an ansatfor
the distribution : Close to an antiferromagnetic quantum phase transition, the mag-
netic scattering is highly anisotropic because(q;! ) peaks around the ordering wave
vector Q: However, since we are interested in a strongly disordered systeime low-
temperature resistivity will be dominated by the elastic impurity scatering which is
isotropic and redistributes the electrons over the Fermi surfac€orrespondingly, we

can use the standard ansatz

k! n k: (6.10)
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wheren is a unit vector parallel to the electric led. Note that any constantprefactor
in ¢ is unimportant because it drops out in the resistivity functional (6.4 and in
the corresponding thermal resistivity functional (6.13). Then, fier applying standard

techniques [58] the magnetic part of the resistivity given in Eq. (6.4)ecomes

(92", @)

Z
/I T o
“ 0 @T

Im (qg;!): (6.11)
Inserting the susceptibility (6.9) yields the rare-region contributia to the

resistivity in the antiferromagnetic quantum Gri ths phase as
A (6.12)

Thus, the temperature-dependence of the resistivity follows a nainiversal power-

law governed by the Griths exponent

4. OTHER TRANSPORT PROPERTIES

In the same way, we study other transport properties such as ehthermal
resistivity, the thermopower, and the Peltier coe cient. The variational principle for

the thermal resistivity has the form [58]

"R R #
2 kO k kO
W[ J=min gt ) kdkd

5 ; (6.13)
vil("« ) k%dk ?

where is the chemical potential of the s-electrons. As long as impurity sttaring

dominates, we can use the standard ansatz for the variationalrfction,

("« ) k: (6.14)
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Then, following the calculation for the thermal resistivity outlined in Ref. [58] we

obtain

Z

@1 Im (qg;!)

2
I 2 1‘ q 5 + q2T2
q 6k 3Ke

w /

1
T2

(6.15)

where kg is Fermi momentum of thes-electrons?. Inserting the susceptibility (6.9)
into (6.15), the temperature dependence of the thermal resistiy due to the spin-

uctuations in the Gri ths phase from the above equation is given by

w/ T (6.16)

The existence of an electric elcE in a metal subject to a thermal gradientr T
is called Seebeck e ect and is characterized by the thermopowgrwhich is de ned
via E = Sr T. To calculate the thermopower, we analyze the Boltzmann equation

(6.2) in the presence of botlE and r T using the trial function

k/ 1n k + 2("k )n K: (617)

where ; and , are variational parameters. Elastic impurity scattering leads to th
usual linear temperature dependenc&y,, / T while the contribution due to the

magnetic scattering by the rare regions in the Gri ths phase reads

S/ T*: (6.18)

Another transport coe cient called the Peltier coe cient charac terizes the

ow of a thermal current in a metal in the absence of a thermal gidient. It is related

“Here, we have averaged over all directions of the vectar; this is su cient to get the temperature
dependence.
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to the thermopower by = S T: Correspondingly, the rare-region contribution to

the Peltier coe cient has the form

[ T *: (6.19)

5. DISCUSSION AND CONCLUSIONS

In summary, we have investigated the transport properties in thguantum
Gri ths phase close to an antiferromagnetic quantum phase trarifon in a metallic
system (see Fig. (1)). The rare-region contributions to electritaesistivity, thermal
resistivity, thermopower, and the Peltier coe cient are characteized by non-universal
power-laws inT which are controlled by the Gri ths exponent :

Our results have been obtained using the semi-classical Boltzmarguation
approach. This approach is valid in Gri ths phase in which the system ansists of
a few locally ordered rare regions in a non-magnetic bulk where theagiparticles
are well-de ned. Su ciently close to the actual quantum critical pant (which is of
in nite-randomness type) the quasiparticle description may breaklown, invalidating
our results. A detailed analysis of this question hinges on the fate thfe fermionic
degrees of freedom at the in nite-randomness quantum criticalgint. This di cult
problem remains a task for the future.

We have used the standard isotropic ansatz (6.10, 6.14) for theviltion of
the electron distribution from equilibrium. This is justi ed as long as tte rare-region
part  (T) of the resistivity is small compared to the impurity part o: When
becomes larger, the anisotropy of the scattering needs to be ¢akinto account. This
can be done by adapting the methods of Rosch [131] to the situatiat hand.

We emphasize that our results have been derived for antiferromraggic quan-
tum Gri ths phases and may not be valid for ferromagnetic systemsThe problem is

that a complete theory of the ferromagnetic quantum Gri ths phase in a metal does
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Figure 1: (Color online) Schematic temperature-control paramet phase diagram of
an itinerant antiferromagnet close to the quantum critical point. Qur re-
sults apply in the Griths phase at low temperatures.

not exist. In particular, the dynamical susceptibility still is not known. Correspond-
ingly, the transport properties in ferromagnetic quantum Gri ths phases remain an
open problem.

Non-universal power-laws in a variety of observables including traport prop-
erties can also arise from a di erent physical mechanism far awayofn the magnetic
guantum phase transition. In Kondo-disordered systems, the iskence of a wide dis-
tribution of local single-ion Kondo temperatures is assumed, this lds to the power-
law singularities [132, 133]. This model was used to explain experimdntasults in
some heavy fermion compounds such as UfRd and UCus.sPdy.5 [134, 135].

Let us now turn to experiment. Unfortunately and somewhat ironially, all
clear-cut experimental observations of quantum Gri ths phasesre in itinerant fer-
romagnets rather than in antiferromagnets. However, quantur@ri ths e ects have

been discussed in the context of the antiferromagnetic quanturrh@se transition in
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heavy fermion systems [136, 137]. One of the most striking predats following
from our theory is that the exponent characterizing the electridaresistivity should
be less than one su ciently close to the quantum phase transition. fAere are several
antiferromagnetic systems such as Ce¢eCug.sGe, and Ce(Ru.sRho.4)»Si [136, 137]
that show unusual power-law behaviour of the electrical resistiyitwith an exponent
less than unity. The rst system's resistivity increases with decresang temperature.
This is incompatible with our prediction and described by the Kondo maal. The
resistivity of the second compound decreases with decreasing parature in agree-
ment with our prediction. However, it is not clear whether this behawour is indeed
caused by the quantum Griths phase. To establish this, one shoulagneasure var-
ious thermodynamics quantities as well as the transport propergseand relate their

low-temperature behavior.
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SECTION

2. CONCLUSIONS

In this thesis, reprints of six papers have been presented thatustied various
aspects of quenched disorder e ects on phase transitions. Inpgas |, I, and IlI,
we investigated smeared phase transitions in binary alloys;ABy, in which the
transition is tuned by changing the compositionx. We considered both spatially
correlated and uncorrelated disorder. This theory was put to a $& in experiments
on the Sr ,Ca,RuO3; compound in paper IlI.

Paper IV studied quantum Griths singularities associated with the ferro-
magnetic quantum phase transition in a disordered metal for Isingnd Heisenberg
order parameter symmetries. The resulting quantum Gri ths singuarities are even
stronger than usual quantum Gri ths singularities.

Paper V was devoted to an e cient numerical method to study the gantum
critical behavior of disordered systems witftO(N) order-parameter symmetry in the
large-N limit. The method is based on the iterative solution of the largeN saddle-
point equations combined with a fast algorithm for inverting the arisig large sparse
random matrices.

In paper VI, we studied transport properties in the quantum Grit hs phase
associated with the antiferromagnetic quantum phase transition ia metal by means
of the semi-classical Boltzmann transport theory.

In summary, we explained how quenched disorder can a ect a varyevf phase

transitions and modify the behavior of observable quantities close the transition
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point. We thus took a step towards a better understanding of theterplay between
randomness and phase transitions. However, many interestingespquestions remain.
The complete theories of smeared phase transitions and quantumi s phases are

not obtained yet. It would be interesting, for example, to study eects of spatial long-
range correlations of the disorder on smeared phase transitiofdoreover, theories
of quantum Gri ths phases in metals neglect weak localization e ects Because the
system is strongly disordered in the quantum Gri ths phase, it wouldbe interesting
to study weak localization e ects and other quantum e ects on olervable quantities

in quantum Gri ths phases.
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