SOME PROBLEMS CONCERNING MONOTONE DECOMPOSITIONS OF CONTINUA

J.J. CHARATONIK

The bibliography on upper semi-continuous decompositions of continua is rather large. Especially a great number of papers concerns monotone decompositions of irreducible continua. E.g. Z. Janiszewski in [11], B. Knaster in [14] and [15], K. Kuratowski in [16] and [17] and also W.A. Wilson in [26] and [27] investigated such decompositions for metric continua irreducible between two points. A continuation of this topic can be found in a sequence of papers. In the last two decades several papers in this field have appeared, but from some other point of view. E.g. H.C. Miller in [21] has combined the investigations of irreducible with these of unicoherent spaces. E.S. Thomas, Jr. in his extensive study on irreducible continua [25] applied, among other things, the method of inverse limits as well as the notion of aposyndesis introduced by F. B. Jones (see [12] and [13]) to obtain some results on the structure of such continua.

Besides studies of decompositions of irreducible continua investigations of decompositions of arbitrary continua into closed sets or of mono-
tone decompositions (i.e. into closed connected sets) were developed by a number of authors (see K. Kuratowski [18], M.E. Shanks [24], R.W. Fitzgerald and P.M. Swingle [8]). Some of Miller's results of [21] concerning decompositions of continua irreducible between two points were generalized by M.J. Russell in [23] to decompositions of continua irreducible about a finite set. Recently G.R. Gordh, Jr. considered upper semi-continuous monotone decompositions of continua with some special properties, namely of smooth [9] and nearly smooth [10] continua. Such decompositions were studied by the present author for \(\lambda \)-dendroids in [2] and [3], and for arbitrary continua in [6] (see also [7] which is an abstract of [6]).

A continuum means a compact connected metric space. It is well known that for every irreducible continuum \(I \) there exists an upper semi-continuous decomposition of \(I \) into continua (called layers of \(I \), see e.g. [20], §48, IV, p. 199) with the property that the decomposition of \(I \) into layers is the finest of all linear upper semi-continuous decompositions of \(I \) into continua ([20], §48, IV, Theorem 3, p. 200; [17], Fundamental theorem, p. 259).

Let \(X \) be a continuum. A decomposition \(\mathcal{D} \) of \(X \) is said to be admissible (see [6]) if 1° \(\mathcal{D} \) is upper semi-continuous, 2° \(\mathcal{D} \) is monotone, and 3° for every irreducible continuum \(I \) in \(X \) every layer \(T_t, 0 \leq t \leq \leq 1, \) of \(I \) is contained in some element of \(\mathcal{D} \). Of course every continuum \(X \) has an admissible decomposition, namely the trivial one, i.e. such that the whole \(X \) is the only element of the decomposition.

Problem 1. (see [6]). Characterize continua \(X \) which have a non-trivial admissible decomposition.

It is known ([6], Theorem 1) that if a decomposition \(\mathcal{D} \) of a continuum \(X \) is admissible, then the induced quotient space \(X/\mathcal{D} \) is a here-ditarily arcwise connected.

If \(\mathcal{D} \) and \(\mathcal{E} \) are upper semi-continuous monotone decompositions of a continuum \(X \), then \(\mathcal{D} \preceq \mathcal{E} \) means that every element of \(\mathcal{D} \) is contained in some element of \(\mathcal{E} \), i.e. \(\mathcal{D} \) refines \(\mathcal{E} \). Thus \(\preceq \) defines a partial ordering on the family of upper semi-continuous monotone decompo-
sitions of X (see [25], p. 8; cf. [24], p. 100). It is known (see [6], theorems 2 and 3) that for every continuum X there exists an admissible decomposition of X which is minimal with respect to \leq, and that this minimal admissible decomposition is unique. The structure of elements of the minimal admissible decomposition of a continuum X can be seen from the following construction (see [6]; cf. also [2], p. 18-24).

Assign to each point $x \in X$ an increasing sequence of continua $A_\alpha(x)$ (where α is a countable ordinal) defined by the transfinite induction. Firstly consider in X all irreducible continua I with $x \in I$, take in each of them the layer $T(x)$ to which x belongs and put $A_0(x) = \bigcup T(x)$, where the union in the right side of the equality runs over all irreducible continua I such that $x \in I \subset X$. Secondly suppose that $A_\beta(x)$ are defined for $\beta < \alpha$, and put

$$A_\alpha(X) = \begin{cases} \bigcup_{n \to \infty} \{ \text{Ls } A_\beta(x_n) : \lim_{n \to \infty} x_n \in A_\beta(x) \}, & \text{if } \alpha = \beta + 1, \\ \bigcup_{\beta < \alpha} A_\beta(x), & \text{if } \alpha = \lim_{\beta < \alpha} \beta, \end{cases}$$

where, in the case $\alpha = \beta + 1$, the union is taken over all convergent sequences of points $x_n \in X$ with $\lim_{n \to \infty} x_n \in A_\beta(x)$. Since X, as a metric continuum, is separable, there exists a countable ordinal ξ such that if $\xi < \eta$, then $A_\xi(x) = A_\eta(x)$. Call the continuum $A_\xi(x)$ a stratum of the point x in the continuum X. For various points x strata of these points are either disjoint or identical. Thus the relation on X to belong to the same stratum is an equivalence. The decomposition of X into its strata is called canonical. It is known ([6], Theorem 4) that for every continuum X the canonical decomposition of X coincides with its minimal admissible decomposition. If the continuum X is irreducible, then its canonical decomposition coincides with the decomposition into layers, and the induced quotient space is an arc. It is well known that there are examples of irreducible continua X with the property that each layer of X is a non-trivial continuum – see e.g. Knaster's Example 5 in [20], §48, I, p. 191. In the above context of ideas one can ask the following problem, which is due to J. Krasinkiewicz.
Problem 2. Let \(Y \) be a given hereditarily arcwise connected continuum. Does there exist a continuum \(X \) every stratum of which is non-trivial and such that \(Y \) is the decomposition space of the canonical decomposition of \(X \)?

Recall that a decomposition \(\mathcal{D} \) of a metric space \(X \) is said to be continuous at its element \(D \in \mathcal{D} \) (in other words, \(D \) is called an element of continuity of \(\mathcal{D} \)) provided that, if \(\{D_n\} \) is a sequence of elements in \(\mathcal{D} \) and there exists a point \(x_n \in D_n \) for \(n = 1, 2, \ldots \), such that the sequence \(\{x_n\} \) converges to a point of \(D \), then \(\lim_{n \to \infty} D_n = D \).

The decomposition \(\mathcal{D} \) is said to be continuous provided it is continuous at each of its elements (see [19], §19, II, p. 185 and [20], §43, V, p. 67; cf. also [25], p. 59). It is known that the family of all elements of continuity of \(\mathcal{D} \) is a dense \(G_\delta \)-set in the quotient space \(X/\mathcal{D} \) (see [20], §43, VII, p. 73; cf. also [25], Theorem 1, p. 60). B. Knaster has proved ([15], section 5, p. 574-577) that there exists an irreducible continuum \(I \) (of type \(\lambda \)) such that each layer of \(I \) is a non-trivial layer of continuity. In view of these it is natural to ask the following

Problem 3. Given a hereditarily arcwise connected continuum \(Y \), does there exist a continuum \(X \) every stratum of which is a non-trivial stratum of continuity and such that \(Y \) is the decomposition space of the canonical decomposition of \(X \)?

Of course the positive answer to Problem 3 yields one to Problem 2.

A hereditarily decomposable and hereditarily unicoherent continuum is called a \(\lambda \)-dendroid. If a \(\lambda \)-dendroid is arcwise connected, then it is a dendroid. It is known ([2], Corollary 1, p. 27) that the decomposition space of a canonical decomposition of a \(\lambda \)-dendroid is a dendroid. Therefore it is natural to ask the following modification of Problem 3.

Problem 4. Given a dendroid \(Y \), does there exist a \(\lambda \)-dendroid \(X \) which has properties formulated in Problem 3?

Let a mapping \(f \) of a continuum \(X \) be monotone. The mapping \(f \) is said to belong to the class \(\Phi \) if for any point \(y \in f(X) \), for any point \(x \in X \) and for any irreducible continuum \(I \) in \(X \) it is true that if \(x \in f^{-1}(y) \cap I \), then the layer \(T(x) \) of \(x \) in \(I \) is contained in
In other words \(f \in \Phi \) if it takes each layer of each irreducible continuum into a point. It follows that a monotone mapping \(f \) of a continuum \(X \) is in \(\Phi \) if and only if the induced decomposition of \(X \) into continua \(f^{-1}(y) \), \(y \in f(X) \), is admissible. For some properties of mappings belonging to \(\Phi \) see [6], section 5. A continuum \(X \) is said to belong to the class \(\mathscr{H} \) if every monotone mapping of \(X \) onto a hereditarily arcwise connected continuum is in \(\Phi \). It can be seen that the class \(\mathscr{H} \) contains e.g. all \(\lambda \)-dendroids, all irreducible (hence all indecomposable) continua and also all hereditarily arcwise connected continua ([6], corollary 8). The union of a disk and of an arc which has its end point as the only common point with the disk is an example of a continuum having a non-trivial admissible decomposition but not being in \(\mathscr{H} \). The known characterizations of continua belonging to \(\mathscr{H} \) (see [6], Theorem 5 and Corollary 9; cf. also [7]) are rather external, expressed by transformations into another space, and in fact not too far from the definition. For example one of these characterizations says that a continuum \(X \) is in \(\mathscr{H} \) if and only if for every mapping \(f \) of \(X \) onto a hereditarily arcwise connected continuum there exists one and only one mapping \(g \) of \(\varphi(X) \) onto \(f(X) \) such that \(f(x) = g(\varphi(x)) \) for each \(x \in X \), where \(\varphi \) denotes the canonical mapping, i.e., the quotient mapping induced by the canonical decomposition of \(X \). Since the class \(\mathscr{H} \) of continua has some nice properties and it seems to be interesting enough for further investigations, the following question is very natural.

Problem 5. Give an internal characterization of continua belonging to the class \(\mathscr{H} \).

A continuum \(X \) is said to be *monostratic* if it consists of only one stratum, i.e. if the canonical mapping is the trivial one of \(X \) into a point (see [6]). Each indecomposable continuum is monostratic. A monostratiform \(\lambda \)-dendroid (see [3]) is an example of a hereditarily decomposable monostratic continuum. An \(n \)-dimensional cube, where \(n > 1 \), is an example of a monostratic continuum which does not belong to \(\mathscr{H} \). It is known (see [6], Proposition 11) that a continuum \(X \in \mathscr{H} \) is monostratic if and only if every monotone mapping of \(X \) onto a hereditarily arcwise connected continuum is trivial.
Relatively little information concerning the inner structure of monostratic continua, in particular of monostratic \(\lambda \)-dendroids, has appeared in the literature. Thus the following modification of Problem 1 is open.

Problem 6. Give an internal characterization of monostratic continua.

Problem 7. Give an internal characterization of monostratic continua belonging to the class \(\mathcal{K} \).

Problem 8. Give an internal characterization of monostratic \(\lambda \)-dendroids.

A point \(p \) of a continuum \(X \) is said to be a *terminal point* of \(X \) if every irreducible continuum in \(X \) which contains \(p \) is irreducible from \(p \) to some point ([21], p. 190). It is known that if a \(\lambda \)-dendroid \(X \) is monostratic, then every irreducible subcontinuum in \(X \) has empty interior ([5], p. 365); this implies that every such \(X \) has uncountably many terminal points ([5], p. 367). The known examples show that the set of all terminal points is dense in such \(X \). So we have (see [5], p. 367).

Problem 9. Let a \(\lambda \)-dendroid \(X \) be monostratic. Does it follow that the set of all terminal points of \(X \) is dense in \(X \)?

It is known (see [6], Proposition 19) that monostraticity of continua belonging to \(\mathcal{K} \) is an invariant under monotone mappings. The question is asked in [6] whether it is an invariant under open mappings. The answer is negative, as it can be seen from an example given in [1], p. 216: van Dantzig's solenoid is an indecomposable (thus belonging to \(\mathcal{K} \)) continuum which admits an open mapping onto a circle. But if we assume that \(X \) is a \(\lambda \)-dendroid, the answer is unknown. Hence the following two problems, due to J. B. Fugate (see [4], p. 340) are still unanswered.

Problem 10. Is monostraticity of \(\lambda \)-dendroids an invariant under open mappings?

Problem 11. Is monostraticity of \(\lambda \)-dendroids an invariant under confluent mappings?

(a mapping of \(X \) onto \(Y \) is *confluent* if for every continuum \(Q \) in \(Y \)

\[-150 - \]
every component of the inverse image of Q is mapped onto the whole Q; see [1], p. 213). Since each open mapping is confluent, the positive answer to Problem 11 implies the positive answer to Problem 10. But even under a more narrow class of mappings the question is open. Namely a mapping from a topological space X to a topological space Y is said to be a local homeomorphism if for every point $x \in X$ there exists a neighbourhood U of x such that $f(U)$ is a neighbourhood of $f(x)$ and such that f restricted to U is a homeomorphism between U and $f(U)$. If f is a local homeomorphism, then it is an open mapping.

Problem 12. Is monostraticity of continua an invariant under local homeomorphisms?

A continuum is said to be stratified if it has a non-trivial stratification, i.e. if it consists of more than one stratum. In other words, a continuum is stratified if it is not monostratic. It is immediately seen that a continuum is stratified if and only if it has a non-trivial admissible decomposition. A continuum each subcontinuum of which is stratified is called hereditarily stratified. It is easy to observe that a continuum is hereditarily stratified if and only if it has singletons as the only monostratic subcontinua. An example of a hereditarily stratified λ-dendroid is given in [4], p. 340, which has a monotone mapping onto a monostratic λ-dendroid. Thus the hereditary stratification of λ-dendroids is not an invariant under monotone mappings.

Problem 13. Is the hereditary stratification of continua an invariant under local homeomorphisms?

Problem 14. Is the hereditary stratification of continua an invariant under open mappings?

A continuum X is said to belong to the class \mathcal{L} if it admits a nontrivial admissible decomposition each of whose elements has void interior. In other words, $X \in \mathcal{L}$ if and only if each stratum of X has void interior. The class \mathcal{L} contains by definition all irreducible continua of type λ (see [20], p. 197, the footnote; cf. also [25], p. 13 — continua of type A'), all hereditarily arcwise connected continua, and also all smooth continua (see [9], Theorem 5.2, p. 58). There are examples of con-
tinua described in [6] which show that neither $\mathcal{N} \setminus \mathcal{L}$ nor $\mathcal{L} \setminus \mathcal{N}$ is empty. It is known (see [6], Proposition 24) that if a continuum X is in the class \mathcal{L}, then every monostratic subcontinuum of X has void interior. This property does not characterize continua of the class \mathcal{L} — there is a continuum K each monostratic subcontinuum of which is a singleton, and which is not in \mathcal{L} (see [6]). So we have

Problem 15. Characterize continua belonging to the class \mathcal{L}.

The continuum K mentioned above is not a λ-dendroid. The following problem (see [6]) is open.

Problem 16. Let every monostratic subcontinuum of a λ-dendroid X have void interior. Does it follow that X is in \mathcal{L}?

L. Mohler has proved ([22], Theorem 6, p. 73) that if an irreducible continuum X is of type λ and if f is a local homeomorphism defined on X, then $f(X)$ is an irreducible continuum of type λ. The question arises if this result can be extended to continua of the class \mathcal{L} (not necessarily irreducible). So we have

Problem 17. Let a continuum X belong to \mathcal{L}, and let f be a local homeomorphism defined on X. Does it follow that $f(X)$ is in the class \mathcal{L}?

Although property of being an irreducible continuum of type λ is not preserved under open mappings (see [1], p. 216; cf. [22], p. 73), if we neglect the irreducibility, we obtain the following

Problem 18. Let a continuum X belong to \mathcal{L} and let f be an open mapping defined on X. Does it follow that $f(X)$ is in the class \mathcal{L}?

REFERENCES

