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Abstract

Though partial sliced inverse regression (partial SIR: Chiaromonte et al. [2002. Sufficient dimension reduction in regressions with
categorical predictors. Ann. Statist. 30, 475–497]) extended the scope of sufficient dimension reduction to regressions with both
continuous and categorical predictors, its requirement of homogeneous predictor covariances across the subpopulations restricts
its application in practice. When this condition fails, partial SIR may provide misleading results. In this article, we propose a new
estimation method via a minimum discrepancy approach without this restriction. Our method is optimal in terms of asymptotic
efficiency and its test statistic for testing the dimension of the partial central subspace always has an asymptotic chi-squared
distribution. It also gives us the ability to test predictor effects. An asymptotic chi-squared test of the conditional independence
hypothesis that the response is independent of a selected subset of the continuous predictors given the remaining predictors is
obtained.
© 2006 Elsevier B.V. All rights reserved.
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1. Introduction

For a typical regression problem with a scalar response Y and a vector of random predictors X ∈ Rp, the goal is
to understand how the conditional distribution of Y |X depends on the value of X. The spirit of sufficient dimension
reduction (Cook, 1994, 1998) is to reduce the dimension of X without loss of information on the original regression and
without requiring a pre-specified parametric model. The basic idea is to replace X by a minimal set of linear combinations
of X without loss of information on Y |X. These linear combinations of X are called the sufficient predictors. More
formally, we seek subspaces S ⊆ Rp such that

Y@X|PSX,

where @ indicates independence, and P(.) stands for a projection operator with respect to the standard inner product.
Such an S is called a dimension reduction subspace. When the intersection of all dimension reduction subspaces itself
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is also a dimension reduction subspace, it is called the central subspace (CS; Cook, 1994, 1998) of the regression and
denoted as SY |X. The dimension of SY |X is called the structural dimension of the regression. A regression with a
structural dimension of m is called an mD regression.

Although the CS does not always exist, it does exist for a wide class of regressions (Cook, 1998), and then it is
uniquely defined. We assume that the CS exists throughout this article. To ease exposition, we often work with the
standardized predictors Z instead of X, where Z = �−1/2(X − E(X)), � = Cov(X) > 0. Since SY |X = �−1/2SY |Z,
this involves no loss of generality.

Sufficient dimension reduction may provide an effective starting point for regression analyses, since it can facilitate
data visualization. The structural dimension is at most three in many applications and this allows a fully informative and
direct visualization of the original regression through a plot of Y versus the sufficient predictors. In this sense, sufficient
dimension reduction provides a foundation for regression graphics, as argued by Cook (1998) and Chiaromonte and
Cook (2002). And unlike other nonparametric approaches, sufficient dimension reduction can often avoid the curse of
dimensionality (Friedman, 1994). Though sufficient dimension reduction does require assumptions on the marginal
distribution of X, these are mild, can usually be induced in practice, and are certainly much less restrictive than requiring
a model.

There are two general approaches to estimating the CS, the spectral decomposition approach and the minimum
discrepancy approach. Many methods, including the two most popular ones, sliced inverse regression (SIR; Li, 1991)
and sliced average variance estimation (Cook and Weisberg, 1991; Cook, 2000), take the first approach using the
following logic. First, find a symmetric population kernel matrix M, which satisfies the property that Span(M) ⊆
SY |Z. Then, spectrally decompose M̂, a consistent estimate of M, and use the span of eigenvectors correspond-
ing to the dim(SY |Z) largest eigenvalues of M̂ to estimate Span(M). The eigenvalues provide a test statistic for
hypotheses on the structural dimension. This is called the spectral decomposition approach since it is based on
a spectral decomposition of the sample kernel matrix M̂. Recently, Cook and Ni (2005) introduced an innovative
method to estimate the CS via a minimum discrepancy approach. They developed a family of dimension reduction
methods by minimizing quadratic inference functions. An optimal member of this family, the inverse regression es-
timator was proposed. They also showed that many current methods like SIR belong to a sub-optimal class of this
family.

Over the past decade sufficient dimension reduction has been mostly limited to regressions with continuous or
many-valued predictors because in such cases that the linear combinations PSX of the predictors might provide an
effective parsimonious summary. Chiaromonte, Cook and Li (2002, hereinafter CCL) introduced the partial central
subspace (partial CS), to facilitate dimension reduction in regressions with both continuous and categorical predictors.
The partial CS is defined as the intersection of all subspaces S satisfying

Y@X | (PSX, W), (1)

where W ∈ {1, . . . , K} is a categorical predictor. The partial CS, which is assumed to exist and is denoted as S(W)
Y |X,

allows for reduction of the vector X of continuous predictors simultaneously across all subpopulations determined
by W. CCL developed a method called partial SIR to estimate the partial CS under various mild conditions and
the relatively restrictive condition that Cov(X|W) is a nonrandom matrix. Experience has shown that this homoge-
neous covariance condition restricts application of partial SIR in practice, and that its failure can result in misleading
conclusions.

In this article, we will combine the ideas from CCL and Cook and Ni (2005), taking the minimum discrepancy
approach to develop an asymptotically optimal method to estimate the partial CS without the homogeneous covariance
constraint. Additionally, because the new method is optimal in a sense described later, we expect that it will prove to
be superior to partial SIR even when the homogeneous covariance condition holds. In Section 2, we review inverse
regression and the minimum discrepancy approach. The new method, optimal partial inverse regression estimation
(OPIRE), is proposed in Section 3, where we discuss optimality and computation, and show that this approach allows
simple asymptotic chi-squared tests of hypotheses on the dimension of the partial CS. We also re-derive partial SIR
via the minimum discrepancy approach. We present asymptotic chi-squared tests for testing various hypotheses about
the effects of the continuous predictors in Section 4. Representative simulation results are reported in Section 5
and a final discussion is given in Section 6. To keep the flow of the discussion, details of the proofs appear in the
Appendix.
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2. Inverse regression and the minimum discrepancy approach

2.1. Preliminary results

Unlike traditional regression modeling, inverse regression relies on an assumption about the marginal distribution
of Z instead of the conditional distribution of Y |Z. The so-called linearity condition requires that

E(Z|PSY |ZZ) = PSY |ZZ.

Let the columns of � ∈ Rp×q be a basis for SY |Z, where q = dim(SY |Z). This condition is equivalent to requiring that
E(Z|�TZ) be a linear function of �TZ. We are free to use experimental design, and one-to-one predictor transformations
to induce the linearity condition. Cook and Nachtsheim (1994) proposed a re-weighting method to force this condition
when necessary without suffering complications when inferring about Y |Z. Since no model is assumed for Y |Z, these
methods will not change the fundamental issues in the regression. The linearity condition holds for elliptically contoured
predictors. Additionally, Hall and Li (1993) showed that as p increases with q fixed the linearity condition holds to a
reasonable approximation in many problems.

The linearity condition connects the CS with the inverse regression of Z onY. Li (1991) showed that E(Z|Y ) ∈ SY |Z
when it holds. Defining

SE(Z|Y ) ≡ Span{E(Z|Y = y), y varies} = Span{�−1/2(E(X|Y = y) − E(X)), y varies},
one then has SE(Z|Y ) ⊆ SY |Z and consequently an estimate of SE(Z|Y ) provides an estimate of at least a part of the
CS. To estimate SE(Z|Y ), we need to estimate its spanning vectors �−1/2(E(X|Y = y) − E(X)). The mean E(X) and
covariance matrix � can be estimated using their sample versions. Conditional sample means can be used to estimate
E(X|Y = y) when Y is discrete or categorical. When Y is continuous, Li (1991) proposed estimating E(X|Y = y) by
replacing Y with a discrete version constructed by partitioning the range of Y into h fixed slices. Accordingly, we follow
standard methodology and assume that Y takes values in {1, 2, . . . , h}.

Besides the linearity condition, the coverage condition SE(Z|Y ) = SY |Z, is also often assumed. With both linearity
and coverage conditions, an estimate of SE(Z|Y ) is also an estimate of the CS.

Alternatively, we can connect SE(Z|Y ) and SY |X via a generalized coverage condition, following Cook and Ni
(2005). Before we introduce the definition, a little setup is necessary. Define the following predictor subspace:

S� ≡ Span{E(Z|�TZ = v), v varies},
S� is constructed the same way as SE(Z|Y ) except that the expectation is conditioned on the sufficient predictor �TZ
instead of Y. Then

Lemma 1.

SE(Z|Y ) ⊆ S� and SY |Z ⊆ S�.

Lemma 1says that S� always provides an upper bound for both SY |Z and SE(Z|Y ), without requiring either
the linearity or coverage condition. The linearity condition alone will force SY |Z = S�. We then have SE(Z|Y ) ⊆
SY |Z = S�. Adding the coverage condition will result in equality of all the three subspaces SE(Z|Y ) = SY |Z = S�.

Now we are ready to define the generalized coverage condition SE(Z|Y ) =S�. This condition provides another route
to ordering the three subspaces. It alone guarantees that SY |Z ⊆ SE(Z|Y ) so that we infer about an upper bound on
the CS without the linearity condition. Adding the linearity condition to the generalized coverage condition will again
result in equality of all the three subspaces. The generalized coverage condition may often hold even whenSY |Z �= S�.
Cook and Ni (2005) gave an example in this regard.

With the generalized coverage condition alone, the following useful observations can be made:

1. dim(SE(Z|Y )) = 0 ⇐⇒ dim(SY |Z) = 0;
2. dim(SE(Z|Y )) = 1 	⇒ dim(SY |Z) = 1;
3. dim(SE(Z|Y )) = k�2 	⇒ 1� dim(SY |Z)�k.
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Judging from experience, many regression problems have 1D or 2D structure. The first two observations imply
that for 0D and 1D regressions, assuming the generalized coverage condition, we can restrict inference for the CS to
SE(Z|Y ). Also, observation 1 can be used for model diagnostics, e.g., considering Y as residuals, where independence
between Y and Z is equivalent to dim(SE(Z|Y )) = 0. In order to make use of observation 3, we first introduce the
following lemma.

Lemma 2. If S is a dimension reduction subspace for Y |Z, then SY |PSZ = SY |Z.

Lemma 2 tells us that as long as we can find one dimension reduction subspace S for the regression of Y |Z, we can
always useSY |PSZ to infer aboutSY |Z. The new regression problem Y |PSZ will be easier to handle if PSZ has a lower
dimension than that of the original predictors, which is often the case in practice. Since S� is a dimension reduction
subspace, SY |PS� Z = SY |Z. Assuming the generalized coverage condition, we can check the linearity condition on
PSE(Z|Y )

Z. If dim(SE(Z|Y )) < p, the complexity of this checking process may be reduced relative to that of checking
the linearity condition directly on Z. If the linearity condition holds, then dim(SE(Z|Y )) = k 	⇒ dim(SY |Z) = k. And
dim(SY |Z)�k if it fails.

2.2. Minimum discrepancy approach in partial sufficient dimension reduction

We now consider partial dimension reduction following CCL, who used (Xw, Yw) to indicate a generic pair distributed
like (X, Y )|(W =w). For example, SYw |Xw is the CS in subpopulation W =w, and Zw =�−1/2

w (Xw −E(Xw)), where
�w = Var(Xw) > 0.

Define the working meta-parameters

S�w ≡
hw∑
y=1

Span(�wy), S� ≡
K∑

w=1

S�w ,

where

�wy = �−1
w (E(Xw|Yw = y) − E(Xw)),

hw is the number of slices in subpopulation w and h = ∑
whw.

Lemma 3. Assuming that the generalized coverage condition holds for all subpopulations, we then have

S
(W)
Y |X ⊆ S�.

Hence, inference about S� provides an upper bound for S(W)
Y |X. Under both the generalized coverage and linearity

conditions for all subpopulations, S� =S
(W)
Y |X. Because inference about S� does not require these conditions, we will

as far as possible work in terms of S�, using these conditions only when necessary. Let d =dim(S�) and let � ∈ Rp×d

denote a basis for S�. By definition, for each �wy , we can find a vector �wy ∈ Rd such that �wy = ��wy . Define

�w = (�w1, . . . , �whw) = ��w, � = (�1, . . . , �K) = �� ∈ Rp×h,

where �w = (�w1, . . . , �whw), � = (�1, . . . , �K) ∈ Rd×h. Let pw = Pr(W = w), and let fw = (fw1, . . . , fwhw)T, where
fwy = Pr(Yw = y). This structure implies the following intrinsic location constraints:

�wfw = ��wfw = 0, w = 1, . . . , K .

Suppose we have a sample of size n for (X, Y, W) from the total population. There are nw points in subpopulation
w, among which nwy points have Yw = y. Let X̄w•• be the average in subpopulation w, and let X̄wy• be the average
of the nwy points with Yw = y. Let p̂w = nw/n, f̂wy = nwy/nw, f̂w = (f̂w1, . . . , f̂whw)T. And let �̂w > 0 denote the
sample covariance matrix for X in subpopulation w. The sample versions of �w and � are

�̂w = (�̂w1, . . . , �̂whw), �̂ = (�̂1, . . . , �̂K) ∈ Rp×h,

where �̂wy = �̂w
−1

(X̄wy• − X̄w••).
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Because � = ��, we consider estimating a basis for S� by using quadratic discrepancy functions of the form

(vec(�̂A) − vec(BC))TVn(vec(�̂A) − vec(BC)), (2)

where A ∈ Rh×(h−K) is nonstochastic and introduced to remove intrinsic location constraints, B ∈ Rp×d , C ∈
Rd×(h−K), and Vn ∈ Rp(h−K)×p(h−K) > 0. The subspace of Rp spanned by a value of B that minimizes (2) provides
an estimate ofS�. Discrepancy function (2) represents a family of methods, with an individual method being determined
by the choice of Vn.

3. Optimal partial inverse regression estimation

Let Du denote a diagonal matrix with the elements of the vector u on the diagonal, and let diag{Mj } denote a
positive definite block diagonal matrix with blocks Mj ∈ Rpj ×pj , where both j and pj are positive integers. As we
discussed before, the columns of �̂ provide redundant information due to the intrinsic location constraints. In order to
reduce the redundancy, we construct a series of nonstochastic matrices Aw ∈ Rhw×(hw−1) such that AT

wAw = Ihw−1
and AT

w1hw = 0. Without loss of generality, we will use the reduced data matrices

�̂w ≡ �̂wDf̂w
Aw ∈ Rp×(hw−1) and �̂ ≡ (�̂1, . . . , �̂K) ∈ Rp×(h−K) (3)

to construct the discrepancy function

Fd(B, C) ≡ (vec(�̂) − vec(BC))TVn(vec(�̂) − vec(BC)), (4)

where B ∈ Rp×d , C ∈ Rd×(h−K), and Vn > 0 has yet to be specified. Let

�w = �wDfw Aw, � = (�1, . . . , �K) = (�1, . . . , �K)diag{Dfw }diag{Aw}.
Then �̂ converges in probability to � = ��, � ∈ Rd×(h−K).

3.1. Asymptotic normality

As discussed by Ferguson (1958), Lindsay and Qu (2003), and Shapiro (1986), a well-known choice of Vn is a
consistent estimate of the inverse of the asymptotic covariance of

√
n(vec(�̂)−vec(��)). In order to study the asymptotic

properties of nF̂d with this choice, we need to find the asymptotic distribution of
√

n(vec(�̂) − vec(��)), where F̂d is
the minimum value of Fd(B, C). First we will study the asymptotic distribution of

√
n(vec(�̂Df̂ ) − vec(��Df )).

Conditioning on subpopulation w, define the random variable Jwy =I {Yw=y}. Then given w, E(Jwy)=Pr(Yw=y)=
fwy . Define Jw=(Jw1, . . . , Jwhw)T and εw=(�w1, . . . , �whw)T, where its elements �wy=Jwy−fwy−ZT

wE(ZwJwy), y=
1, . . . , hw, are the population residuals from the ordinary least-squares fit of Jwy on Zw. We then have the following
theorem.

Theorem 1. Assume that the data (Yi, Xi , Wi), i =1, . . . , n, is a simple random sample of (Y, X, W) with finite fourth
moments. Then

√
nw(vec(�̂wDf̂w

) − vec(��wDfw))
D−→ Normal(0, �w),

where �w = Cov(vec(�−1/2
w ZwεT

w)) ∈ Rphw×phw .
And,

√
nw(vec(�̂w) − vec(��w))

D−→ Normal(0, ��w
),

where ��w
= (AT

w ⊗ Ip)�w(Aw ⊗ Ip) ∈ Rp(hw−1)×p(hw−1) is nonsingular, and ⊗ denotes the Kronecker product.

Based on the above theorem, we reach the following corollary by Slutsky’s Theorem.
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Corollary 1. Assume that the data (Yi, Xi , Wi), i = 1, . . . , n, are a simple random sample of (Y, X, W) with finite
fourth moments. Then

√
n(vec(�̂) − vec(��))

D−→ Normal(0, ��),

where �� = (diag(AT
w) ⊗ Ip)(diag(�w/pw))(diag(Aw) ⊗ Ip).

3.2. Asymptotic optimality

To obtain the optimal version of F̂d , we choose Vn = �̂
−1
� , where �̂� is a consistent estimate of �� given in Corollary

1. The sample version of �−1
�

is one choice for Vn. Define then the new discrepancy function,

F
opt
d (B, C) = (vec(�̂) − vec(BC))T�̂

−1
� (vec(�̂) − vec(BC)). (5)

Solutions of the minimization of (5) are not unique due to the over-parameterization of the setting. This noniden-
tifiability is not an issue since any estimator of a basis can specify S�. For example, we can minimize (5) subject to
the constraint that BTB = Id . The estimate of S� constructed by minimizing (5) is called the optimal partial inverse
regression estimation (OPIRE) estimator.

Let �� ≡ (�T ⊗ Ip, Ih−K ⊗ �), which is the Jacobian matrix

� =
(

� vec(BC)

� vec(B)
,
� vec(BC)

� vec(C)

)

evaluated at (B = �, C = �). The following theorem provides the asymptotic properties of OPIRE.

Theorem 2. Assume that the data (Yi, Xi , Wi), i =1, . . . , n, is a simple random sample of (Y, X, W) with finite fourth
moments. Let S� =∑K

w=1
∑hw

y=1Span(�wy), let d = dim(S�) and let (�̂, �̂)= argB,C min F
opt
d (B, C) as defined in (5).

Then,

1. The estimate vec(�̂�̂) is asymptotically efficient, and

√
n(vec(�̂�̂) − vec(��))

D−→ Normal(0, ��(�
T
� �−1

�
��)

−�T
� ).

2. nF̂
opt
d has an asymptotic chi-squared distribution with degrees of freedom (p − d)(h − d − K).

3. Span(�̂) is a consistent estimator of S�.

The optimality of F
opt
d stems from the asymptotic normality of

√
n(vec(�̂) − vec(��)) given in Theorem 1. The

asymptotic efficiency in Theorem 2 means that the estimate of any function of vec(��) obtained via the OPIRE method
has the smallest asymptotic variance among estimates from all possible Vn’s. This kind of estimate was called a best
generalized least-squares estimator by Browne (1984), and a best asymptotically normal estimator by Ferguson (1958).
Simulation studies show that OPIRE can easily dominate partial SIR in terms of estimation of the partial CS. Also, its
test statistic for testing hypotheses about the partial structural dimension performs at least as well as that of partial SIR
and sometimes a lot better, as illustrated by the simulation studies shown in Section 5.

3.3. Computation for OPIRE

Since all the matrices Aw’s are nonstochastic, in order to get a consistent estimate �̂� of ��, we need only plug in
a consistent sample version of �w = Cov(vec(�−1/2

w ZwεT
w)) ∈ Rphw×phw , w = 1, 2, . . . , K . Such estimates can be

constructed easily by substituting sample versions of population quantities, noting that E(vec(�−1/2
w Zw�T

w)) = 0 for
all subpopulations.

We then adapt the alternating least-squares method proposed by Cook and Ni (2005) to minimize (5) for this Vn. For
any given Vn we can always treat the discrepancy function (5) as a separable nonlinear least-squares problem (Ruhe
and Wedin, 1980). The value of vec(C) that minimizes Fd(B, C) for a given B can be constructed as the coefficient
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vector from the least-squares fit of V1/2
n vec(�̂) on V1/2

n (Ih−K ⊗B). On the other hand, fixing C, consider minimization
with respect to one column bj of B, given the remaining columns of B and subject to the length constraint ‖bj‖ = 1
and the orthogonality constraint bT

j B(−j) = 0, where B(−j) is the matrix that is left after taking away bj from B. For
this partial minimization problem, the discrepancy function can be re-expressed as

F ∗(b) = (	j − (cT
j ⊗ Ip)QB(−j)

b)TVn(	j − (cT
j ⊗ Ip)QB(−j)

b),

where 	j = vec(�̂−B(−j)C(−j)) ∈ Rp(h−K), cj is the jth row of C, C(−j) consists of all but the jth row of C, and QB(−j)

projects onto the orthogonal complement of Span(B(−j)) in the usual inner product. It becomes a linear regression

problem again. In the end, the algorithm provides Span(�̂), an estimate of S�. The linear combinations �̂
T

X are the
estimated sufficient predictors.

As suggested by the form of �̂�, the inner-product matrix in F
opt
d depends onS�.We could apply an iterative algorithm

to reduce the variability of the inner-product matrix Vn. Here is a sketch of this idea. First, get Span(�̂), an estimate of
S� via the above alternating least-squares method. Second, obtain a new estimate of Vn using Span(�̂). Then, re-run
the above algorithm to update Span(�̂) applying this new Vn. Carroll and Ruppert (1988) recommended at least two
cycles. Our experiences with OPIRE suggest that another cycle of iteration provides only minimal improvement. We
hence use a one-cycle iterative computation algorithm for OPIRE.

3.4. Partial SIR via the minimum discrepancy approach

As discussed in Section 1, partial SIR is one of the methods taking the spectral decomposition approach. The
kernel matrix that partial SIR used is M̂psir =∑K

w=1
∑hw

y=1p̂wf̂wyZ̄wy•Z̄T
wy•. Let �̂pool ≡ ∑

w(nw/n)�̂w be the pooled
covariance matrix. Then partial SIR can be re-derived by considering a minimum discrepancy function (2) setting A=Ih

and Vn =diag(Df̂w
) ⊗ (p̂w�̂pool). Let 
̂ ∈ Rp×d be a B minimizer of the discrepancy function. Then Span(�̂pool

1/2

̂)is

the space spanned by the d eigenvectors corresponding to M̂psir’s d largest eigenvalues. Also, it can be shown that the
minimum value of the discrepancy function is the summation of n times the n− d smallest eigenvalues of M̂psir, which
is exactly the test statistic proposed by CCL for testing the partial structural dimension using partial SIR.

4. Testing dimension and coordinates hypotheses in partial sufficient dimension reduction

In traditional model-based regression, tests for predictor effects are often important. While, in sufficient dimension
reduction, little attention has been paid to this kind of problems until very recently. Cook (2004) introduced a general
formulation and specific implementation based on SIR for testing predictor effects in sufficient dimension reduction.
Following Cook’s formulation, we develop predictor tests via the minimum discrepancy approach with both continuous
and categorical predictors.

We shall study tests of the conditional independence hypothesis

Y@PHX | (QHX, W), (6)

where H is a r-dimensional user-selected subspace of the quantitative predictor space, and QH = I − PH. Since the
hypothesis is certainly false if r > p − dim(S

(W)
Y |X), it is reasonable to restrict that r �p − dim(S

(W)
Y |X). For example,

if we partition XT = (XT
1 , XT

2 ), we can set H = Span((Ir0)T) to test the hypothesis of no intra-subpopulation effects

for the first r predictors X1, Y@X1 | (X2, W). CCL showed that SY |X ⊆ SW |X + S
(W)
Y |X, where SW |X is the CS for

the regression of the categorical predictor W on X. Hence, (6) differs from the hypotheses that Cook (2004) studied.
For instance, in the lean body mass example of CCL, they inferred that Y@X | (vT

1 X, vT
2 X) and Y@X | (vT

1 X, W).

Proposition 1. Assume that the partial CS S
(W)
Y |X exists. Then (6) is true if and only if PHS

(W)
Y |X = Op, where Op

indicates the origin in Rp.
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This proposition indicates that instead of dealing with (6) directly, we could test the corresponding hypothesis
about the working subspace S� when S

(W)
Y |X =S�. Assuming the generalized coverage condition but not the linearity

condition, we have

PHS
(W)
Y |X ⊆ PHS� (7)

and consequently PHS�=Op implies PHS
(W)
Y |X =Op. Since the containment in (7) may be proper, lacking information

to reject PHS� = Op supports the hypothesis (6), while rejecting does not necessarily imply dependence.
We are now ready to consider the following five hypothesis forms, depending on application-specific requirements:

1. Marginal dimension hypotheses: d = m vs. d > m.
2. Marginal predictor hypotheses: PHS

(W)
Y |X = Op vs. PHS

(W)
Y |X �= Op.

3. Joint dimension–predictor hypotheses: PHS
(W)
Y |X = Op and d = m vs. PHS

(W)
Y |X �= Op or d > m.

4. Conditional predictor hypotheses: PHS
(W)
Y |X = Op vs. PHS

(W)
Y |X �= Op given d.

5. Conditional dimension hypotheses: d = m vs. d > m given PHS
(W)
Y |X = Op.

Marginal dimension hypotheses were considered by CCL. Here they can be tested using nF̂
opt
d , which has an

asymptotic chi-squared distribution with degrees of freedom (p − d)(h − d − K) under the null hypotheses. Our
method for testing dimensions has the advantages that it provides greater power, and its test statistic has a simpler
asymptotic null distribution compared to that developed by CCL. Simulation studies show that OPIRE can easily win
over partial SIR when testing marginal dimension hypotheses with nonconstant Cov(X|W), and can do at least as well
as partial SIR when the homogeneous covariance condition holds.

Given PHS
(W)
Y |X =Op, testing a dimension hypothesis is equivalent to testing a marginal dimension hypothesis with

new coordinates. To help fix the idea, here is an example. Suppose that X= (X1, X2, X3)
T ∈ R3, Y@X3|(X1, X2, W).

Defining Xnew = (X1, X2)
T, the conditional dimension hypothesis is equivalent to testing the marginal dimension

hypothesis dim(S
(W)
Y |Xnew

) = m. In the following sections, we will use Theorems 1 and 2 to develop test statistics for
hypotheses 2–4 based on the working meta-parameter S�.

4.1. Marginal predictor hypotheses

Let 	 ∈ Rp×r be an orthonormal basis for H. Testing PHS� = Op is equivalent to testing 	T� = 0, where � is the
population limit of �̂ as defined previously in (3). We can test 	T� = 0 by measuring how far 	T�̂ is from 0. Theorem 1
provides a method for doing this by using the Wald test statistic

T (H) = n vec(	T�̂)T{(Ih−K ⊗ 	T)�̂�(Ih−K ⊗ 	)}−1 vec(	T�̂). (8)

By Theorem 1 and Slutsky’s theorem, we can easily show that, under the null hypothesis, T (H) has an asymptotic
chi-squared distribution with degrees of freedom r(h − K). Also,

T (H) = min
C

nF
opt
p (Ip, C)

subject to the constraint 	TC = 0. Thus, we can test a marginal hypothesis 	T� = 0 by setting � = Ip. In this case, the
hypothesis becomes 	T� = 0. We then fit F

opt
p (Ip, C) subject to the constraint 	TC = 0 and take n times the minimum

value of the constrained objective function as the test statistic, which is the same as (8).
The test statistic T (H) is invariant with respect to the choice of basis for H. Applying generalized coverage and

then linearity conditions, we can use T (H) to test Y@Xj | (X−j , W), where X−j indicates the predictors left after
taking away Xj .

As we stated before, assuming only the generalized coverage condition, hypotheses about the working subspace S�

are not equivalent to hypotheses about the partial CS unless dim(S�) = 0 or 1.
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4.2. Joint dimension–predictor hypotheses

Under the null hypothesis, PHS� = Op and d = m, 	T� = 0 is equivalent to � = QH� = QH�� = 	0�0�, where
� ∈ Rp×m is an orthonormal basis for S�, � ∈ Rm×(h−K), 	0 ∈ Rp×(p−r) is an orthonormal basis for Span(QH),
�0 contains the coordinates of � represented in terms of the basis 	0. We then can fit under the joint hypothesis by
minimizing the following constrained optimal discrepancy function:

F
opt
m,	(B, C) = (vec(�̂) − vec(	0BC))T�̂

−1
� (vec(�̂) − vec(	0BC)) (9)

over B ∈ R(p−r)×m and C ∈ Rm×(h−K). Values of B and C that minimize (9) provide estimates of �0 and �. Following
the result of Theorem 2, we know that, under the null hypothesis, the test statistic nF̂

opt
m,	 has an asymptotic chi-squared

distribution with degrees of freedom (p − m)(h − m − K) + mr . Note that the Jacobian matrix is

��,	 ≡ (Ih−K ⊗ 	0)(�
T ⊗ Ip−r , Ih−K ⊗ �0) ∈ Rp(h−K)×m(p+h−r−K). (10)

The degrees of freedom are then found by calculating p(h−K)− rank(��,	)=p(h−K)−m(p +h− r −K −m)=
(p − m)(h − m − K) + mr .

4.3. Conditional predictor hypotheses

When d is specified as a modeling device, or when inference on d using marginal dimension tests results in a firm
estimate, we might consider the conditional hypothesis PHS� = Op given d. Since information on d is used, these
conditional tests are expected to provide greater power than the marginal tests discussed in Section 4.1.

We use the difference in minimum discrepancies

T (H|d) = nF̂
opt
d,	 − nF̂

opt
d (11)

to test a conditional predictor hypothesis. It follows from Shapiro (1986) and Cook and Ni (2005) that T (H|d) is
asymptotically equivalent to

UT(P� − P�,	)U,

where U ∈ Rp(h−K) is a standard normal random vector, P� and P�,	 are the orthogonal projections with respect to the

usual inner product onto Span(�−1/2
�

��) and Span(�−1/2
�

��,	). Since Span(��,	) ⊆ Span(��), Span(�−1/2
�

��,	) ⊆
Span(�−1/2

�
��). Therefore, P� − P�,	 is an orthogonal projection with rank

rank(��) − rank(��,	) = d(p + h − d − K) − d(p + h − r − d − K) = rd,

and T (H|d) has an asymptotic chi-squared distribution with degrees of freedom rd. Following this argument, it is easy
to derive the asymptotic independence of the conditional predictor test statistic T (H|d) and the marginal dimension
test statistic nF̂

opt
d .

The power of T (H|d) is expected to be greater than the power of T (H). However, when d is misspecified, T (H|d)

may lead to misleading results. This speculation is confirmed by simulation studies.

5. Simulation results

In this section, selected simulation results are reported to support the results developed in previous sections. The
performance of OPIRE and partial SIR were compared regarding estimation accuracies and actual testing levels.

5.1. Estimation of S� with d known

When d, the dimension of S�, is known and the sample size is large, OPIRE is expected to provide a better estimate
of S� than partial SIR. We will study several simple simulation models to demonstrate this.

Model A: We first consider a 2D model for K=2 subpopulations indicated by W ∈ {1, 2}. Within each subpopulation,
Y takes values in {1, 2, 3}, and we generate nwy points for each value of Y. For W = 1, Xiy = �yZiy + �ye1; for W = 2,
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Fig. 1. Model A: Estimation accuracy of OPIRE and partial SIR with (a) �1 = 7 and (b) �1 = 5. The lines indicating equal R2’s were added for
reference.
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Fig. 2. Model A: Estimation accuracy of OPIRE and partial SIR for equal and unequal �y ’s. The lines indicating equal R2’s were added for reference.
(a) Equal �y = 0.5; (b) Unequal �y ’s and unequal nwy ’s

Xiy = �yZiy + �ye2, where ej ∈ Rp is a vector whose jth element is 1 and elsewhere is 0, and Z ∈ Rp is a
vector of independent standard normal variates. For ease of discussion, we will use the reference model with p = 5,
n1 = n2 = n3 = 200, �1 = 1, �2 = 0.7, �3 = 0.3, �1 = 5 and �2 = �3 = 0.5. Parameters not explicitly specified in a
simulation configuration are the same as those in this reference model. All estimates were constructed with d = 2.

We calculate R2
1 and R2

2, the R2 values from the regressions of X1 and X2 on the d =2 estimated sufficient predictors

�̂
T
1 X and �̂

T
2 X, to measure estimation accuracy. Since the results for R2

2 are essentially the same as those for R2
1, we will

use just R2
1 in the following discussion. As shown in Fig. 1a, OPIRE definitely won over partial SIR with �1 = 7. The

average of R2
1 from 250 replications was 0.935 from OPIRE, and 0.530 from partial SIR. Also, the R2

1 from OPIRE
exceeded the R2

1 from partial SIR 95.3% of the time. Shown in Fig. 1b are the results from 250 simulation runs with
�1 = 5. OPIRE still did a better job than partial SIR over 94% of the time. When �1 = 0.5, the three groups within each
subpopulation have equal frequencies and equal variation, and we observed no difference between the performance of
OPIRE and that of partial SIR, as shown in Fig. 2a.

Let n1 = 100, n2 = 470, n3 = 30, �1 = 2, �2 = 1, �3 = 0.5. The unequal frequencies plus mildly different �y’s
still resulted in clear differences in the estimators as shown in Fig. 2b. The R2

1 from OPIRE exceeded the R2
1 from

partial SIR about 80% of the time.
Fig. 3a shows plots of the average R2

1 from OPIRE and partial SIR from 1000 simulation runs at values of �1 between
0.5 and 10. The changes in �1 did not affect the performance of OPIRE much. In contrast, partial SIR was quite sensitive
to them. As shown in Fig. 3b, we also varied the equal sample size nwy within each subpopulation from 10 to 400, and
again OPIRE proved to be the better method. In some simulations, we also changed the signal by replacing �y with
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Fig. 4. Model B-3D: (a) Estimation accuracy of Model B versus n. (b) Percentage of runs in which d̂ = 3 versus n.

m�y , for y = 1, 2, 3. Fig. 3c shows the average R2
1 from 1000 simulation replications from partial SIR and OPIRE with

m taking value between 0.1 and 5. For sufficiently large m, there is little difference between these two methods. Hence,
if we have a very strong signal, the heterogeneity in the regression might be ignored.

In addition to the results reported here, we also tried versions of Model A with K > 2 subpopulations and found
similar results.

Model B: We consider two versions of Model B. Version 1 is a 3D model for K = 2 subpopulations indicated by
W ∈ {1, 2}. Y = 1.5(5 + X1)(2 + X2 + X3) + 0.5� when W = 1; Y = 1.5(5 + X4)(2 + X2 + X3) + 0.5� when W = 2,
where � is a standard normal random variate, X1 = W1, X2 = V1 + W2/2, X3 = −V1 + W2/2, X4 = V2 + V3, and
X5 =V2 −V3. The Vi’s and Wj ’s are independent with Vi’s drawn from a t(5) distribution and the Wj ’s from gamma(.2)
distribution. Version 2 is a 2D model constructed by replacing X4 with X1 in the generation of Y when W = 2. Versions
of this model were also used by Li (1991), Velilla (1986) and others in simulation studies related to the performance
of SIR. The predictors are quite skewed and prone to outliers.

For each subpopulation, we generated n points. In each simulation, we used h = 4 slices within each subpopulation
and compared the results over 1000 runs. Estimation accuracy was assessed for each method by computing the R2’s
between each of the sufficient predictors, say, X1, X2 + X3 and X4 for the version 1 of Model B, and X1, X2 + X3 for
the version 2 of Model B, and their fitted values from the linear regressions on the d estimated sufficient predictors.

The curves shown in Fig. 4a are plots of the average R2
1’s from 1000 replications for the 3D model versus the

subpopulation sample size n, for values of n between 100 and 1600. The plots for R2
23 and R2

4’s look similar. As we
can see, OPIRE always did better in estimation of the partial CS, although not by a lot in this example. Fig. 5a gives
the average of R2

1 from 1000 simulation runs for the 2D model versus the subpopulation sample size n. OPIRE showed
obvious advantages over partial SIR in this case. Figs. 4b and 5b are discussed in the next section.
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Fig. 5. Model B-2D: (a) Estimation accuracy of Model B versus n. (b) Percentage of runs in which d̂ = 2 versus n.
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Fig. 6. Uniform quantile plot of p-values testing H0 : d = 2 for Model A. (a) Partial SIR; (b) OPIRE

5.2. Estimation of d

Estimation of d is often based on testing a sequence of hypotheses H0 : d =m versus Ha : d > m, with m incremented
by 1 until the hypothesis is not rejected. At which point d̂ is the last value of m tested. First we consider the actual
levels of the test under the null. Fig. 6 shows uniform quantile plots of p-values for testing H0 : d = 2 in reference
Model A with 1000 replications. The sampling distribution of OPIRE’s test statistics is much closer to the asymptotic
one, suggesting a close agreement between the actual and nominal levels.

Fig. 7 shows the percentage of correct estimates d̂ = 2 in Model A from 1000 replications versus varying sample
sizes, the mean multiplier m and �1 at test level 0.05. With �1 = 5 and m = 1, partial SIR did much worse than OPIRE.
Partial SIR only gave 12% of correct dimension estimates d̂ = 2 when ny = 400. Meanwhile, the frequency of correct
decisions for the OPIRE estimate was close to 95% for large nwy , which indicates that the OPIRE test level is close to
its nominal value. From Fig. 7b we see that the OPIRE estimator responded much faster to increasing signal than did
partial SIR. The frequency of correct decisions for partial SIR is greater than 95% for large values of m, indicating that
partial SIR’s actual test levels are less than the nominal level in this example. We can also see that the OPIRE estimator
was immune to changes in �1, while the partial SIR estimator was very sensitive to such changes.

For Model B, the curves of Figs. 4b and 5b show that OPIRE did a lot better on estimating d. For the 3D model,
when n = 800, with a test level of 0.05, OPIRE got the right dimension about 87% of the time, while partial SIR got
the right answers only 59% of the time. For the 2D model, OPIRE made close to 95% correct decisions for large n,
which is much better than the performance of partial SIR.

The above simulation results suggest that there can be substantial differences between the OPIRE and partial SIR
estimator of d, and OPIRE outperformed partial SIR.



X. Wen, R. Dennis Cook / Journal of Statistical Planning and Inference 137 (2007) 1961–1978 1973

Partail SIR

OPIRE

nwy
0 100 200 300 400

0

20

40

60

80

100

Partial SIR

OPIRE

m
0 1 2 3 4 5

Partial SIR

OPIRE

�1

0 2 4 6 8 10
(a) (b) (c)

P
er

ce
nt

 d
 =

 2
^

P
er

ce
nt

 d
 =

 2
^

P
er

ce
nt

 d
 =

 2
^

0

20

40

60

80

100

0

20

40

60

80

100

Fig. 7. Percentage of runs in which d̂ = 2 versus (a) nwy , (b) m and (c) �1 for Model A.

Uniform quantiles

P
-v

al
ue

0 1
0

1

(a) (b) (c)

0.8

0.6

0.4

0.2

P
-v

al
ue

0

1

0.8

0.6

0.4

0.2

P
-v

al
ue

0

1

0.8

0.6

0.4

0.2

0.2 0.4 0.6 0.8
Uniform quantiles

0 10.2 0.4 0.6 0.8
Uniform quantiles

0 10.2 0.4 0.6 0.8

Fig. 8. Uniform quantile plots of p-values for predictor tests about X5 in Model A. (a) Marginal; (b) Joint, with d = 2 and (c) Conditional, given
d = 2

5.3. Predictor test

As we discussed in Section 4, one advantage of OPIRE is that it gives us the ability to test the predictor effects. As
shown in Fig. 8, the simulation results agreed with our theory nicely. All uniform quantile plots of the p-values from
testing the relevance of X5 in the reference version of Model A with ny = 200 lie close to the straight line, indicating
that the OPIRE predictor test levels are close to the nominal values. Simulation results from Model B which are not
shown also gave good support to our theory.

6. Discussion

In the context of sufficient dimension reduction, a minimum discrepancy approach is introduced for regressions with
a mix of continuous and categorical predictors. We proposed an optimal method, optimal partial inverse regression
estimation, which removes the homogeneous covariance condition required by partial SIR. This new approach gives
an optimal estimate of the partial CS, and it always provides an asymptotic chi-squared distribution for testing the
dimension of the partial CS. It also allows us to consider testing the effects of the predictors. We also re-derived partial
SIR method via the minimum discrepancy approach.

The development of sliced average variance estimation (SAVE) has lagged behind SIR due to the technical difficulty
of dealing with the distribution of eigenvalues of quadratic functions of covariance matrices. Cook and Ni (2005)
re-derived SAVE via the minimum discrepancy approach. They developed an asymptotic test statistic for testing
SAVE’s dimension. We can apply our approach directly to SAVE for partial sufficient dimension reduction to obtain an
optimal version of partial SAVE. Another possible method is to combine information from first and second moments
via the minimum discrepancy approach to get an optimal method for sufficient dimension reduction with categorical
predictors.
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It will be interesting to investigate methods for dealing with categories having a factorial structure. In this case,
though we can arrange the various combinations of levels into a single variable W and apply the same methodology,
with many factors, this procedure will require a large overall sample size, and the results may be difficult to interpret.
One way around such difficulties would be to limit considerations to “additive effects”, similar in spirit to additive
ANOVA models. We may extend the partial one-dimensional models of Cook and Weisberg (2004) to include factorial
structure and multiple linear combinations. Research along these lines is underway.

Appendix

Proof of Lemma 1. Let � ∈ Rp×q be an orthonormal basis for SY |Z, where q = dim(SY |Z).

E(Z|Y ) = E[E(Z|Y, �TZ)|Y ] = E[E(Z|�TZ)|Y ].
So, every vector in SE(Z|Y ) can be written as an average of vectors in S�. Thus, SE(Z|Y ) ⊆ S�.

Also,

� = E(ZZT�) = E[E(ZZT�|�TZ)] = E[E(Z|�TZ)ZT�].
Thus, every vector in SY |Z can be written as an average of vectors in S� too. Hence, SY |Z ⊆ S�. �

Proof of Lemma 2. Let � be an orthonormal basis for SY |Z, and � be an orthonormal basis for SY |PSZ.

Y@Z | �TZ ⇒ Y@PSZ | �TPSZ ⇒ SY |PSZ ⊆ SY |Z.

Also,

Y@PSZ | (�T(PSZ)) and Y@Z | PSZ ⇒ Y@Z | (�T(PSZ))

⇒ Y@Z | �TZ

⇒ SY |Z ⊆ SY |PSZ.

Therefore, SY |PSZ = SY |Z. �

Proof of Lemma 3. Conditioning on subpopulation w, let 
w be a basis for SYw |Xw . Define the following predictor
subspace:

S
w ≡ Span{�−1
w (E(X|
T

wX = v) − E(X)), v varies}.
Since every vector in S�w can be written as an average of vectors in S
w , we have S�w ⊆ S
w . Also, every column of

w can be written as an average of vectors in S
w and consequently SYw |Xw ⊆ S
w . Under the generalized coverage
condition, S�w = S
w , we then have SYw |Xw ⊆ S�w .

CCL established that S(W)
Y |X = ∑K

w=1 SYw |Xw . Also, by definition, S� ≡ ∑K
w=1 S�w . Thus, with the generalized

coverage condition, we have S
(W)
Y |X ⊆ S�. �

Proof of Theorem 1. Conditioning on subpopulation w, we will decompose
√

nw(vec(�̂wDf̂w
) − vec(��wDfw)) as

a summation of i.i.d. observations plus a remainder converging to 0 in probability, and then apply the central limit
theorem. In order to proceed with the decomposition, we need the following lemma that decomposes the difference
between the inverse of a sample covariance matrix and its population value within each subpopulation. This lemma
follows from Li et al. (2003). �

Lemma 4. Suppose a random vector Xw ∈ Rp has covariance matrix �w > 0. Then,

�̂w
−1 − �−1

w = −n−1
w �−1/2

w

nw∑
j=1

(Z(j)
w Z(j)

w

T − I )�−1/2
w + Op(n−1

w ),
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where �̂w is the sample covariance calculated from a sample of size nw and Zw = �−1/2
w (Xw − E(Xw)) is the

standardized version of Xw.

In Section 2.2, we define X̄wy• as the average of the nwy observations in the Ywth slice and X̄w•• as the average of
all nw observations in subpopulation w. Let μwy = E(X̄wy•), μ = E(X̄w••), consider

√
nw(f̂wy �̂wy − fwy�wy)

= √
nwf̂wy�̂w

−1
(X̄wy• − X̄w••) − √

nwfwy�
−1
w (μwy − μw)

= √
nw(�̂w

−1 − �−1
w )fwy(μwy − μw) + √

nw�−1
w [f̂wy(X̄wy• − X̄w••) − fwy(μwy − μw)]

+ √
nw(�̂w

−1 − �−1
w )[f̂wy(X̄wy• − X̄w••) − fwy(μwy − μw)]

= √
nw(�̂w

−1 − �−1
w )fwy(μwy − μw) + √

nw�−1
w [f̂wy(X̄wy• − X̄w••) − fwy(μwy − μw)]

+ Op(n−1/2
w ). (12)

We next use Lemma 4 to rewrite the first term in (12) as

√
nw(�̂w

−1 − �−1
w )fwy(μwy − μw) = − n−1/2

w �−1/2
w

nw∑
j=1

(Z(j)
w Z(j)

w

T − I )�−1/2
w fwy(μwy − μw) + Op(n−1/2

w )

= − n−1/2
w �−1/2

w

nw∑
j=1

(Z(j)
w Z(j)

w

T − I )E(ZwJwy) + Op(n−1/2
w ). (13)

Denote J
(j)
wy be the value of Jwy for the jth observation in subpopulation w, j = 1, 2, . . . , nw, then

f̂wy(X̄wy• − X̄w••) = 1

nw

nw∑
j=1

[(X(j)
w − X̄w••)J (j)

wy ]

= 1

nw

nw∑
j=1

[(X(j)
w − X̄w••)(J (j)

wy − E(Jwy))]

= 1

nw

nw∑
j=1

[(Xjw − μw)(J
(j)
wy − E(Jwy))] − 1

nw

nw∑
j=1

[(X̄w•• − μw)(J
(j)
wy − E(Jwy))]

= 1

nw

nw∑
j=1

[(X(j)
w − μw)(J

(j)
wy − E(Jwy))] − 1

nw

(X̄w•• − μw)

nw∑
j=1

(J
(j)
wy − E(Jwy))

= 1

nw

nw∑
j=1

[(X(j)
w − μw)(J

(j)
wy − E(Jwy))] + Op(n−1

w ).

Now, we can simplify the second term in (12) as

√
nw�−1

w [f̂wy(X̄wy• − X̄w••) − fwy(μwy − μw)]

= n−1/2
w �−1/2

w

nw∑
j=1

[�−1/2
w (X(j)

w − μw)(J
(j)
wy − E(Jwy))] − √

nw�−1
w fwy(μwy − μw) + Op(n−1/2

w )

= n−1/2
w �−1/2

w

nw∑
j=1

[Z(j)
w (J

(j)
wy − E(Jwy))] − √

nw�−1/2
w E(ZwJwy) + Op(n−1/2

w )

= n−1/2
w �−1/2

w

nw∑
j=1

[Z(j)
w (J

(j)
wy − E(Jwy)) − E(ZwJwy)] + Op(n−1/2

w ). (14)
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Plugging (13) and (14) into (12), we get

√
nw(f̂wy �̂wy − fwy�wy) = n−1/2

w �−1/2
w

nw∑
j=1

[Z(j)
w (J

(j)
wy − E(Jwy)) − E(ZwJwy)

− (Z(j)
w Z(j)

w

T − I )E(ZwJwy)] + Op(n−1/2
w )

= n−1/2
w �−1/2

w

nw∑
j=1

[Z(j)
w (J

(j)
wy − E(Jwy) − Z(j)

w

T
E(ZwJwy))] + Op(n−1/2

w )

= n−1/2
w �−1/2

w

nw∑
j=1

[Z(j)
w ε

(j)
wy ] + Op(n−1/2

w ),

where ε
(j)
wy = J

(j)
wy − E(Jwy) − Z(j)

w

T
E(ZwJwy) is the jth value for εwy . Let ε

(j)
w = [ε(j)

w1 , . . . , ε
(j)
whw

]T be the jth value
for the random vector εw. We have

√
nw(vec(�̂wDf̂w

) − vec(��wDfw)) = n−1/2
w

nw∑
j=1

vec(�−1/2
w Z(j)

w (ε(j)
w )T) + Op(n−1/2

w ),

where vec(�−1/2
w Z(j)

w ε
(j)
w ) are i.i.d. random vectors. Thus,

√
nw(vec(�̂wDf̂w

) − vec(��wDfw))
D→ Normal(0, �w),

where

�w = Cov(vec(�−1/2
w ZwεT

w)).

The second part of Theorem 1 can be easily derived following Slutsky’s Theorem.

Proof of Theorem 2. The proof of Theorem 2 hinges on Shapiro’s (1986) results on asymptotics of over-parameterized
discrepancy functions and two supplemental lemmas (Cook and Ni, 2005). The discrepancy functions that Shaprio
considered are

H(�n, g(�)) = (�n − g(�))TV(�n − g(�)), (15)

where �n is an asymptotically normal estimate of the population value g(�0), and V is a known inner product matrix.
Instead of using a constant inner-product matrix as required in Shapiro’s results, we adapt his results to include

random inner-product matrices. The following two lemmas make that possible. Lemma 5 deals with the asymptotic
distribution of the minimum discrepancy value. Lemma 6 gives the asymptotic properties of the estimate of Span(�)

based on a generalized result of the modified �2 method in Ferguson (1958).

Lemma 5. Let {Yn} ∈ Rs be a sequence of random vectors, and let � ∈ � ⊆ Rs . Suppose {Vn > 0} is a sequence of
s × s matrices that converges to V > 0 in probability. If nĤV = min	∈�n(Yn − �)TV(Yn − �) converges to a random

variable 
 in probability, then so does the nĤVn = min	∈�n (Yn − �)TVn(Yn − �) and vice versa.

Moreover, let �̂1 and �̂2 be the values of � which reach nĤV and nĤVn , respectively. If V1/2Yn
p−→ 	, then both

V1/2�̂1 and V1/2
n �̂2 converge to 	 in probability.

Lemma 6. LetXn denote a simple random sample {X1, . . . , Xn}, where Xi can be a scalar or a vector. The distribution
of X depends on parameters that include a vector � in � ⊆ Rk . Let �0 be the true value of �. Assume that

1. � is an open set.
2. The mapping p(�) from � into Rs is one-to-one, bicontinuous, and twice continuously differentiable. Let D(�) =

�p(�)/�� ∈ Rs×k , and D0 = D(�0).
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3. Yn = Yn(Xn) ∈ Rs is a consistent estimate of p(�0) with

√
n(Yn − p(�0))

D→ Normal(0, �).

4. Vn = Vn(Xn) is a positive definite matrix that converges to a constant matrix V in probability.

Define a discrepancy function as

F(Yn, p(�)) = (Yn − p(�))TVn(Yn − p(�)).

Let �̂ = �̂(Xn) be the value of � that minimizes F. Then

√
n(�̂ − �0)

D→ Normal(0, (DT
0 VD0)

−1DT
0 V�VD0(DT

0 VD0)
−1),

and
√

n(p(�̂) − p(�0))
D→ Normal(0, D0(DT

0 VD0)
−1DT

0 V�VD0(DT
0 VD0)

−1D0).

We now begin the proof of Theorem 2. Based on Lemma 5, the asymptotic distribution of n times the minimum
value of (5) is the same as the asymptotic distribution of n times the minimum value of Hd , where

Hd(B, C) = (vec(�̂) − vec(BC))T�−1
�̂

(vec(�̂) − vec(BC)).

Cook and Ni dealt with sufficient dimension reduction with only continuous predictors using Lemma 6. The problem
we are studying is more intricate due to the introduction of categorical predictors. Based on Lemma 6, we know that
the asymptotic distribution of vec(�̂�̂) of (5) is the same as that of Hd(B, C). Hence, we need only to show that there
is one parameterization that satisfies the conditions in the statement of Lemma 6. We are free to use any full rank
re-parameterization of (�, �). Here is one possible choice: � = (�T

1 , �T
2 )T, where �1 ∈ Rd×d , �2 ∈ R(p−d)×d . Without

loss of generality, we assume that �1 is nonsingular. Then,

�� =
(

�1
�2

)
� =

(
Id

�2�
−1
1

)
�1�.

Thus, we can set �1 =Id , leading to the new parameters �2 ∈ R(p−d)×d and � ∈ Rd×(h−K), which together corresponds
to the � in Lemma 6. This new parameterization leads to a full rank Jacobian matrix and an open parameter space in
Rd(h+p−d−K), thus satisfying the conditions in Lemma 6. Meanwhile, it affects neither our algorithm for minimization
or asymptotic results. Hence, it suffices to prove the conclusions for Hd .

The following setting makes it clear that Hd(B, C) is in the form of Shapiro’s discrepancy function H:

� =
(

vec(B)

vec(C)

)
∈ Rd(p+h−K),

h(�) = vec(BC) ∈ Rp(h−K),

�n = vec(�̂),

h(�0) = vec(��),

where � ∈ Rp×d is in general a basis for S� and � ∈ Rd×(h−K). Following from Shapiro (1986), we then have vec(�̂�̂)

of Hd(B, C) is asymptotically efficient with

√
n(vec(�̂�̂) − vec(��))

D→ Normal(0, ��(�
T
� V��)

−��),

which leads to the conclusion 1 of Theorem 2. And nĤ has an asymptotic chi-squared distribution with degrees of
freedom p(h − K) − rank(��), where

rank(��) = rank(�T ⊗ Q�, Ih−K ⊗ �)

= d × (p − d) + d × (h − K)

= d(p + h − d − K).
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Therefore, the degrees of freedom are p(h − K) − d(p + h − d − K) = (p − d)(h − d − K). Thus, conclusion 2 is
proved. It is easy to get consistency of Span(�̂) in conclusion 3 following the conclusion 1. �

Proof of Proposition 6. Let the columns of the p × r matrix 	 be a basis for H, and let the columns of p × d matrix

 be a basis for S(W)

Y |X.
“⇐	”
Y@PHX | (QHX, W) ⇒ Y@(PHX, QHX) | (QHX, W) ⇒ Y@X | (QHX, W). Therefore, Span(QH)

satisfies (1). Since the partial CS is assumed to exist, Span(QH) ⊇ S
(W)
Y |X. Therefore, PHS

(W)
Y |X = Op.

“	⇒”

Y@X | (
TX, W) ⇔ Y@(PHX, QHX) | (
T(QHX + PHX), W)

PHS
(W)
Y |X = Op ⇒ Y@(PHX, QHX) | (
TQHX, W).

Thus, Y@PHX | (QHX, W). �
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