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Abstract The problem of dimension reduction in mul-
tiple regressions is investigated in this paper, in which
data are from several populations that share the same vari-
ables. Assuming that the set of relevant predictors is the
same across the regressions, a joint estimation and selec-
tion method is proposed, aiming to preserve the common
structure, while allowing for population-specific character-
istics. The new approach is based upon the relationship
between sliced inverse regression and multiple linear regres-
sion, and is achieved through the lasso shrinkage penalty.
A fast alternating algorithm is developed to solve the cor-
responding optimization problem. The performance of the
proposed method is illustrated through simulated and real
data examples.

Keywords Joint sparsity · Multiple regressions · Sliced
inverse regression · Sufficient dimension reduction

1 Introduction

For a typical regression problem with a univariate response
variable Y and a p-dimensional random vector X of pre-
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dictors, Li (1991) and Cook (1998) proposed sufficient
dimension reduction that aims at reducing the dimension ofX
while preserving the regression relationship between Y and
X. Specifically, the scope of sufficient dimension reduction
is to seek a set of linear combinations of X, say β�X, where
β is a p × d matrix with d ≤ p, such that

Y⊥⊥X|β�X, (1.1)

where the notation ⊥⊥ indicates independence. The column
space of β is called a dimension-reduction subspace. The
smallest dimension-reduction subspace, denoted by SY |X , is
called the central subspace for the regression of Y on X; it
is the intersection of all dimension-reduction subspaces. The
goal of sufficient dimension reduction is to make inferences
about the central subspace and its dimension, written as dY |X
and called the structural dimension of the regression. Subse-
quent modeling and prediction can be built upon these new
constructed predictors.

Sufficient dimension reduction has received consider-
able interest in recent years due to the ubiquity of com-
plex and high-dimensional data sets. Many methods have
been developed in the literature, including sliced inverse
regression (Li 1991), sliced average variance estimation
(Cook and Weisberg 1991), minimum average variance
estimation (Xia et al. 2002), partial dimension reduction
(Chiaromonte et al. 2002), directional regression (Li and
Wang 2007), likelihood acquired directions (Cook and
Forzani 2009), dimension reduction for a special structured
X (Li et al. 2010), discretization-expectation estimation (Zhu
et al. 2010), cumulative slicing estimation (Zhu et al. 2010),
nonlinear sufficient dimension reduction (Lee et al. 2013),
and many others. Generally, these estimation methods can
be classified into two categories: eigen-decomposition-based
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methods and optimization-based methods, with a majority of
them belonging to the first category.

The focus so far in the literature has been on a single pop-
ulation. In many applications, however, data are acquired
from multiple populations or sources, with different popu-
lations or sources sharing the same variables but differing
in the dependence structure among variables. As a result,
single-population approaches would mask the underlying
heterogeneity, and thus they cannot help us achieve the goal
of dimension reduction within each population. Toward this
end, a natural way to deal with such heterogeneous data is
to use a conditional analysis by applying single-population
approaches to each population separately. This strategy, how-
ever, fails to reveal or share the common structure across
populations.

The study described herein is motivated by the problem of
estimating the coefficients of several multiple linear regres-
sions. In this setting, borrowing strength across different
regressions by jointly estimating these regression equations
could discover a common structure and improve estimation
performance, especially when the sample sizes are relatively
small. Depending on how the information is shared among
the regressions, different algorithms have been devised. For
example, it is commonly assumed that only a small subset of
the predictors are important for all or most of the regressions.
Under this joint sparsity assumption on the regression coeffi-
cients, regularizationmethods have been proposed to recover
the shared sparsity structure (e.g., Lounici et al. 2009), and
it has been empirically and theoretically shown that, when
applied appropriately, a joint analysis has advantages over a
conditional analysis.

In the context of sufficient dimension reduction, when
there are multiple populations, the situation becomes much
more complicated. To be specific, we consider the following
conditional independence setting

Y (k)⊥⊥X(k)|β(k)�X(k), k = 1, . . . , K , (1.2)

where Y (k) is a univariate response variable, X(k) is a p-
dimensional random vector of predictors, and β(k) is a p×dk
matrixwithdk ≤ p for the k-th population, for k = 1, . . . , K .
Throughout this paper, the population labels are assumed to
be known. We note that Chavent et al. (2011) considered
a related problem in which they required the same central
subspace across different populations.

Two observations are noteworthy. First, there are two
aspects of common structure. One of them is related to
the aforementioned joint sparsity assumption. The other,
which is more abstract, is based on the fact that central sub-
spaces from two different populations can share a common
subspace. Second, it is a nontrivial task to exploit the com-
mon structure, if any, in a model-free manner. As our first
attempt to the multiple-population reduction problem, we in

this paper concentrate on the common structure implied by
the joint sparsity assumption. In this regard, variable selec-
tion becomes an essential tool. Since it seems impossible to
extend eigen-decomposition-based methods to develop joint
estimation and selection procedures, in the following we are
concerned only with optimization-based methods.

For a single population, many variable selection approa-
ches have been developed within the framework of sufficient
dimension reduction. There are primarily two types of
approaches: those that are test-based and those that are
regularization-based. See, for example, Bernard-Michel et al.
(2008, 2009), Li and Yin (2008), and Scrucca (2007).
However, the first class of approaches are computationally
intensive and unsatisfactory in terms of stability. Within the
second class, and in terms of optimization-based dimen-
sion reduction, only a few variable selection procedures
are available. For example, Ni et al. (2005) introduced a
shrinkage version of sliced inverse regression by invoking
the least squares formulation of sliced inverse regression
originated by Cook (2004). More generally, Bondell and Li
(2009) extended the idea of shrinkage to a family of inverse
regression estimators, which are obtained by minimizing a
quadratic objective function (Cook andNi 2005), and derived
the variable-selection consistency. However, these shrinkage
estimators require a consistent initial estimator. As a result,
their performance depends critically on that of the initial esti-
mator, which may perform poorly when the sample size is
small. Indeed, this is in some sense contrary to the spirit
of a multiple-population analysis. More recently, Wu and
Li (2011) and Wang and Zhu (2013) proposed penalized
dimension-reduction estimators by using a general formu-
lation of dimension reduction via multiple linear regression
of a set of transformations of the response variable on the
predictors. Nevertheless, the former is a two-step procedure,
and one is only allowed to exploit the common structure in the
first step because an eigen-decomposition problem is solved
in the second step. To accomplish this joint estimation, in this
paper we describe how the methodology of Wang and Zhu
(2013) can be extended to dimension reduction in regression
involving multiple populations.

The materials are organized in the following way. The
methodology will be developed in Sects. 2 and 3 will contain
simulation studies, and a real data example will be put in
Sect. 4.

2 Methodology

Suppose we have a data set from (1.2). Specifically, for each
k = 1, . . . , K , the data from the k-th population contain
nk samples (X(k), y(k)), where X(k) = (X(k)

1 , . . . ,X(k)
p ) ∈

R
nk×p is the matrix of predictor values and y(k) = (y(k)

1 , . . . ,

y(k)
nk )� ∈ R

nk is the vector of response values. Through-
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out, we assume that the data from different populations are
independent and that the data within each population are
independent and identically distributed. Without loss of gen-
erality, assume that the columns of X(k) are centered.

As mentioned before, the most natural way to deal with
heterogeneity is to carry out sufficient dimension reduction
in a population-wise manner. In this paper, we concentrate
on sliced inverse regression since it is a simple and useful
first method for dimension reduction in regression. The use
of sliced inverse regression, however, depends on its rela-
tionship to multiple linear regression, which enables us to
propose our joint estimation method to improve the estima-
tion accuracy under the joint sparsity assumption.

2.1 Sliced inverse regression via multiple linear
regression

Consider the k-th population in the conditional independence
setting (1.2). It is known that sliced inverse regression can be
formulated as a generalized eigenvalue problem of the form

cov
[
E

{
X(k) − E(X(k))|Y (k)

}]
v(k)
i

= λ
(k)
i cov(X(k))v(k)

i , for i = 1, . . . , p,
(2.1)

where the vectors v(k)
1 , . . . , v(k)

p are the eigenvectors such

that v(k)
i

�
cov(X(k))v(k)

j = 1 if i = j , and 0 if i �= j , and

λ
(k)
1 ≥ · · · ≥ λ

(k)
p ≥ 0 are the corresponding eigenvalues.

Under the linearity condition (Li 1991), the first d(k) eigen-
vectors {v(k)

1 , . . . , v(k)
d(k)}, which correspond to the nonzero

eigenvalues λ
(k)
1 ≥ · · · ≥ λ

(k)
d(k) > 0, are contained in the

central subspace SY (k)|X(k) . For simplicity, we assume that

they form a basis for SY (k)|X(k) with d(k) = dY (k)|X(k) .
Somewhat less known is that there is an intrinsic connec-

tion between sliced inverse regression and multiple linear
regression: sliced inverse regression is a transformation-
based projection pursuit that finds linear combinations of the
predictors that maximize the correlation with the optimally
transformed response variable (Chen andLi 1998).More pre-
cisely, the criterion of sliced inverse regression via multiple
linear regression has the form

minimize
T (k)
i ,a(k)

i ∈R,b(k)
i ∈Rp

E
(
T (k)
i − a(k)

i − b(k)
i

�
X(k)

)2

subject to var
(
T (k)
i

)
= 1, cov

(
T (k)
i , T (k)

j

)
= 0,

j = 1, . . . , i − 1,

(2.2)

where T (k)
i = T (k)

i (Y
(k)

), i = 1, . . . , p. It has been shown

that the i-th optimal transformation T (k)
i is identical, up to

a scalar multiplication, to E(v(k)
i

�
X(k)|Y (k)), and that b(k)

i

is proportional to v(k)
i , where v(k)

i is the i-th sliced inverse
regression direction given in (2.1). See Chen and Li (1998)
for details.

Following Wang and Zhu (2013), we use linear com-
binations of basis functions to represent these response
transformations. To be specific, let {φ(k)

1 (y), . . . , φ(k)
Hk

(y)} be
a known set of basis functions with Hk ≥ d(k) + 1. We

then linearize T (k)
i (Y (k)) by θ

(k)
i

�
φ(k)(Y (k)), where φ(k) =

(φ
(k)
1 , . . . , φ

(k)
Hk

)�, and θ
(k)
i = (θ

(k)
i1 , . . . , θ

(k)
i Hk

)� is an Hk-

dimensional coefficient vector. Let �(k) = {φ(k)(y(k)
1 ), . . . ,

φ(k)(y(k)
nk )}� ∈ R

nk×Hk be the matrix of basis function val-
ues. In the sample, sliced inverse regression via multiple
linear regression solves

minimize
θ

(k)
i ∈RHk ,β

(k)
i ∈Rp

‖�(k)θ
(k)
i − X(k)β

(k)
i ‖22

subject to θ
(k)
i

�
�(k)��(k)θ

(k)
i

= nk, θ
(k)
i

�
�(k)��(k)θ

(k)
j = 0,

j = 1, . . . , i − 1,

(2.3)

where ‖ · ‖2 stands for the vector l2 norm. This procedure is
known as optimal scoring in the machine learning literature
(Hastie et al. 2009).

There are various choices for the basis functions. The
original sliced inverse regression algorithm uses indicator
functions for slices, with Hk being the number of slices.
Alternatively, we can use B-spline basis functions (including
an intercept). Since the columns of X(k) are centered to have
mean zero, one can see that for these two cases the constant
coefficient vector 1Hk = (1, . . . , 1)� of length Hk is trivial,
and hence there are at most Hk − 1 nontrivial solutions to

(2.3). We let {(θ̃ (k)
i , β̃

(k)
i )}d(k)

i=1 denote the first d
(k) solutions.

Then the estimator of the central subspace SY (k)|X(k) is given

by span{B̃(k)}, where B̃(k) = (β̃
(k)
1 , . . . , β̃

(k)
d(k) ) with β̃

(k)
i as

its i-th column, i = 1, . . . , d(k).

2.2 Conditional shrinkage sliced inverse regression

When a subset of predictors is irrelevant or redundant, it is
desirable to have the corresponding row estimates of B̃(k)

equal to zero, and consequently to achieve predictor selec-
tion. Following Ni et al. (2005) and Bondell and Li (2009),
we can compute a shrinkage estimator by solving

minimize
α(k)

d(k)∑
i=1

‖�(k)θ̃
(k)
i − X(k)diag(α(k))β̃

(k)
i ‖22

subject to
p∑

j=1

|α(k)
j | ≤ τk,

(2.4)
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where α(k) = (α
(k)
1 , . . . , α

(k)
p )� ∈ R

p, and τk ≥ 0 is a
shrinkage parameter. Denote the solution by ᾰ(k)(τk). Let
B̆(k)(τk) = diag{ᾰ(k)(τk)}B̃(k). Then span{B̆(k)(τk)} is a
shrinkage estimator of SY (k)|X(k) .

The performance of B̆(k), however, depends critically on
that of the initial estimator B̃(k). This is clearly undesirable,
because B̃(k) may perform poorly when the sample size nk
is small; otherwise, there is no need to take into account the
shared information across populations. Thus, in some sense
this shrinkage estimator, which is “two-step” in nature, is
contrary to the spirit of a joint or multiple-population analy-
sis. In this regard, a “multi-step” or “fully iterative” estimator
is preferred. To this end, we propose an improved version of
B̆(k) by solving the following minimization problem:

minimize
{(θ (k)

i ,β
(k)
i )}d(k)

i=1 ,α(k)

d(k)∑
i=1

‖�(k)θ
(k)
i − X(k)diag(α(k))β

(k)
i ‖22

subject to θ
(k)
i

�
�(k)��(k)θ

(k)
i

= nk, θ
(k)
i

�
�(k)��(k)θ

(k)
j = 0,

j = 1, . . . , i − 1, i = 1, . . . , d(k),

p∑
j=1

|α(k)
j | ≤ τk, τk ≥ 0.

(2.5)

This can be minimized by an alternating optimization pro-
cedure given in Sect. 2.4 below. Denote the solution by

θ̌
(k)
i (τk), β̌

(k)
i (τk) and α̌

(k)
(τk). The improved shrinkage

estimator of SY (k)|X(k) is given by span{B̌(k)(τk)}, where
B̌(k)(τk) = diag{α̌(k)

(τk)}{β̌(k)
1 (τk), . . . , β̌

(k)
d(k) (τk)}.

2.3 Multiple-population sliced inverse regression

To improve estimation under the joint sparsity assumption,
we propose a joint estimation method as follows. Let K ⊆
K0 = {1, . . . , K }. Although K = K0 is the focus of this
paper, we feel this notation is more convenient. For a given
K, we consider the following shrinkage criterion

minimize
{�K,α}

∑
k∈K

d(k)∑
i=1

‖�(k)θ
(k)
i − X(k)diag(α)β

(k)
i ‖22

subject to θ
(k)
i

�
�(k)��(k)θ

(k)
i

= nk, θ
(k)
i

�
�(k)��(k)θ

(k)
j = 0,

j = 1, . . . , i − 1, i = 1, . . . , d(k), k ∈ K,

p∑
j=1

|α j | ≤ τK, τK ≥ 0,

(2.6)

where�K = [{(θ (k)
i ,β

(k)
i )}d(k)

i=1]k∈K andα = (α1, . . . , αp)
�.

It is clear that (2.6) reduces to (2.5) when K = {k}. Our
multiple-population estimation method corresponds to K =
K0.

Let θ̂
(k)
i (τK), β̂

(k)
i (τK) and α̂(τK) denote the solution.

The joint estimator of SY (k)|X(k) is given by span{B̂(k)(τK)},
where B̂(k)(τK) = diag{α̂(τK)}{β̂(k)

1 (τK), . . . , β̂
(k)
d(k) (τK)}.

2.4 The optimization algorithm

To estimate �K and α, an iterative algorithm is used. That
is, first, fix �K and estimate α; second, fix α and esti-
mate �K; then iterate between these two steps until the
solution converges. Since at each step, the value of the objec-
tive function in (2.6) decreases, the solution is guaranteed
to converge. In general, this algorithm converges to a local
minimizer, because the optimazation problem is non-convex.
For identifiability of α and β

(k)
i , we assume in the sequel

that α j ≥ 0 and ‖βK
j ‖2 = 1, for j = 1, . . . , p, where

βK
j = [{β(k)

i j }d(k)

i=1]k∈K denotes the set of coefficients corre-
sponding to the j-th coordinate.

Solving (2.6) forαwith [{(θ (k)
i ,β

(k)
i )}d(k)

i=1]k∈K fixed yields
the optimization problem

minimize
α

∑
k∈K

d(k)∑
i=1

‖�(k)θ
(k)
i − X(k)diag(β(k)

i )α‖22

subject to
p∑

j=1

α j ≤ τK, τK ≥ 0.

(2.7)

Before continuing we introduce some notation. Let y∗(k)

denote the vector formed by stacking the vectors �(k)θ
(k)
i ,

i = 1, . . . , d(k). Likewise X∗(k) denotes the matrix obtained
by stacking the matricesX(k)diag(β(k)

i ), i = 1, . . . , d(k). Let
yK = (y∗(k), k ∈ K), and let XK = diag(X∗(k), k ∈ K)

denote the block diagonalmatrixwith submatricesX∗(k), k ∈
K along the diagonal, and zeros elsewhere. Now rewrite (2.7)
as

minimize
α

‖yK − XKα‖22

subject to
p∑

j=1

α j ≤ τK, τK ≥ 0.
(2.8)

This is a lasso-type problem (Tibshirani 1996), and the
shrinkage factors α j can be computed using either an effi-
cient solution path algorithm or a quadratic programming
package.

Solving (2.6) for [{(θ (k)
i ,β

(k)
i )}d(k)

i=1]k∈Kwithα fixed yields
|K| individual optimization problems
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minimize
{(θ (k)

i ,β
(k)
i )}d(k)

i=1

d(k)∑
i=1

‖�(k)θ
(k)
i − X(k)diag(α)β

(k)
i ‖22

subject to θ
(k)
i

�
�(k)��(k)θ

(k)
i

= nk, θ
(k)
i

�
�(k)��(k)θ

(k)
j = 0,

j = 1, . . . , i − 1, i = 1, . . . , d(k).

(2.9)

Let A = { j : α j �= 0}. Write β
(k)
i = (β

(k)
i1 , . . . , β

(k)
i p )�. We

can simply set β
(k)
i j = (dk |K|)−1/2 for j /∈ A. Let X(k)

A =
(X(k)

j , j ∈ A),αA = (α j , j ∈ A) andβ
(k)
iA = (β

(k)
i j , j ∈ A).

Then the above criteria become

minimize
{(θ (k)

i ,β
(k)
iA)}d(k)

i=1

d(k)∑
i=1

‖�(k)θ
(k)
i − X(k)

A diag(αA)β
(k)
iA‖22

subject to θ
(k)
i

�
�(k)��(k)θ

(k)
i

= nk, θ
(k)
i

�
�(k)��(k)θ

(k)
j = 0,

j = 1, . . . , i − 1, i = 1, . . . , d(k).

(2.10)

We note that, for each k ∈ K, this is the criterion for
sliced inverse regression via multiple linear regression. In
the literature, the standard way of solving (2.9) is by a suit-
able singular value decomposition. However, we propose to
update {θ (k)

i }d(k)

i=1 and {β(k)
iA}d(k)

i=1 separately as follows. For

fixed {β(k)
iA}d(k)

i=1, the coefficient vectors {θ (k)
i }d(k)

i=1 sequentially
solve

minimize
θ

(k)
i

‖�(k)θ
(k)
i − X(k)

A diag(αA)β
(k)
iA‖22

subject to θ
(k)
i

�
�(k)��(k)θ

(k)
i

= nk, θ
(k)
i

�
�(k)��(k)θ

(k)
j = 0,

j = 1, . . . , i − 1.

(2.11)

Let Q(k)
i = (1Hk , θ

(k)
1 , . . . , θ

(k)
i−1) denote the Hk × i matrix

consisting of the previous i − 1 solutions, as well as the Hk-

dimensional vector of all ones. Let D(k) = n−1
k �(k)��(k).

One can show that the i-th solution is given by

θ
(k)
i = c(k)

i

(
IHk − Q(k)

i Q(k)
i

�
D(k)

)

×
(
D(k)

)−1
�(k)�X(k)

A diag (αA) β
(k)
iA,

where Im denotes the m × m identity matrix and c(k)
i is a

constant such that θ
(k)
i

�
D(k)θ

(k)
i = 1. For fixed {θ (k)

i }d(k)

i=1,

we obtain d(k) linear least squares problems

minimize
β

(k)
iA

‖�(k)θ
(k)
i − X(k)

A diag(αA)β
(k)
iA‖22. (2.12)

The i-solution is

β
(k)
iA =

[{
X(k)
A diag (αA)

}�
X(k)
A diag (αA)

]−1

×
{
X(k)
A diag (αA)

}�
�(k)θ

(k)
i .

For identifiability of α and β
(k)
iA, we normalize β

(k)
iA so that∑

k∈K
∑d(k)

i=1(β
(k)
i j )2 = 1 for j ∈ A.

In summary, the algorithm proceeds as follows:

Step 0. Initialization. Initialize {(θ (k)
i ,β

(k)
i )}d(k)

i=1 with some
plausible values. For example, we can use the solu-

tions {(θ̃ (k)
i , β̃

(k)
i )}d(k)

i=1 to (2.3). Let A = {1, . . . , p}.
Step 1. Update α. Set y∗

i
(k) = �(k)θ

(k)
i and X∗

i
(k) =

X(k)
A diag(β(k)

iA). Write

y∗(k) =
(
y∗
1
(k)�

, . . . , y∗
d(k)

(k)�)�
and

X∗(k) =
(
X∗
1
(k)�

, . . . ,X∗
d(k)

(k)�)�
.

Write yK = (y∗(k), k ∈ K) and XK = diag(X∗(k),

k ∈ K). Let αA be the solution to the lasso problem

minimize
αA

‖yK − XKαA‖22
subject to

∑
j∈A

α j ≤ τK, τK ≥ 0.

Let A = { j : α j �= 0}.

Step 2. Update
[
{θ (k)

i }d(k)

i=1

]
k∈K. For each k ∈ K and i =

1, . . . , d(k), let

Q(k)
i =

(
1Hk , θ

(k)
1 , . . . , θ

(k)
i−1

)

and

θ
(k)
i =

(
IHk − Q(k)

i Q(k)
i

�
D(k)

)

×
(
D(k)

)−1
�(k)�X(k)

A diag (αA) β
(k)
iA,

then normalize θ
(k)
i so that θ (k)

i

�
D(k)θ

(k)
i = 1.
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Step 3. Update [{β(k)
i }d(k)

i=1]k∈K. Let β
(k)
i j = (dk |K|)−1/2 for

j /∈ A. For each k ∈ K and i = 1, . . . , d(k), let

β
(k)
iA =

[{
X(k)
A diag (αA)

}�
X(k)
A diag (αA)

]−1

×
{
X(k)
A diag (αA)

}�
�(k)θ

(k)
i .

Normalize β
(k)
iA so that

∑
k∈K

∑d(k)

i=1(β
(k)
i j )2 = 1 for

j ∈ A.
Step 4. Iterate Steps 1 through 3 until convergence or until

a maximum number of iterations is reached.

One way to measure the convergence is to use the max-
imum absolute distance between two consecutive solutions
of α, that is, max j=1,...,p |α j (t + 1) − α j (t)|, where t is the
index of iteration. In the numerical studies throughout this
paper, we take the maximum number of iterations to be 30,
and the tolerance level for the above convergence criterion
to be 10−5. Based on our limited experience, we find that the
proposed algorithm usually takes less than 15 iterations to
converge.

2.5 Tuning

For a given τK, denote the estimates of θ
(k)
i ,β

(k)
i and α by

θ̂
(k)
i (τK), β̂

(k)
i (τK) and α̂(τK), respectively. Write α̂(τK) =

{α̂1(τ
K), . . . , α̂p(τ

K)}� and let Â(τK) = { j : α̂ j (τ
K) �=

0}. In practice, the choice of the regularization parameter τK
is of great importance. Because the estimates are obtained
using a penalized regression method, criteria that have been
developed for selecting the tuning parameter for penalized
regression can be applied. For computational easiness, in this
section we propose to use a BIC-type criterion for choosing
τK. Following Wang and Leng (2007) and Bondell and Li
(2009), we define

BICK (
τK

)
= log

{
RSSK

(
τK

)}

+pKe
(
τK

) log nK

nK
, (2.13)

where

RSSK
(
τK

)
=

∑
k∈K

d(k)∑
i=1

‖�(k)θ̂
(k)
i

(
τK

)

−X(k)diag
{
α̂

(
τK

)}
β̂

(k)
i

(
τK

)
‖22,

pKe (τK) denotes the effective number of parameters in the
estimates of dimension reduction subspaces, and nK =∑

k∈K d(k)nk is the effective sample size. We estimate

pKe (τK) by |Â(τK)| × ∑
k∈K d(k). Finally, we select τK

by minimizing BICK(τK).
For simplicity, the structural dimensions d(k) are assumed

to be known in this paper. Under the penalized regression
framework, criterion-based approaches can potentially be
used for selecting d(k). The investigation of the behavior of
these criteria, in both numerical and theoretical aspects, is an
interesting topic for a future study.

2.6 Properties

In this section we discuss the motivation behind the new
methodology. It is convenient to re-express (2.6) in the equiv-
alent Lagrangian form

minimize
{�K,α}

∑
k∈K

d(k)∑
i=1

‖�(k)θ
(k)
i − X(k)diag(α)β

(k)
i ‖22

+ λK
p∑

j=1

α j

subject to θ
(k)
i

�
�(k)��(k)θ

(k)
i

= nk, θ
(k)
i

�
�(k)��(k)θ

(k)
j = 0,

j = 1, . . . , i − 1, i = 1, . . . , d(k), k ∈ K,

(2.14)

for some non-negative regularization parameter λK. Let
�K = [{β(k)

i }d(k)

i=1]k∈K and assume for the moment that

[{θ (k)
i }d(k)

i=1]k∈K is given. Then the above criterion
becomes

minimize
{�K,α}

∑
k∈K

d(k)∑
i=1

‖�(k)θ
(k)
i − X(k)diag(α)β

(k)
i ‖22

+ λK
p∑

j=1

α j .

(2.15)

Instead of estimating �K and α jointly, a more direct way
to proceed is to use the group lasso (Yuan and Lin 2006) by
minimizing

∑
k∈K

d(k)∑
i=1

‖�(k)θ
(k)
i − X(k)β

(k)
i ‖22 + μK

p∑
j=1

‖βK
j ‖2 (2.16)

with respect to�K. As before, βK
j represents the set of coef-

ficients corresponding to the j-th coordinate. From Lemma
2 of Lin and Zhang (2006), we know that an equivalent form
is
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minimize
{�K,ξ}

∑
k∈K

d(k)∑
i=1

‖�(k)θ
(k)
i − X(k)β

(k)
i ‖22

+
p∑

j=1

ξ−1
j ‖βK

j ‖22 + νK
p∑

j=1

ξ j

subject to ξ j ≥ 0, j = 1, . . . , p,

(2.17)

where ξ = (ξ1, . . . , ξp)
�. Define ξ−1 = (ξ−1

1 , . . . , ξ−1
p )�

and β
∗(k)
i = diag(ξ−1)β

(k)
i . Let �∗K = [{β∗(k)

i }d(k)

i=1]k∈K.
Then we arrive at

minimize
{�∗(k),ξ}

∑
k∈K

d(k)∑
i=1

‖�(k)θ
(k)
i − X(k)diag(ξ)β

∗(k)
i ‖22

+
p∑

j=1

‖β∗K
j ‖22 + νK

p∑
j=1

ξ j

subject to ξ j ≥ 0, j = 1, . . . , p.

(2.18)

Comparing (2.18) with (2.15), we see that our estimation
procedure amounts to the group lasso. This is because, under
the identifiability constraint,

∑p
j=1 ‖β∗K

j ‖22 = p. However,
the performance of our method is empirically observed to be
superior to the standard implementation of the group lasso,
which is sometimes instable and computationally intensive
within the context of joint estimation.

3 Simulation studies

In this section, we use simulation examples to evaluate
the performance of the multiple-population shrinkage sliced
inverse regression we proposed in terms of estimation
accuracy and predictor selection, and compare it with the
conditional shrinkage sliced inverse regression. For the latter,
we consider both the naive conditional shrinkage estimator
in (2.4) and its improved version in (2.5), which is a special
case of the multiple-population estimator when K = 1.

Throughout B-spline basis functions are used as the trans-
formation functions, because empirically it has been found
that they are superior to the slice indicator functions (Wang
andZhu2013). In particular,weuse a cubic splinewith Hk−4
inner knots and fix Hk at 10. The entire R code is available
from the authors upon request.

To evaluate the accuracy of each method, we use the dis-
tance measure suggested by Li et al. (2005). Specifically,
let S1 and S2 be two subspaces of Rp. Then we adopt the
criterion

DIST(S1,S2) = ‖PS1 − PS2‖F ,

where P is the orthogonal projection operator and ‖ · ‖F
denotes the Frobenius norm, that is, the maximum singular
value of a matrix. This measure is similar to the one used
in Xia et al. (2002). For each simulation configuration, we
run 200 simulation samples and take the average of the afore-
mentioned criterion.We also employ the average model size:
the average number of identified predictors; the true positive
rate: the ratio of the number of correctly identified predictors
to the number of relevant predictors; and the false positive
rate: the ratio of the number of falsely identified predictors
to the number of irrelevant predictors, for assessing the per-
formance of a method for selecting predictors.

We let 0p denote the p-dimensional vector of zeros, and ei
the p-dimensional vector whose i-th element is 1 and other
elements are all 0, i = 1, . . . , p. Let 
(k) = (


(k)
i j ) =

cov(X(k)).

Example 1

Y (k) = e�
1 X

(k)

0.5 + (
e�
2 X

(k) + 1.5
)2 + ε(k),

where X(k) ∼ N (0p,
(k)) with 

(k)
i j = 0.5|i− j |, 1 ≤

i, j ≤ p = 8, ε(k) ∼ N (0, σ 2
k ), k = 1, 2. Two cases are

explored: (σ1, σ2) = (0.5, 0.5) and (σ1, σ2) = (0.5, 0.8).
In this example, we have β(1) = β(2) = (e1, e2). We take
n1 = n2 = 80.

Example 2

Y (1) = e�
1 X

(1)

0.5 + (
e�
2 X

(1) + 1.5
)2 + ε(1),

Y (2) = e�
2 X

(2)

0.5 + (
e�
1 X

(2) + 1.5
)2 + ε(2).

The setup is the same as in Example 1, except here σ1 =
σ2 = 0.8. In this example, we have β(1) = β(2) = (e1, e2).
We take n1 = n2 = 60 and n1 = n2 = 80.

Example 3

Y (1) = e�
1 X

(1)

0.5 + (
e�
2 X

(1) + 1.5
)2 + ε(1),

Y (2) = e�
1 X

(2) ×
(
e�
1 X

(2) + e�
2 X

(2) + 1
)

+ ε(2).

The setup is the same as in Example 1, except that σ1 =
σ2 = 0.5. In this example, we have β(1) = β(2) = (e1, e2).
We take n1 = n2 = 80.
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Table 1 Summary of Examples 1 and 2

β(1) β(2)

CS-SIR-N CS-SIR-I MP-SIR CS-SIR-N CS-SIR-I MP-SIR

Example 1: (σ1, σ2) = (0.5, 0.5)

DIST 0.7561 (0.5113) 0.5904 (0.5865) 0.2621 (0.4668) 0.7465 (0.5146) 0.5597 (0.5872) 0.2873 (0.4986)

MS 3.1500 2.6000 2.3100 3.0750 2.6050 2.3100

TPR 0.8900 0.9025 0.9650 0.8750 0.9100 0.9650

FPR 0.2283 0.1325 0.0633 0.2208 0.1308 0.0633

Example 1: (σ1, σ2) = (0.5, 0.8)

DIST 0.7561 (0.5113) 0.5904 (0.5865) 0.3596 (0.5440) 0.9901 (0.5076) 0.8949 (0.6102) 0.4150 (0.5965)

MS 3.1500 2.6000 2.3200 2.5050 2.6600 2.3200

TPR 0.8900 0.9025 0.9350 0.6850 0.8075 0.9350

FPR 0.2283 0.1325 0.0750 0.1891 0.1741 0.0750

Example 2: n1 = n2 = 60

DIST 1.2387 (0.3629) 1.1528 (0.5201) 0.7219 (0.6632) 1.1516 (0.4499) 1.0126 (0.6119) 0.7042 (0.6618)

MS 2.6100 2.6500 2.4350 2.3600 2.6050 2.4350

TPR 0.5750 0.6850 0.8625 0.5775 0.7425 0.8625

FPR 0.2433 0.2133 0.1183 0.2008 0.1866 0.1183

Example 2: n1 = n2 = 80

DIST 1.0364 (0.4712) 0.9264 (0.6304) 0.4276 (0.5877) 0.9735 (0.5213) 0.8940 (0.6228) 0.4301 (0.5788)

MS 2.4550 2.5000 2.3650 2.4800 2.5850 2.3650

TPR 0.6550 0.7725 0.9525 0.7000 0.7950 0.9525

FPR 0.1908 0.1591 0.0766 0.1800 0.1658 0.0766

The average distance measure (DIST) with standard error in parentheses, the average model size (MS), the true positive rate (TPR), and the false
positive rate (FPR), based on 200 data replications, are reported
CS-SIR-N the naive conditional shrinkage sliced inverse regression,CS-SIR-I the improved conditional shrinkage sliced inverse regression,MP-SIR
multiple-population sliced inverse regression

Table 2 Summary of Examples 3 and 4

β(1) β(2)

CS-SIR-N CS-SIR-I MP-SIR CS-SIR-N CS-SIR-I MP-SIR

Example 3

DIST 0.7561 (0.5113) 0.5904 (0.5865) 0.4585 (0.6017) 1.1035 (0.4938) 0.9823 (0.6444) 0.5184 (0.6362)

MS 3.1500 2.6000 2.3050 2.1100 2.5450 2.3050

TPR 0.8900 0.9025 0.8925 0.5300 0.7225 0.8925

FPR 0.2283 0.1325 0.0866 0.1750 0.1833 0.0866

Example 4

DIST 0.8414 (0.3455) 0.7486 (0.3603) 0.6227 (0.3119) 1.0251 (0.3486) 0.9738 (0.3440) 0.7720 (0.3372)

MS 4.4350 3.5550 3.0650 3.2800 2.9400 3.0650

TPR 0.9783 0.9516 0.9466 0.7550 0.7733 0.9466

FPR 0.3000 0.1400 0.0450 0.2030 0.1240 0.0450

The average distance measure (DIST) with standard error in parentheses, the average model size (MS), the true positive rate (TPR), and the false
positive rate (FPR), based on 200 data replications, are reported
CS-SIR-N the naive conditional shrinkage sliced inverse regression,CS-SIR-I the improved conditional shrinkage sliced inverse regression,MP-SIR
multiple-population sliced inverse regression
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Example 4

Y (1) = e�
1 X

(1) + e�
2 X

(1)

0.5 + (
e�
3 X

(1) + 1.5
)2 + ε(1),

Y (2) =
(
e�
1 X

(2) + e�
2 X

(2) + 1
)

× e�
3 X

(2) + ε(2).

The setup is the same as in Example 1, except that σ1 = σ2 =
0.5. In this example, we have β(1) = β(2) = (e1 + e2, e3).
We take (n1, n2) = (80, 100).

Note that K = 2 in the above examples. Furthermore, the
two regression functions are the same in Example 1, have the
same shape in Example 2, and are very different in Exam-
ples 3 and 4. The simulation results from these four examples
are summarized in Tables 1 and 2. From the tables, we can
see that the overall best performer is the proposed multiple-
population estimator, which is especially true in Example 1
with σ1 = σ2 = 0.5 and Example 2 with n1 = n2 = 80. On
the other hand, the inferiority of the conditional estimators
are manifested in Example 1 with (σ1, σ2) = (0.5, 0.8), and
Examples 2–4, where they have poor performance in one or
both populations. We can also see that the improved condi-
tional shrinkage estimator generally outperforms the naive
one. Finally, the simulation results in Example 2 also show
that there is a great improvement in performance as the sam-
ple size increases. To further examine the performance, we
consider one more example with K = 3.

Example 5

Y (1) = exp
{
0.5 × (b1 + b2)�X(1)

}
+ ε(1),

Y (2) = 2 × sin
{
0.25 × (b1 + b2)�X(2)

}
+ ε(2),

Y (3) = b�
1 X

(3)

0.5 + (
b�
2 X

(3) + 1.5
)2 + ε(3),

where X(k) ∼ N (0p,
(k)) with 

(k)
i j = 0.5|i− j |, 1 ≤ i, j ≤

p, ε(k) ∼ N (0, 0.52), k = 1, 2, 3. In this example, we have
β(1) = β(2) = b1 + b2 and β(3) = (b1, b2) �= β(1).
We explore two cases with different sparsity levels: (1)
b1 = e1, b2 = e2, and (2) b1 = e1 + e2, b2 = e3 + e4. To
illustrate the sensitivity of the method to the dimension, we
let p ∈ {8, 16}. Finally, we take n1 = n2 = n3 = 80. The
simulation results are summarized in Table 3. We observe
qualitatively similar results to those reported in the previ-
ous examples. In addition, we can see that the performance
of all the three competitors deteriorates when the dimension
p increases from 8 up to 16, and when the sparsity level
increases from case (1) to case (2).

Finally, in order to numerically compare the proposed
methodwith thegroup lasso algorithmmentioned inSect. 2.6,

Table 4 Comparisons between the propose method and the group lasso
algorithm for Example 1 with σ1 = σ2 = 0.5 and Example 4

Timings Example 1 (σ1 = σ2 = 0.5)

MP-SIR GLASSO
9.9690 38.9115

β(1) β(2) β(1) β(2)

DIST 0.2621 0.2873 0.0223 0.0092

(0.4668) (0.4986) (0.1390) (0.0799)

MS 2.3100 2.3100 2.0600 2.0150

TPR 0.9650 0.9650 1.0000 1.0000

FPR 0.0633 0.0633 0.0100 0.0025

Timings Example 4

MP-SIR GLASSO

11.6886 32.5398

β(1) β(2) β(1) β(2)

DIST 0.6227 0.7720 1.1108 1.0593

(0.3119) (0.3372) (0.4114) (0.4175)

MS 3.0650 3.0650 2.8950 2.8600

TPR 0.9466 0.9466 0.7933 0.8133

FPR 0.0450 0.0450 0.1030 0.0840

The average distance measure (DIST) with standard error in parenthe-
ses, the average model size (MS), the true positive rate (TPR), and the
false positive rate (FPR), based on 200 data replications, are reported
MP-SIR multiple-population sliced inverse regression, GLASSO the
group lasso algorithm

we consider Example 1 with σ1 = σ2 = 0.5, Example 4, and
Example 5 with p = 16. Tables 4 and 5 show the simula-
tion results as well as the average run time (CPU seconds)
for the two algorithms. As we can see, the group lasso algo-
rithm is computationally more intensive than the proposed
method. Further, it is numerically very instable: it outper-
forms the proposed method in Example 1 (σ1 = σ2 = 0.5),
but performs poorly and is inferior to the proposed method
in Example 4 and Example 5 (p = 16).

4 Australian athletes data

We next consider a data set on 102 male and 100 female
athletes collected at the Australian Institute of Sport (Weis-
berg 2005, Sect. 6.4). We are interested in describing the
conditional distribution of lean body mass, given eight pre-
dictors, height, weight, sum of skin folds, red cell count,
white cell count, plasma ferritin concentration, hematocrit
and hemoglobin, separately for each sex. It is natural to view
this task as a two-population dimension-reduction problem,
with the sex variable being the population indicator.

Chiaromonte et al. (2002) used this data set to illustrate
dimension reduction in regression with categorical predic-
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Table 5 Comparisons between
the propose method and the
group lasso algorithm for
Example 5 with p = 16

Timings Case (1)

MP-SIR GLASSO
10.3779 43.3955

β(1) β(2) β(3) β(1) β(2) β(3)

DIST 0.1810 0.1735 0.1530 0.5424 0.5407 1.0980

(0.1268) (0.1350) (0.3749) (0.3402) (0.4208) (0.5442)

MS 2.2000 2.2000 2.2000 5.1400 4.2150 4.5250

TPR 1.0000 1.0000 1.0000 0.9925 0.9025 0.8425

FPR 0.0142 0.0142 0.0142 0.2253 0.1721 0.2028

Timings Case (2)

MP-SIR GLASSO

11.3456 42.7013

β(1) β(2) β(3) β(1) β(2) β(3)

DIST 0.3209 0.3261 1.0594 0.7520 0.7418 1.2706

(0.1352) (0.1258) (0.2823) (0.3030) (0.3473) (0.2705)

MS 4.4050 4.4050 4.4050 6.2700 5.5100 4.8650

TPR 0.9987 0.9987 0.9987 0.8737 0.8487 0.7862

FPR 0.0341 0.0341 0.0341 0.2312 0.1762 0.1433

The average distance measure (DIST) with standard error in parentheses, the average model size (MS), the
true positive rate (TPR), and the false positive rate (FPR), based on 200 data replications, are reported
MP-SIR multiple-population sliced inverse regression, GLASSO the group lasso algorithm

Fig. 1 Plots of the estimated
index from the joint estimation
procedure versus the dependent
variable for the male population
(left panel) and the female
population (right panel) a Males
b Females
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tors. They proposed partial dimension reduction in which
the reduction of the vector of continuous predictors is done
simultaneously for all distinct levels of categorical predictors.
They applied partial sliced inverse regression to a restricted
regression involving only five of the eight predictors men-
tioned above, and found that a single linear combination
of the predictors is sufficient to describe both the male and
female regressions. However, partial dimension reduction in
general is not a good solution to the problem of multiple-
population dimension reduction, because the same reduction
applies to all levels of the categorical predictors, ignoring
population-specific effects.

On the other hand, it is more appropriate to assume that
there are common factors that are associated with lean body
mass in the two regressions for males and females, that is,
to assume the joint sparsity assumption. Before we continue,
we log-transform each of the eight predictors in order to
insure the linearity condition, following Chiaromonte et al.
(2002) and Cook (2004). Using chi-squared tests (e.g., Li
1991), we infer that the central subspace for each popula-
tion is one-dimensional, that is, d(1) = d(2) = 1. We then
apply our multiple-population estimation method to the two
regressions of lean body mass on the transformed predictors.
The estimates for males and females are (0, 0.995, −0.100,
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0,−0.001,−0.003, 0, 0)� and (0, 0.988,−0.157, 0,−0.009,
−0.001, 0, 0)�, respectively. We can see that the two predic-
tors, weight and sum of skin folds, are highly relevant to lean
body mass in both the regressions, and this is consistent with
the conclusion drawn by Cook (2004) using testing proce-
dures. We can also see that the two estimates are very close
to each other, which indicates that for this particular data set,
it might be reasonable to assume that the male and female
regressions share a common dimension-reduction subspace,
as was observed in Chiaromonte et al. (2002). Specifically,
the squared cosine between the two direction estimates is
0.9965. Figure 1 shows the plot of the estimated index ver-
sus the dependent variable for each population. We can see
that the two link functions are nearly linear. If we consider the
union of males and females, the marginal direction estimate
(without regularization) is

(0.0933, 0.9164,−0.1509, 0.1889,−0.004, 0.0056,

−0.2747, 0.1315)� ,

and the squared cosines between this estimate and the two
previous ones are 0.8592 and 0.8626, respectively.
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