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ABSTRACT
For regression problems with grouped covariates, we adapt the
idea of sparse group lasso (SGL) [10] to the framework of the suffi-
cient dimension reduction. Assuming that the regression falls into a
single-index structure, we propose a method called the sparse group
sufficient dimension reduction to conduct group and within-group
variable selections simultaneously without assuming a specific link
function. Simulation studies show that our method is comparable
to the SGL under the regular linear model setting and outperforms
SGL with higher true positive rates and substantially lower false pos-
itive rates when the regression function is nonlinear. One immediate
applicationofourmethod is to thegenepathwaydata analysiswhere
genes naturally fall into groups (pathways). An analysis of a glioblas-
toma microarray data is included for illustration of our method.
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1. Single-indexmodel and sufficient dimension reduction

For a typical regression problemwith a univariate random responseY and a p-dimensional
random vector X, sufficient dimension reduction (SDR: [5,6,19]) aims to reduce the
dimension ofXwithout loss of information on the regression and without requiring a pre-
specified parametric model. The basic idea of SDR is to replace the predictorsX ∈ R

p with
a lower dimensional projection PSX onto a subspace S ⊆ R

p without the loss of informa-
tion on the original regression of Y |X, i.e. Y |= X | PSX, where |= indicates independence
andP(·) stands for a projection operatorwith respect to the standard inner product. Such an
S is defined as a dimension reduction subspace, and the smallest one is called the central
subspace SY |X [5], which exists under very mild conditions [5,43]. We assume the exis-
tence of SY |X throughout this article. The dimension of central subspace SY |X, denoted
by d, is called the structural dimension of the regression.

When d=1, it is called the Single-Index Model (SIM) [40]

Y = g(βTX, ε), (1)

where g(·) is an unknown link function, β is a p-dimensional vector, and the random
error ε is independent with X. Model (1) [12] is a very general semiparametric model that
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includes a commonly used multiple linear regression model as a special case. One is usu-
ally concerned with estimation of β and the link function g(·) [9]. We, however, focus on
developing a link-free variable selectionmethod assumingModel (1) under the framework
of SDR.

Most of the existing variable selection methods are model-based [38]. Such methods
might generate biased results if the underlying modeling assumption is violated, which is
typically the case for complex or unknown models. For a variable selection method that
does not require the full knowledge of the underlying true model, it is calledmodel-free or
link-free variable selection. As pointed out by Bondell and Li [3], the general framework of
SDR is very useful for variable selection since no pre-specified underlying models between
Y and X are required. Model-free variable selection can be achieved through the frame-
work of SDR [21]. Instead, usually a so-called linearity condition [11,42] on the marginal
distribution of X is assumed. This is a mild condition and holds approximately true when
p goes to infinity. Ni et al. [32], Li and Nachtsheim [23] and Li and Yin [24] proposed
model-free variable selections by reformulating SDR as a penalized regression problem. Li
[20] proposed a unified approach by combining SDR and shrinkage estimation to produce
sparse estimators of the central subspace.Wang et al. [40] proposed a distribution-weighted
lasso method for the SIM. However, none of those model-free variable selections take the
prior group (predictor network) information into account. Such situations do arise in the
gene pathway analysis where genes naturally fall into groups (pathways/gene networks; see
Section 4 for more discussions).

In this paper, we propose a link-free (model-free) variable selection method called
the sparse group sufficient dimension reduction (sgSDR), which conducts both group
and within-group variable selections simultaneously under the framework of the SIM.
We then apply our method to a survival analysis for glioblastoma patients [14] using
gene-expression profiles with about 1500 genes and 33 pathways.

The remainder of this article is organized as follows. Section 2 describes our sta-
tistical approach. We first review the sparse group lasso (SGL) [10], then show how it
can be extended within the context of SDR. The SLEP package [25] is adopted for the
implementation of our method. Five-fold cross-validation is used to select the related
tuning parameters. Section 3 reports simulation studies comparing the finite-sample per-
formances of our method with the SGL. A real data example on glioblastoma study [14]
is discussed in Section 4. Conclusions and a brief discussion on future research directions
are given in Section 5.

2. Sparse group sufficient dimension reduction

The lasso-penalized linear regression [38] is applied to high-dimensional regression prob-
lemswith tens to hundreds of thousands of predictors. It finds a solutionwith few non-zero
entries by minimizing

1
2‖y − Xβ‖22 + λ‖β‖1, (2)

where y = (y1, . . . , yn)T is the observed centered response vector, X = (x1, . . . , xn)T is
the centered design matrix with xi = (xi1, . . . , x

i
p)

T being the predictor values for the
ith observed subject, β ∈ R

p the vector of regression coefficients, ‖z‖2 = (
∑

j z
2
j )

1/2 the
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Euclidean (l2) norm, and ‖z‖1 = ∑
j |zj| the l1 norm. The first term in Equation (2) repre-

sents the loss function minimized in the ordinary least-squares, and the second term is the
lasso penalty function where the multiplier λ > 0 is the penalty constant. Large value of
λ will set some components βj exactly to 0. The lasso has become a popular model selec-
tion and shrinkage estimation method since it is capable of producing sparse models and
is computationally feasible. However, due to the fact that the lasso selects at most n vari-
ables before it saturates [46], the lasso fails when the number of significant predictors is
greater than the sample size. In addition, the lasso has poor performance when predictors
are highly correlated. In such case, lasso tends to randomly select only one variable from
each correlated group.

In some applications, it is natural to group correlated predictors [44]. This raises the
question of how to penalize a group of parameters. Combining the l1 norm that is used in
lasso and l2 penalty that is used in the ridge regression [13] to the ordinary least-squares,
the elastic net [46] generates almost equal regression coefficients for a group of highly
correlated variables. Therefore, it is useful for performing group selections of correlated
components when the group information is unknown in advance. In some real applica-
tions, there exists prior group knowledge that has been obtained through research and
studies in the area of expertise. In the case that the group information is pre-assigned,
the group lasso proposed by Yuan and Lin [44] allows the group sparsity since its l2
group penalty takes the prior group information into account. Its solution is obtained by
minimizing the following penalized least-squares regression:

1
2

∥∥∥∥∥∥
y −

G∑
g=1

X (g)β(g)

∥∥∥∥∥∥

2

2

+ λ

G∑
g=1

√
pg‖β(g)‖2, (3)

whereX (g) is the submatrix ofX with columns corresponding to the predictors in the gth
group, and β(g) is the coefficient vector of that group with pg as its length. The rescaling
factor pg makes the penalty level proportional to the group size, which ensures that small
groups are not overwhelmed by large groups in group selections. The group lasso penalty
has been investigated in multiple studies [2,15,30]. The sparsity of the solution is deter-
mined by the tuning parameter λ. When the group size pg = 1, group lasso is reduced to
the regular lasso. While the group lasso can identify important groups, it is not capable of
selecting important predictors within each group, which will be an issue when pg is large.

Friedman et al. [10] proposed the SGL which could achieve sparsity of both groups and
within each group by minimizing the following penalized least-squares regression:

1
2

∥∥∥∥∥∥
y −

G∑
g=1

X (g)β(g)

∥∥∥∥∥∥

2

2

+ λ1

G∑
g=1

√
pg‖β(g)‖2 + λ2‖β‖1. (4)

It is reduced to the group lasso when λ2 = 0 and the lasso when λ1 = 0. SGL is capable of
selecting important groups and important predictors within the selected groups simultane-
ously. Unlike the elastic net, SGL encourages the sparsity at the group levels as its l2 penalty
is not differentiable at zero. For the sparse selection within-group levels, SGL generates an
elastic net type solution [36]. SGL might lead to better predictions since it takes the prior
cluster structure into consideration; and also, itsmerit of performingwithin-group variable



4 B. ZENG ET AL.

selections can produce more parsimonious models and hence lead to more interpretable
results. However, all the above lasso-based methods assume a linear relationship between
the response and the predictors. They are not applicable to the scenarios when the linearity
modeling assumption is violated.We propose a sgSDRmethod to overcome this limitation.

Li et al. [22] proposed the groupwise dimension reduction which incorporates the prior
grouping information into the estimation of the central mean subspace. Simulation stud-
ies and real data analyses showed that the groupwise dimension reduction approach can
substantially increase the estimation accuracy and enhance the estimates interpretability.
However, their method is only limited to the dimension reduction of the conditional mean
(E(Y |X)), and furthermore, it is not capable of conducting variable selections for sparse
models. The sgSDRmethod we propose in this article can conduct variable selection in the
general dimension reduction context, including but not limited to the conditional mean,
while incorporating the prior group information.Moreover, thismethod is applicablewhen
the sample size n is far less than the number of predictors p (i.e. n � p setting).

We focus on the following general SIM:

Y = g(βTX, ε). (5)

Without the loss of generality, we assume that X is centered with E(X) = 0 and also
suppose that X can be split into G groups, XT = (X(1),X(2), . . . ,X(G)) , where X(g) is a pg-
dimensional row vector, for g = 1, . . . ,G, and

∑G
g=1 pg = p. Following Wang et al. [40],

we consider the following minimization problem:

1
2

∥∥∥∥∥∥
Fn(y) −

G∑
g=1

X (g)β(g)

∥∥∥∥∥∥

2

2

+ λ1

G∑
g=1

√
pg‖β(g)‖2 + λ2‖β‖1, (6)

where Fn(y) = (Fn(y1), . . . , Fn(yn))T and X are all centered, β(g) is the coefficient vector
of the gth group with pg as its group size, and Fn(y) = ∑n

i=1 I(Yi ≤ y)/n is the empirical
distribution function. The solution β = (β(1),β(2), . . . ,β(g))T of Equation (6) forms the
central subspace, and here we call it the sgSDR estimator. For a general SIM, the non-zero
entries in the central subspace above represent the estimated coefficients of significant pre-
dictor variables in the variable selection. Moreover, Proposition 2.1 shows that the sgSDR
estimator is consistent with the non-zero coefficients in the true model. Proposition 2.1
states the identifiability of sgSDR. The proof is similar to that of Proposition 2.1 of Wang
et al. [40] and is hence omitted.

Proposition 2.1: Under the linearity condition, and assume that �s, the marginal covari-
ance matrix of all the significant predictors (denoted by Xs here for easy of exposition) is
invertible, then

�−1
s Cov{Xs, F(Y)} = cβs,

where βs consists all non-zero coefficients of β from Equation (5), c ∈ R
1 is a constant, and

F(Y) is the cumulative distribution function of Y .

The linearity condition is widely assumed in the dimension reduction context [5,
11,19,42]. It holds trivially when the predictor distribution is elliptically symmetric. Our
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condition is much weaker than the existing one as we only assume the linearity condition
on Xs rather than the original p-dimensional vector X.

The above proposition also holds for any transformation of response Y, h(Y), which
implies that the empirical cumulative distribution function used in our method can be
replaced by any other transformation of Y. In this paper, the empirical cumulative dis-
tribution function F(Y) is used for its computational simplicity. Proposition 2.1 shows
that the SDR approach enables us to obtain a consistent estimator for βs without requiring
specific specifications of the link function g(·) and without employing any nonparametric
smoothing methods.

Let β̂s be the sample estimate of �−1
s Cov{Xs, F(Y)}, the following two theorems state

its asymptotic properties. The results are similar to that ofWang et al. [40] as they also hold
true for design matrices with grouped structures.

Theorem 2.1: Assume that the following conditions are satisfied:

(a) L1 ≤ λmin(�s) ≤ L2 for some L1, L2 > 0
(b) max1≤i≤p E(X4

i ) < L3 < ∞ for some L3
(c) p = o(

√
n)

where λmin(·) and λmax(·) are the smallest and largest eigenvalues of a symmetric matrix,
respectively. Then we have

‖β̂s − βs‖2 = Op

( p
n1/2

)
.

Theorem 2.2: Assuming condition (a) from Theorem 2.1, and also the following condi-
tions [40]:

• max1≤i≤p E(X8
i ) < L3 < ∞ for some L3

• p = o(n1/4)

then as n → ∞, for any vector ν ∈ R
p such that ‖ν‖2 ≤ 1 and νT�ν → G > 0 as n → ∞,

where � = Cov{[F(Y) − ∑G
g=1 X

(g)β(g)]X}, we have
√
nνT(β̂s − βs) → N(0,G).

We minimize Equation (6) to obtain a sparse estimator. The sparsity of the solution is
determined by the tuning parameters λ1 and λ2. Specifically, the sparsity of group selec-
tion is controlled by λ1 in Equation (6) while the number of variables selected within each
group depends on the value of λ2. The larger value of λ1 will shrink more group param-
eters into zero, and it will result in fewer groups being selected. Similarly, smaller value
of λ2 implies less shrinkage on individual parameters which will produce more selected
variables within groups and vice versa. To select the two tuning parameters, λ1 and λ2,
we employ the commonly used five-fold cross-validation in this paper. Simon et al. [36]
suggested using λ1 = 19λ2. However, there is no theoretical justification to support this
special λ1 to λ2 ratio. In fact, the λ1 to λ2 ratiomight need to be adjusted when the scenario
varies. Therefore, we run all the possible combinations of λ1 and λ2 on a two-dimensional
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(λ1, λ2) grid which is composed by a wide range of λ1 and λ2 values. The SLEP package
[25] is adopted to implement our method. The selection of the two tuning parameters λ1
and λ2 via five-fold cross-validation can be described generically as follows:

Step 1: Randomly partitioning the sample data into five equal sized subsamples. Four
subsamples are used as training data, whereas the remaining subsample is used for testing.

Step 2: Choose a grid of values for λ1 and λ2.
Step 3: For each (λ1, λ2) combination, calculate and store its cross-validation error

CVE(λ1, λ2) = 1
n
‖F(Ytest) − Xtestβ̂ training‖22,

where β̂ training is the estimated regression coefficient generated by sgSDR from the train-
ing set. Ytest and Xtest denote the test sample response vector and the design matrix,
respectively.

Step 4: Repeat Step 1–Step 3 until each of the subsamples are used exactly once as the
test set. Denoted by SCVE(λ1, λ2), the sum of CVE for each specific (λ1, λ2) combination
is calculated by adding up the CVE(λ1, λ2) from each loop.

Step 5: The optimal (λ1, λ2) solution is obtained by minimizing the SCVE(λ1, λ2).

3. Simulation studies

In this section, we compare the performance of our method with the SGL. The five-fold
cross-validation is applied to both methods. A wide range of λ1 and λ2 values from 10−4

to 104 are used for the selection of tuning parameters for both methods [4]. We considered
both linear and nonlinearmodels withGaussian and non-Gaussian errors.We use the aver-
age true positive rate (TPR = the ratio of the number of correctly declared active variables
to the number of truly active variables) and the average false positive rate (FPR = the
ratio of the number of falsely declared active variables to the total number of truly inactive
variables) as evaluation measurements to summarize variable selection results from 100
simulation runs.

Model I: For a fair comparison, we first consider a regular linear model as Simon et al.
[36] discussed in their paper. The predictor X is generated from N(0, Ip), ε is standard
normal and independent of X, the univariate response Y is constructed as

Y =
G∑

g=1
(β(g))TX(g) + σε, (7)

whereG=10, σ is set tomake the signal to noise ratio as 2. And the coefficients for the first
l group are β(g) = (1, 2, 3, 4, 5, 0, . . . , 0)T, for g = 1, . . . , l, with l varying from 1 to 3; and
all zeros for the rest of G−l groups. Following Simon et al. [36], we took n=60, p=1500.
Table 1 provides the average true positive and FPRs. As shown in Table 1, the performances
of sgSDR and SGL are comparable in the sense that the average TPRs and FPRs are very
close to each other.

Model II: We now consider a variation of Model I. We take p=2000, G=10, and Y is
still generated as in Equation (7). However, the predictors now are mildly correlated and
β(g) = (−2, 3, 0, . . . , 0)T, for g = 1, . . . , l, with l varying from 1 to 3; and zeros otherwise.
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Table 1. Linear model with Gaussian error.

l= 1 l= 2 l= 3

TPR FPR TPR FPR TPR FPR

sgSDR 0.75 0.13 0.64 0.32 0.58 0.35
SGL 0.75 0.10 0.64 0.31 0.56 0.32

Table 2. Linear model with correlated predictors.

l= 1 l= 2 l= 3

Method TPR FPR TPR FPR TPR FPR

Gaussian error sgSDR 1.00 0.04 1.00 0.05 1.00 0.05
SGL 1.00 0.04 1.00 0.05 1.00 0.05

t(5)error sgSDR 1.00 0.03 1.00 0.03 1.00 0.04
SGL 1.00 0.03 1.00 0.03 1.00 0.04

Table 3. Nonlinear model III.

l= 1 l= 2 l= 3

Method TPR FPR TPR FPR TPR FPR

Gaussian error sgSDR 1.00 0.03 1.00 0.04 1.00 0.04
SGL 0.90 0.71 1.00 0.92 1.00 0.99

t(5) error sgSDR 1.00 0.03 1.00 0.04 1.00 0.04
SGL 0.90 0.75 0.95 0.82 1.00 0.99

Specifically, within each group, X(g) = (X(g)
1 , . . . ,X(g)

200) are all generated as independent
standard normal random variables except X(g)

3 , which is generated to be correlated with
Xg
1 and Xg

2 by

X(g)
3 = 2

3X
(g)
1 + 2

3X
(g)
2 + 1

3eg . (8)

For the random errors, eg , N(0, 0.52) and t distribution with degrees of freedom of 5 are
both considered.

The simulation results with n=60 from 100 simulation runs are shown in Table 2. We
can see that our method (sgSDR) is comparable to SGL for linear models with correlated
predictors.

Model III: We now compare the performances of sgSDR and SGL for nonlinear models.
We first consider the following model:

Y = exp

⎛
⎝

G∑
g=1

X(g)β(g) + ε

⎞
⎠ . (9)

The predictors X and the coefficients β are generated the same as those of Model II. As
shown in Table 3, our method outperforms SGL with significantly lower FPR and slightly
higher TPR. SGL fails when the regression function is nonlinear. The average FPR for SGL
is above 75%, which implies that it mistakenly selected over 1500 inactive predictors as
significant ones.

Model IV : In this example, the nonlinear model (9) is reconsidered with larger sam-
ple size, larger dimension p, and more groups, that is, n=200, p=5000 and G=50.
The predictors are generated by N(0,�), where � = (.5|i−j|), i, j = 1, . . . , p. We consider
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Table 4. Nonlinear model IV.

l= 1 l= 2 l= 3

Method TPR FPR TPR FPR TPR FPR

Gaussian error sgSDR 0.80 0.03 0.73 0.04 0.68 0.12
SGL 1.00 1.00 1.00 1.00 1.00 1.00

t(5) error sgSDR 1.00 0.03 0.99 0.03 0.86 0.04
SGL 1.00 1.00 1.00 1.00 1.00 1.00

l (5,10,15) significant groups, with β(g) = (3, 1.5, 2, . . . , 0)T, g = 1, . . . , l. According to
Table 4, we can see that our method (sgSDR) is more robust under the nonlinear model
setting. In such a nonlinear model with complex structure of predictors, even though the
same wide range of (λ1, λ2) grid ranging from 10−4 to 104 are provided for the selection of
two tuning parameters for both methods, SGL still fails completely with 1.00 FPR which
results in choosing all the predictors as significant ones.

4. A real data analysis

Genetic association studies aim to detect the associations between gene expressions and
the occurrence or progression of disease phenotypes. Recent developments in microarray
techniquesmake it possible to profile gene expressions on awhole genome scale, simultane-
ously measuring expressions of thousands or tens of thousands of genes. New challenges
arise for the analysis of microarray data due to the large number of genes surveyed and
often the relatively small sample sizes. A large amount of existing approaches (to list a
few: [1,8,31,35]) has been developed to identify a small subset of genes or linear combi-
nations of genes which are often referred to as super genes, that have influential effects
on some certain diseases. Such studies can lead to better understanding of the genetic
causation of diseases and better predictive models. However, since the presence of cluster
structure of genes (gene pathways) was ignored, these methods are insufficient to dissect
the complex genetic structure of many common diseases. Here, the clusters are composed
of co-regulated genes with coordinated functions. Gene annotation databases, such as
kyoto encyclopedia of genes and genomes (KEGG) [33], Reactome [29], Pathway Interac-
tion Database (http://pid.nci.nih.gov/) and BioCyc [17], group functionally relevant genes
into biological pathways. The existing information about gene pathways has been gathered
through years of biomedical studies [22]. On the other hand, statistical clustering meth-
ods such as hierarchical cluster analysis and K-means cluster analysis [27] are also widely
used, which provides a more statistically principled way of partitioning predictors into
groups. de Souto et al. [7] compare different clustering methods and proximity measures
for gene expression data. Since it is commonly believed that genes carry out their functions
through intricate pathways of reactions and interactions, intuitively, pathway-based anal-
ysis can offer an attractive alternative to improve the power of gene (or single-nucleotide
polymorphism)-based methods and may help us to identify relevant subsets of genes in
meaningful biological pathways underlying complex diseases.

There are considerable interests in pathway-based analysis (to list a few: [18,26,28,34,
39,41,45]). Pathway-based approaches in microarray data analysis often yield biological
insights that are otherwise undetectable by focusing only on genes with the strongest
evidence of differential expressions. Most pathway-based methods focus on identifying

http://pid.nci.nih.gov/
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meaningful biological pathways underlying complex diseases, assuming that if a pathway
(cluster) is strongly associated with the phenotype, then all genes within that pathway
are associated with the phenotype. However, if only a subset of genes within a pathway
contributes to the outcome, then these methods may result in loss of power. Our sgSDR
is developed to address this problem, where pathway selection and within pathway gene
selection can be achieved simultaneously.

We demonstrate our method by analyzing a microarray gene-expression data with
glioblastoma patients byHorvath et al. [14]. Glioblastoma is themost common and aggres-
sive malignant brain tumor in humans. Patients with this disease have a median survival
time of approximately 15 months from the time of diagnosis despite various treatments
such as surgery, radiation and chemotherapy. Consisting of two independent sets of clinical
tumor samples of n=55 and n=65, the dataset was obtained by Affymetrix HG-U133A
arrays and processed by the Robust Multi-array Average method [16]. As Pan et al. [34]
pointed out, the two datasets were somewhat different from each other, and they only used
dataset one in their analysis. Following Pan et al. [34], we also focus on the 50 patients with
observed survival times from dataset one and took the log survival time (in days) as the
response variable in our analysis and the gene-expression profiles as predictors. Our goal
is to simultaneously identify significant pathways and genes within those pathways that are
strongly associated with the survival time from glioblastoma.

We merged the gene-expression data with the 33 regulatory pathways recorded in the
KEGG database. Among the 1668-node of the 33 pathways, 1507 (Entrez ID) out of 22,283
genes (Probe ID) are identified on the HG-U133A chip. Following Li and Li [18], Pan et al.
[34], and Zhu and Li [45], we only use these 1507 genes in our following analysis. When
there are multiple probe set IDs corresponding to a single Entrez KEGG ID, we took the
average expression levels of those probe IDs.

We compared our result with Li and Li [18]. As reported in Table 5, our pathway selec-
tion is similar to that of Li and Li [18] except for pathway 6, 13, 17, 18, and 27 (cell cycle,
extracellular matrix–receptor interaction, gap junction, complement and coagulation cas-
cades, type I diabetes mellitus). Among those five pathways, the first three pathways were
selected by our method but not by Li and Li [18], while the latter two were selected by Li
and Li [18] only. As reported in [37], the entire tumor growth profile in brain cancer is a
collective behavior of cells regulated by the cell cycle pathway (pathway 6). The study result
from Phillips laboratory (UCSF) shows that heparan sulfate proteoglycans in extracellular
matrix (pathway 13) can change tumor cell behavior including proliferation, invasion, and
recruitment of inflammatory cells. Zhu and Li [45] ranked all the 33 pathways according
to their significance. Pathway 17 and 27 which were only selected by Li and Li [18], ranked
30th and 28th, respectively, suggesting that they are not very important pathways.

MAPK signaling pathway (pathway 1), cytokine–cytokine receptor interaction pathway
(pathway 3), neuroactive ligand–receptor interaction pathway (pathway 5), and comple-
ment and coagulation cascades (pathway 18) were ranked as the top four significant
pathways related to the brain cancer by Zhu and Li [45] using a nonlinear dimension
reduction method. Our pathway selection is consistent with Zhu and Li [45] since all these
four pathways are selected by sgSDR. For the within pathway gene selection, our method
selected 85 unique genes. Among them, 10 genes are the same as that of Li and Li [18], i.e.
MAP3K7, CX3CL1, SYNJ2, UBE2E1, SMURF2, CLDN6, IRF3, IL21R, PCK1, FOXO1A.
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Table 5. Pathway selections for glioblastoma data.

Group Pathway name sgSDR Li and Li

1 MAPK signaling pathway � �
2 Calcium signaling pathway � �
3 Cytokine–cytokine receptor interaction � �
4 Phospatidylinositol signaling system � �
5 Neuroactiveligand–receptor interaction � �
6 Cell cycle �
7 Ubiquitin mediated proteolysis � �
8 Apoptosis � �
9 Wnt signaling pathway � �
10 Transforming growth factor-beta signaling pathway � �
11 Axon guidance � �
12 Focal adhesion � �
13 Extracellularmatrix–receptor interaction �
14 Cell adhesion molecules � �
15 Adherens junction � �
16 Tight junction � �
17 Gap junction �
18 Complement and coagulation cascades �
19 Toll-like receptor signaling pathway � �
20 Jak-STAT signaling pathway � �
21 Natural killer cell mediated cytotoxicity � �
22 Circadian rhythm
23 Regulation of actin cytotoxicity � �
24 Insulin signaling pathway � �
25 Adipocytokine signaling pathway � �
26 Type II diabetes mellitus � �
27 Type I diabetes mellitus �
28 Alzheimer’s disease
29 Prion diseases
30 Cocaine addiction
31 Unknown
32 Unknown
33 Unknown

And FOXO1A was also identified by Pan et al. [34] as one of the significant transcription
factors associated with glioblastoma.

5. Conclusions and discussion

Wepropose amethod called sgSDRwithin the framework of SDR that could conduct group
and within-group variable selection simultaneously. Ourmethod is comparable to the SGL
[10, 36] for the linear models and outperforms it when the regression function is nonlin-
ear. The glioblastoma data are used to illustrate the applications of our method to the gene
pathway analysis. Both simulation studies and the real data survival analysis show promis-
ing results for sgSDR. Specially, this method has a practical meaning on the application of
genetic association research. The consistency of our group and variable selections remains
an important yet challenging and open question that deserves further investigation.
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