ON IRREDUCIBLE SMOOTH CONTINUA

The notion of an irreducible continuum is well known. The theory of irreducible continua has been investigated and developed by a large number of authors, see e.g. [6], [7], [11] and [1]. Recently the notion of smoothness of continua has been introduced [2] and studied in several papers [3], [9]. The aim of this paper is to prove some necessary and sufficient conditions under which an irreducible continuum is smooth.

A continuum means a compact connected metric space. It is well known that for every irreducible continuum X there exists an upper semi-continuous decomposition of X into continua (called layers of X, see e.g. [8], §48, IV, p. 199) with the property that the decomposition of X into layers is the finest of all linear upper semi-continuous decompositions of X into continua ([8], §48, IV, Theorem 3, p. 200; [7], Fundamental theorem, p. 259). If the irreducible continuum X reduces to one layer, i.e. if the decomposition space is degenerate, then X is called monostratic, see [8], p. 199. If X is not monostratic, i.e. if X has more than one layer, then the decomposition space is a non-degenerate arc (we can assume that it is the unit interval), and X is called to be of type A (see [11], p. 9). It follows that for each irreducible continuum X there is a continuous monotone mapping $\varphi : X \to [0, 1]$ from X into the unit interval $[0, 1]$, (namely the quotient mapping of the decomposition of X into layers, called the canonical mapping) which is minimal in the sense that, given any continuous monotone mapping f from X into $[0, 1]$, each point-inverse of f is the union of some point-inverses of φ, i.e., the union of layers of X.

If each layer of X has void interior, then X is called to be of type A (see [8], §48, III, p. 197, the footnote, and also [11], Definition 4, p. 13, where these continua are called to be of type A'). It is well known (see [8], §48, VII, Theorem 3, p. 216; [11] Theorem 10, p. 15; [1], Theorem 2.7, p. 650) that an irreducible continuum X is of type A if and only if each indecomposable subcontinuum of X has void interior.

A continuum is said to be hereditarily unicoherent at a point p (see [2], p. 52; cf. also [3]) if the intersection of any two subcontinua, each of which contains p, is connected. It is easily verified that a continuum X is hereditarily unicoherent at p if and only if given any point $x \in X$, there exists a unique subcontinuum which is irreducible between p and x (see [2], Theorem 1.3, p. 52). If a continuum X is hereditarily unicoherent at a point p, and if $q \in X \setminus \{p\}$, then the symbol pq will denote the unique subcontinuum of X which is irreducible between p and q.
A continuum X is said to be smooth at the point p (see [2], p. 52; cf. also [3]) if X is hereditarily unicoherent at p and if for each convergent sequence of points $\{a_n\}$ the condition

$$\lim_{n \to \infty} a_n = a$$

implies that

(2) the sequence $\{pa_n\}$ is convergent

and

$$\lim_{n \to \infty} pa_n = pa.$$

It can be proved that if a continuum is smooth at p, then it is locally connected at p ([2], Corollary 3.1, p. 54). A continuum X is said to be smooth if there is a point $p \in X$ such that X is smooth at p (see [2], p. 53; cf. also [3] and [9]). It is known ([2], Corollary 3.3, p. 55) that if a continuum X is smooth, then each indecomposable subcontinuum of X has void interior. This implies by the definition of an irreducible continuum of type λ the following

Proposition 1. If an irreducible continuum is smooth, then it is of type λ.

Easy examples show that the inverse is not true.

Now let a continuum X be smooth at a point p. The equivalence relation ρ_p defined by

$$x \rho_p y \text{ if and only if } px = py$$

is studied in [2], p. 57 and in [9]. Let $\psi: X \to X/\rho_p$ denote the quotient mapping.

Proposition 2. Let an irreducible continuum X be hereditarily unicoherent at a point p. Then X is smooth at p if and only if the decomposition of X into sets $\psi^{-1}(t)$, where $t \in X/\rho_p$, coincides with the canonical decomposition of X into layers.

Proof. If X is smooth, then the result is known (see [2], Lemma 5.1, p. 57). If both the decompositions mentioned above coincide, then the decomposition space X/ρ_p is an arc, thus a smooth dendroid, and we see that X/ρ_p smooth at $\psi(p)$. These conditions are sufficient to prove the smoothness of X at p (see [9], Theorem 3.1).

Let a continuum X be irreducible but not monostratic (i.e. of type A) and let T_t, $t \in [0, 1]$, denote a layer of X. Thus $X = \bigcup \{T_t: 0 < t < 1\}$. Put

$$L_t = \bigcup \{T_u: 0 < u < t\} \text{ and } R_t = \bigcup \{T_v: t < v < 1\}.$$

Thus we have $X = L_t \cup T_t \cup R_t$ for each $t \in [0, 1]$, and since

$$L_t = \varphi^{-1}([0, t)) \text{ and } R_t = \varphi^{-1}((t, 1]),$$

where φ is the canonical (thus monotone) mapping from X to the unit interval $[0, 1]$, we see that both L_t and R_t are connected. (Here the capital letters L and R stand for left and right, respectively.)

Adopt the following definitions. A layer T_t is called to be a layer of left cohesion if either $t = 0$ or $T_t \subset L_t$. A layer T_t is called to be a layer of right cohesion if either $t = 1$ or $T_t \subset R_t$. In other words T_t is a layer of left cohesion
if either \(t = 0 \) or \(T_t = \overline{L_t} \setminus L_t \); and \(T_t \) is a layer of right cohesion if either \(t = 1 \) or \(T_t = R_t \setminus R_t \). One can see that \(T_1 \) is a layer of left cohesion and that \(T_0 \) is a layer of right cohesion provided the interior of \(T_0 \) and of \(T_1 \) is empty.

A layer \(T_t \) is called to be a layer of cohesion if it is a layer of both left and right cohesions. Thus if the interior of \(T_0 \) (or \(T_1 \)) is empty, then \(T_0 \) (or \(T_1 \)) is a layer of cohesion. For \(t \in (0,1) \) the layer \(T_t \) is a layer of cohesion if \(T_t \subseteq \overline{L_t} \cap R_t \) (see [7], p. 260). Observe that the above inclusion can be replaced by the equality (see [7], p. 260; cf. also [8], § 48, IV, p. 201). It is known that the family of all layers of \(X \) which are not layers of cohesion is at most countable ([7], Theorem XIV, p. 261, and [8], p. 201).

Proposition 3. Let a continuum \(X \) be irreducible between points \(a \) and \(b \). Then the continuum \(X \) is smooth at \(a \) if and only if

(4) \(X \) is locally connected at \(a \)

and

(5) each layer \(T_t \) of \(X \) is of left cohesion.

Proof. Assume firstly that \(X \) is smooth at \(a \). Thus condition (4) follows from Corollary 3.1 in [2], p. 54. To prove (5) suppose on the contrary that there is a layer \(T_t \) which is not of left cohesion. Since \(X \) is of type \(\lambda \) by Proposition 1, we have \(t \neq 0 \) and there is a point \(x \in T_t \setminus \overline{L_t} \). Let \(y \in \overline{L_t} \cap \overline{R_t} \). The point \(a \) being in \(\overline{L_t} \), we have \(ay \subseteq \overline{L_t} \), whence \(x \in T_t \setminus ay \). Since \(X \) is of type \(\lambda \) and since \(y \) belongs to \(\overline{R_t} \), there is a decreasing sequence of reals \(v_n \), where \(t < v_n \), such that we can choose a sequence of points \(y_n \in T_t \subseteq R_t \) with \(\lim_{n \to \infty} y_n = y \).

Then \(T_t \subseteq ay_n \subseteq \overline{L_t} \) for every \(n \), whence \(T_t \subseteq \cap_{n=1}^{\infty} ay_n = \lim_{n \to \infty} ay_n \), the sequence of continua \(\overline{L_t} \) being decreasing. Since \(x \in T_t \setminus ay \), we conclude that \(x \notin \lim ay_n \cdot \ay \) contrary to the smoothness of \(X \) at the point \(a \).

Assume secondly that conditions (4) and (5) are both satisfied. Since \(X \) is locally connected at \(a \), the layer \(T_0 \) to which the point \(a \) belongs is degenerate and we have \(T_0 = \{ a \} \). Let \(x \in X \) and let \(\varphi(x) = t \). To prove that there is exactly one irreducible continuum from \(a \) to \(x \) in \(X \) (i.e. to prove the hereditary unicoherence of \(X \) at \(a \)) we consider the case \(t > 0 \) only, because if \(t = 0 \), then \(x = a \) and the irreducible continuum in question is degenerate. Since \(T_t \) is a layer of left cohesion, we have \(T_t = \overline{L_t} \setminus L_t = Fr L_t \). But \(x \in T_t \) by the definition of \(t \), hence the continuum \(\overline{L_t} \) is irreducible from \(a \) to \(x \) (see [8], § 48, II, Theorem 7, p. 194; cf. also [11], Theorem 1 (c), p. 7). Notice that \(\overline{L_t} \) is the only continuum irreducible from \(a \) to \(x \) in \(X \). In fact, suppose another continuum \(Q \) is irreducible between \(a \) and \(x \) in \(X \). Thus \(y \in Q \setminus \overline{L_t} \). By (5) we have \(T_t \subseteq \overline{L_t} \) which implies \(\overline{L_t} = \varphi^{-1} ([0, t]) \), and hence \(t < \varphi(y) = v \). Thus the continuum \(Q \) contains \(a \), and intersects a layer \(T_v \) with \(t < v \). This implies that \(L_t \subseteq \overline{L_t} \subseteq Q \). We see that \(\overline{L_t} \) is a proper subcontinuum of \(Q \) which contains both \(a \) and \(x \), contrary to the irreducibility of \(Q \) between these points. Therefore \(X \) is hereditarily unicoherent at \(a \).
Suppose on the contrary that X is not smooth at a. Then (see [2], Theorem 2.3, p. 53) there exist convergent sequences $\{x_n\}$ and $\{y_n\}$ such that $\lim_{n \to \infty} x_n = x$, $\lim_{n \to \infty} y_n = y$, $y_n \subseteq ax_n$ and $y \subseteq X \setminus ax$. Hence the continuity of the canonical mapping $\varphi : X \to [0,1]$ implies correspondingly

\begin{align*}
(6) & \quad \lim_{n \to \infty} \varphi(x_n) = \varphi(x), \\
(7) & \quad \lim_{n \to \infty} \varphi(y_n) = \varphi(y), \\
(8) & \quad \varphi(y_n) < \varphi(x_n), \\
(9) & \quad \varphi(x) < \varphi(y).
\end{align*}

Taking $t = \frac{1}{2} [\varphi(x) + \varphi(y)]$ we see by (9) that

\begin{align*}
(10) & \quad \varphi(x) < t < \varphi(y),
\end{align*}

and we conclude from (6) that there is a natural n_0 such that if $n > n_0$, then $\varphi(x_n) < t$ which gives by (8) that if $n > n_0$, then $\varphi(y_n) < t$, and we have a contradiction with (7) by (10).

In the same way one can prove the following

Proposition 4. Let a continuum X be irreducible between points a and b. Then the continuum X is smooth at b if and only if

\begin{align*}
(11) & \quad X \text{ is locally connected at } b \\
(12) & \quad \text{each layer } T_i \text{ of } X \text{ is of right cohesion.}
\end{align*}

Notice the following

Proposition 5. An irreducible continuum X is smooth at a point p if and only if continua $\overline{L_{\varphi(p)}}$ and $\overline{R_{\varphi(p)}}$ both are smooth at p.

Proof. In fact, if X is smooth at p, then $\overline{L_{\varphi(p)}}$ and $\overline{R_{\varphi(p)}}$ both are smooth at p by (2.8) in [9]. To prove the opposite way observe that if $\overline{L_{\varphi(p)}}$ is smooth at p, then it is locally connected at p by Corollary 3.1 in [2], p. 54. Similarly if $\overline{R_{\varphi(p)}}$ is smooth at p, then it is locally connected at p. It implies that if continua in question both are smooth at p, then the layer $T_{\varphi(p)}$ to which p belongs reduces to the point p only. Thus $\overline{L_{\varphi(p)}} \cap \overline{R_{\varphi(p)}} = \{p\}$, whence it follows that X is hereditarily unicoherent at p provided both $\overline{L_{\varphi(p)}}$ and $\overline{R_{\varphi(p)}}$ are. Now let $\{a_n\}$ be a convergent sequence of points in X. Considering separately subsequences of points a_n which are in $\overline{L_{\varphi(p)}}$ or in $\overline{R_{\varphi(p)}}$ we see that (1) implies (2) and (3).

Theorem. An irreducible continuum X is smooth at a point p if and only if all three of the following conditions are satisfied:

\begin{align*}
(13) & \quad X \text{ is locally connected at } p, \\
(14) & \quad \text{for each } t \text{ satisfying } 0 < t < \varphi(p) \text{ the layer } T_t \text{ is of right cohesion,} \\
(15) & \quad \text{for each } t \text{ satisfying } \varphi(p) < t < 1 \text{ the layer } T_t \text{ is of left cohesion.}
\end{align*}
Proof. Let the continuum X be irreducible from a to b. Assume firstly that X is smooth at p. Then (13) follows from Corollary 3.1 in [2], p. 54. To prove (14) and (15) observe that the continua $L_{\varphi(p)}$ and $R_{\varphi(p)}$ on the one hand both are smooth at p by Proposition 5 and, on the other hand, are irreducible from a to p and from p to b respectively (see [11], Theorem 1 (c), p. 7; cf. also [8], § 48, III, Theorem 1, p. 195). Since the layers of $L_{\varphi(p)}$ and of $R_{\varphi(p)}$ coincide with the layers of X, hence putting $L_{\varphi(p)}$ for X and p for b in Proposition 4, and also putting $R_{\varphi(p)}$ for X and p for a in Proposition 3 we see that (14) and (15) hold true.

Assume secondly that all three conditions (13), (14) and (15) are satisfied. As previously we see that continua $L_{\varphi(p)}$ and $R_{\varphi(p)}$ are irreducible from a to p and from p to b respectively, and that each of them is locally connected at p by (13). Further, we conclude from (14) and Proposition 4 (in which we take $L_{\varphi(p)}$ for X and p for b) that $L_{\varphi(p)}$ is smooth at p. Similarly it follows from (15) and Proposition 3 (with $R_{\varphi(p)}$ for X and p for a) that $R_{\varphi(p)}$ is smooth at p. Applying Proposition 5 we conclude the proof.

Now we recall a concept which is due to F. B. Jones, see [4] and [5]. Let x and y be distinct points of a continuum X. We say that X is aposyndetic at x with respect to y provided there is a subcontinuum of X containing x in its interior and not containing y. If this condition fails, i.e., if every subcontinuum of X which contains x in its interior contains y, then X is non-aposyndetic at x with respect to y.

Proposition 6. If a layer T_t of an irreducible continuum X is of left cohesion, then for each two points x and y of T_t, the continuum $\varphi^{-1}([0, t])$ is non-aposyndetic at x with respect to y.

Proof. Assume that a layer T_t is of left cohesion. Let x and y be two arbitrary points of T_t, and let a continuum $K \subseteq \varphi^{-1}([0, t])$ contain x in its interior with respect to $\varphi^{-1}([0, t])$. Since the layer T_t is of left cohesion, it follows that x, as a point of T_t, is in L_t. Hence the interior of K with respect to $\varphi^{-1}([0, t])$, as a neighbourhood of x, must intersect L_t. Thus K intersects a layer T_{u_0}, where $0<u_0<t$. Therefore all layers T_u with $u_0<u<t$ are contained in K (see [11], Theorem 5, p. 10; cf. also [10], Remark 2, p. 71). It implies that the closure of the union $\bigcup \{T_u: u_0<u<t\}$ is in K. Since the layer T_t is of left cohesion, it is contained in the closure of the union in question, thus in K. It follows that $y \subseteq K$, which shows that $\varphi^{-1}([0, t])$ is non-aposyndetic at x with respect to y.

Observe further that the inverse to Proposition 6 is not true as the following example shows.

Let $X = \bigcup \{T_t: t \in [0, 1]\}$ be an irreducible continuum (of type λ) defined in such a way that all layers T_t for $t \neq 1/2$ are points, $T_{1/2}$ is the well-known BROUWER's indecomposable continuum (see e.g. [8], § 48, V, Example 1, p. 204 and 205) the closure of $\bigcup \{T_t: t \in [0, 1]\}$ is an arc, and $\bigcup \{T_t: t \in (1/2, 1]\}$ is a one-to-one image of the real half line which approximates the continuum $T_{1/2}$ (from the right side). We see that $T_{1/2}$ is not a layer of left cohesion although the condition formulated in Proposition 6 is satisfied by the indecomposability of $T_{1/2}$.

In the same way as for Proposition 6 one can prove
Proposition 7. If a layer T_t of an irreducible continuum X is of right cohesion, then for each two points x and y of T_t the continuum $\varphi^{-1}(t, 1]$ is non-aposyndetic at x with respect to y.

A similar example to that given after Proposition 6 shows that the inverse to Proposition 7 is not true. Propositions 6 and 7 imply by the Theorem the following

Corollary. If an irreducible continuum X is smooth at a point, p, then

(16) for each $t \in [0, \varphi(p))$ and for each two points x and y of the layer T_t the continuum $\varphi^{-1}([t, 1])$ is non-aposyndetic at x with respect to y

and

(17) for each $t \in (\varphi(p), 1]$ and for each two points x and y of the layer T_t the continuum $\varphi^{-1}((0, t])$ is non-aposyndetic at x with respect to y.

References

(Received 30. 8. 1972)