Lecture 1: Dimension reduction estimation: can linear methods solve nonlinear problems?

Fall 2014

Hong Kong Baptist University
University of Connecticut
Question: Why dimension reduction?

- Regression modelling: Dimension reduction makes data visualization. The current practice of regression analysis is:

- Fit a simpler model;

- Check the residual plot;

- If the residual plot does not show a systematic pattern then stop; otherwise continue to fit a more complex model.
Why dimension reduction?

Question: How to give a comprehensive residual plot?

- In the one-dimensional cases – the residual plot is informative. Given \((X_1, Y_1), \ldots, (X_n, Y_n)\), first fit a linear regression model:

 - For \(1 \leq i \leq n\),
 \[Y_i = \beta_0 + \beta_1 X_i + \epsilon_i \]

- Find a regression estimator:
 \[
 \hat{\beta}_1 = \frac{\sum_{i=1}^{n} (Y_i - \bar{Y})(X_i - \bar{X})}{\sum_{i=1}^{n}((X_i - \bar{X}))^2}; \\
 \beta_0 = \bar{Y} - \hat{\beta}_1 \bar{X}.
 \] (1)
Why dimension reduction?

- Let \hat{Y}_i be the predicted values $\hat{\beta}_0 + \hat{\beta}_1 X_i$ and e_i be the residuals $Y_i - \hat{Y}_i$. We can simply plot e_i against X_i. This is called the one-dimensional residual plot.

Figure: Residual Plot
Why dimension reduction?

What should we do if X_i is a vector in R^p? Currently two methods are in frequent use:

1. Residual plot e_i versus \hat{Y}_i (note that \hat{Y}_i is always one-dimensional.)

2. Scatter plot matrix, in which we plot e_i against each predictor, and each predictor against any other predictor, forming a $(p + 1) \times (p + 1)$ matrix of scatter plots.

However, each of these methods are intrinsically marginal – they cannot reflect the whole picture of the regression relation. Let us see this through an example.
Example 1. 100 pairs, \((X_1; Y_1); \cdots ; (X_{100}; Y_{100})\), are generated from some model, where \(X_i\) are in \(\mathbb{R}^3\) (three-dimensional vector \(X_i = (X_{i1}, X_{i2}, X_{i3})\)).

The scatter plot matrix is produced. Show the scatter plot matrix below. From the scatter plot matrix the data appear to have the following features:

1. \(Y\) doesn’t seem to depend on \(X_2\)
2. \(Y\) seems to depend on \(X_1\) in a nonlinear way
3. \(Y\) seems to depend on \(X_3\) in a nonlinear way.
Why dimension reduction?

Figure: Scatter Plot Matrix
Why need dimension reduction?

- However, \((X; Y)\) are actually generated from the following model:

\[
Y = |X_1 + X_2| + \varepsilon,
\]

where \(\varepsilon\) is independent of \(X = (X_1; X_2; X_3)\) that is multivariate normal with mean 0 and covariance matrix \(\Sigma\)

\[
\Sigma = \begin{pmatrix}
1 & 0 & 0.8 \\
0 & 0.2 & 0 \\
0.8 & 0 & 1
\end{pmatrix}
\]

- Note that \(Y\) does not depend on \(X_3\), and \(Y\) does depend on \(X_2\).
- \(X_2\) has much smaller variance than that of \(X_1\) or \(X_3\) both have high correlation.
Why dimension reduction?

- Once again, the scatter plot matrix cannot capture the true relation between X and Y.

- What can truly capture the relation between X and Y is the scatter plot of Y versus $X_1 + X_2$.

- But how can we make this plot before we know that $X_1 + X_2$ is the predictor? This is the question of dimension reduction.

- Find the linear combination $X_1 + X_2$ before any regression modelling is performed!
Models under dimension reduction structure

- **Some examples:**
 - Linear model: $Y = \beta^T X + \epsilon$,
 - Generalized linear model: $Y = g(\beta^T X) + \epsilon$ for a given monotonic function g,
 - Single-index model: $Y = g(\beta^T X) + \epsilon$ for an unknown function g,
 - Multi-index model (1): $Y = g(\beta^T X) + \epsilon$, β is an $p \times q$ orthogonal matrix
 - Multi-index model (2): $Y = g_1(\beta_1^T X) + g_2(\beta_2^T X)\epsilon$, where $\beta = (\beta_1, \beta_2)$,
 - Multi-index model (3): $Y = g(\beta^T X, \epsilon)$.
Further observation on dimension reduction structure

- In these models, all the information on the response Y can be captured through $\beta^T X$, rather than through the original X!
- In other words, when $\beta^T X$ is given, no more information on Y can be acquired from the rest part of X. Y is then conditionally independent of X if ϵ is independent of X.
- We call this independence the conditional independence, and write this independence as $Y \perp \!\!\!\!\!\!\!\!\perp X | \beta^T X$.
- Based on this, consider a generic framework such that "model-free" methods can be developed to estimate the parameter of interest and then to establish a model.
The goal of dimension reduction is to seek $\beta \in \mathbb{R}^{p \times q}$, $q < p$ such that

$$Y \perp X | \beta^T X.$$

However, β is not unique such that $Y \perp X | \beta^T X$ unless $q = 1$ such that β is a vector. To make the notion clearly, define column space first.

Proposition 1.

1. If A is any $q \times q$ non-singular matrix, $Y \perp X | \beta^T X$ if and only if $Y \perp X | (\beta A)^T X$.

Column space. For a matrix B we denote by $S(B)$ the subspace spanned by the columns of B: Let b_1, \cdots, b_q be the columns of the matrix B. The space consists of all the linear combinations $c_1 b_1 + \cdots + c_q b_q$ for constants c_1, \cdots, c_q.
If γ is another matrix such that $S(\beta) \subseteq S(\gamma)$, then $Y \perp X|\beta^T X$ implies $Y \perp X|\gamma^T X$. Therefore, we are naturally interested in the smallest dimension reduction space, which achieves the maximal reduction of the dimension of X.

Definition

Definition *If the intersection of all dimension reduction spaces for (X, Y) is itself a dimension reduction space, this space is called the Central Space. Write $S_{Y|X}$.*

Reference: Cook (1994, 1998). Thus the goal of dimension reduction is to find the central space $S_{Y|X}$.

Once we know the central space or equivalently its $p \times q$ base matrix $\beta = (\beta_1, \cdots, \beta_q)$, a comprehensive scatter plot or residual plot relating to $\beta^T X$ can be informative.

When $q = 1$, scatter plot is informative and $q = 2$, use spin software to have a comprehensive view of the data. Usually this will suffice for most of the data analysis.

Example 1 (continued) The model is

$$Y = |X_1 + X_2| + \varepsilon.$$

Thus the central space is spanned by $(1, 1, 0)$. The sufficient plot is the scatter plot of Y versus $X_1 + X_2$. Show this plot here.
Sufficient plot

Figure: Scatter Plot Matrix
Assumption

Assumption 2.1 Let β be a $R^{p \times q}$ matrix whose columns form an orthonormal basis in $S_{Y|X}$. Assume that $E(X|\beta^TX)$ is a linear function of X, that is, For a constant c and an $p \times q$ matrix C $E(X|\beta^TX) = c + C\beta^TX$.

- We first make some notes on the intuitions and implications of this assumption.
- In practice, we do not know β at the outset. So we typically replace this assumption by $E(X|\gamma^TX)$ is linear in X for all $\gamma \in R^{p \times q}$. This is equivalent to elliptical symmetry of X.
Elliptically symmetric distribution can often approximately be achieved by appropriate transformation of the original data; a certain power of the data, or logarithm of the data. See Cook and Weisberg (1994).

Hall and K. C. Li (1993) demonstrated that, if the original dimension p is much larger than the structural dimension q, then $E(X|\beta^T X)$ is approximately linear in X.
Ordinary least squares

- We can get $C = \beta$.

Theorem 2.2. If Assumption 2.1 holds, then

$$E(X|\beta^TX) = c + C\beta^TX =: P_\beta(X),$$

where $P_\beta = \beta\beta^T$ is the projection operator.
Recall the assumption that \(E(X) = 0 \), \(\text{var}(X) = I_p \). Then we have

Theorem 2.3. Suppose that Assumption 2.1 holds. The vector \(E(XY) = \beta c \) for an \(1 \times q \) vector \(c \) is a vector in \(S_{Y|X} \). In other words, \(E(XY) \) can identify a vector in the central subspace.
Theorem 2.4 Suppose that $Y \mid X$ follows the model

\[Y = g(\beta^T X) + \varepsilon \]

where \(\beta = (\beta_1, \cdots, \beta_p) \) is a vector. Suppose that Assumption 2.1 holds. Then \(E(XY) \) is proportional to \(\beta \) in the model.
Ordinary least squares

- At the population level, the identifying procedure can be described as follows. First, standardize X to be $Z = \Sigma_x^{-1/2}(X - \mu)$. Identify a vector in $S_{Y|Z}$, then transfer back to $S_{Y|X} = \Sigma_x^{-1/2}S_{Y|Z}$. At the sample level, the estimating procedure is as follows.

- **Step 1.** Compute the sample mean and variance:

 $$\hat{\mu} = E_n(X) \quad \hat{\Sigma}_x = var_n(X)$$

 and standardize X_i to be $\hat{Z}_i = \hat{\Sigma}_x^{-1/2}(X - \hat{\mu})$.

- **Step 2.** Center Y_i to be $\tilde{Y}_i = Y_i - E(Y)$ and it is estimated by $\hat{Y}_i = Y_i - E_n(Y)$.

- **Step 3.** Let $\hat{\gamma} = E_n(\hat{Z}\tilde{Y})$ estimate $E(Z\tilde{Y}) \in S_{Y|Z}$.

- **Step 4.** Let $\hat{\beta} = \hat{\Sigma}_x^{-1/2}\hat{\gamma}$ estimate $E(XY) \in S_{Y|X}$.
Applications

- For generalized linear model: $Y = g(\beta^T X) + \epsilon$, single-index model $Y = g(\beta^T X) + \epsilon$, and transformation model $H(Y) = \beta^T X + \epsilon$, the above result shows that OLS can be applied to estimate $\gamma = \beta/\|\beta\|$ if the L_2-norm $\|\beta\|$ of β is not 1.

- As OLS has a close form and thus, estimating γ is very computational efficient under the above nonlinear models.

- After that, we can define $z = \gamma^T X$ that is one-dimensional, rewrite the model as $Y = g(\alpha z) + \varepsilon$ to estimate α in a one-dimensional setting.

- Thus, estimating $\beta = \alpha \gamma$ can be performed in this two-step procedure. (see Feng and Zhu 2013 CSDA)
The biggest disadvantages of OLS: 1) it can only estimate at most one direction in the central space; 2) it cannot identify the direction in symmetric function such as the one in $Y = |\beta^T X| + \varepsilon$.

For example, $Y = |X_1 + X_2| + \varepsilon$: $\beta = (1, 1, 0)$. But it cannot well identified by OLS.
Figure: OLS Scatter Plot

n = 20 (−1.13,0.22,0.94)

n = 50 (0.02,0.61,−0.12)

n = 100 (0.01,0.11,1.49)
Principal Hessian Directions

- **Another method:** Consider the conditional mean \(E(Y|X) \) of \(Y \) given \(X \). When \(E(Y|X) = E(Y|\beta^TX) \), its second derivative is
\[
\frac{\partial^2 E(Y|X)}{\partial (XX^T)} = \beta \frac{\partial^2 E(Y|\beta^TX)}{\partial (\beta^TXX^T\beta)} \beta^T
\]
which is a \(p \times p \) matrix.

- An application of Stein Lemma (1956). When the distribution of \(X \) is normal,
\[
E\left(\frac{\partial^2 E(Y|X)}{\partial (XX^T)} \right) = E(YXX^T)
\]
\[
= \beta E\left(\frac{\partial^2 E(Y|\beta^TX)}{\partial (\beta^TXX^T\beta)} \right) \beta^T,
\]
where \(E\left(\frac{\partial^2 E(Y|\beta^TX)}{\partial (\beta^TXX^T\beta)} \right) \) is a \(q \times q \) matrix.

- The \(p \times p \) matrix \(\beta E\left(\frac{\partial^2 E(Y|\beta^TX)}{\partial (\beta^TXX^T\beta)} \right) \beta^T \) has at most \(q \) non-zero eigenvalues and the corresponding eigenvectors will be proved to be in the central subspace.
Assumption 3.1 Assume that the conditional variance

$$\text{var}(X|\beta^T X) = C$$

is a $p \times p$ non-random matrix.

- This assumption is satisfied if X is multivariate normal.
Let α be the OLS vector $E(XY)$. Let e be the residual from the simple linear regression, that is,

$$e = Y - \alpha^T X.$$

Note that, in the standardized coordinate, the intersection of the OLS is zero, because it is $E(Y) = 0$ and $E(X) = 0$ and thus $E(Y) - \alpha^T E(X) = 0$. That is why there is no constant term in e.

Definition 3.1. The matrix $H_1 = E(YXX^T)$ is called the y-based Hessian matrix, the matrix $H_2 = E(eXX^T)$ is called the e-based Hessian matrix.

The central result of Part III is that the column space of a Hessian matrix (either one) is a subspace of the central space.
Theorem 3.1. Suppose that Assumptions 2.1 and 3.1 hold. Then the column space of H_1 is a subspace of $S_{Y|X}$.

Theorem 3.2 Suppose that Assumptions 2.1 and 3.1 hold. Then the column space of H_2 is a subspace of $S_{Y|X}$.
Sample estimator of pHd

- Again, we use the idea of first transforming to Z, estimating $S_{Y|Z}$, and then transforming back to $S_{Y|X}$. We summarize the computation into the following steps.

- Step 1. standardize X_1, \ldots, X_n to be $\hat{Z}_1, \ldots, \hat{Z}_n$, and center Y_1, \ldots, Y_n to be $\hat{Y}_1, \ldots, \hat{Y}_n$, as described in the algorithm for OLS.

- Step 2. Compute the OLS of \hat{Y}_i versus \hat{Z}_i to get $\hat{\alpha}$:

$$\hat{\alpha} = (\text{var}_n(\hat{Z}))^{-1} \text{cov}_n(\hat{Z}, \hat{Y}),$$

and

$$\hat{\alpha}_0 = E_n(\hat{Y}) - \hat{\alpha}^T E_n(\hat{Z}) = 0.$$

- Because of standardization, we have:
Sample estimator of pHd

- \(\text{var}_n(\hat{Z}) = I_p, \) and
 \[\text{cov}_n(\hat{Z}, \hat{Y}) = E_n(\hat{Z}\hat{Y}) - E_n(\hat{Z})E_n(\hat{Y}) = E_n(\hat{Z}\hat{Y}). \]
- This means the OLS for \(\hat{Y} \) and \(\hat{Z} \) is \(\hat{\alpha} = E_n(\hat{Z}\hat{Y}) \). The residual is \(\hat{e}_i = \hat{Y}_i - \hat{\alpha}^T\hat{Z}_i \).
- Step 3. Construct the e-based and y-based Hessian matrix:
 \[\hat{H}_1 = E_n(\hat{Y}\hat{Z}\hat{Z}^T), \quad \hat{H}_2 = E_n(\hat{e}\hat{Z}\hat{Z}^T). \]
- Step 4. Assume, for now, we know the structural dimension \(q \).
 Let \(\hat{\gamma}_1 \cdots \hat{\gamma}_q \) be the \(q \) eigenvectors corresponding to the \(q \) largest eigenvalues of \(\hat{H}_1\hat{H}_1^T \) and let \(\hat{\delta}_1 \cdots \hat{\delta}_q \) be the \(q \) eigenvectors corresponding to the \(q \) largest eigenvalues of \(\hat{H}_2\hat{H}_2^T \). We use \(\hat{\gamma}_1 \cdots \hat{\gamma}_q \) and \(\hat{\delta}_1 \cdots \hat{\delta}_q \) as the estimators of \(S_{Y|Z} \).
Sample estimator of pHd

- Let
 \[\hat{\beta}_i = \hat{\Sigma}^{-1/2}\hat{\gamma}_i, \quad \hat{\eta}_i = \hat{\Sigma}^{-1/2}\hat{\delta}_i \]

- We then use \(\hat{\beta}_1 \cdots \hat{\beta}_q \) and \(\hat{\eta}_1 \cdots \hat{\eta}_q \) as the estimators of \(S_{Y|X} \).

- We have assumed that the structural dimension \(q \) is known. In practice this must be determined by the data. There are several proposals in the literature.

- The following is the pHd scatter plot for the model
 \[Y = |X_1 + X_2| + \varepsilon, \] described before.
Figure: pHd Scatter Plot

- Sample 1: $n=20$ ($-0.9, -0.31, 0.27$) with correlation $r_{-pHd1} = -0.31$
- Sample 2: $n=50$ ($0.72, 0.66, -0.17$) with correlation $r_{-pHd1} = 0.66$
- Sample 3: $n=100$ ($-0.62, -0.74, -0.23$) with correlation $r_{-pHd1} = -0.23$