A Characterization of Cyclic Graphs

by

Janusz J. CHARATONIK and Stanislaw MIKLOŚ

Presented by K. BORSUK on September 16, 1981

Summary. It is proved that a graph Y is cyclic if and only if for each natural number n there exists a graph X_n and a local homeomorphism of degree n from X_n onto Y.

The aim of this paper is to characterize cyclic graphs via local homeomorphisms.

By a graph we mean a one-dimensional connected polyhedron. A graph which contains a simple closed curve is called cyclic; otherwise it is said to be acyclic. An arc A with end points a and b contained in a continuum X is called free provided that $A\setminus\{a, b\}$ is an open subset of X. A continuous mapping $f:X\to Y$ of a topological space X onto a topological space Y is said to be a local homeomorphism provided that every point $x\in X$ has an open neighborhood U such that the partial mapping $f|U:U\to f(U)$ is a homeomorphism and $f(U)$ is an open subset of Y ([2], p. 199). Given a mapping $f:X\to Y$, we define a mapping k from Y to cardinal numbers (called the degree of f) putting $k(y) = \text{card}\, f^{-1}(y)$ for $y\in Y$. It is known that if $f:X\to Y$ is a local homeomorphism of a graph X onto Y, then Y is a graph (since f is open, see [2], p. 199 and Theorem 1.1, p. 182) whence it follows that the degree k is constant on Y ([2], Theorem 6.1, p. 199).

A well-known result of Whyburn says that each local homeomorphism $f:X\to Y$ from a continuum X onto a dendritic Y is a homeomorphism (see [2], Corollary, p. 199). Applying this result to graphs we conclude that each local homeomorphism from a continuum onto an acyclic graph is a homeomorphism. Taking the unit circle $S = \{z: |z| = 1\}$ and defining $f:S\to S$ by $f(z) = z^n$ for $n = 1, 2, 3, ...$ we can see not only that the acyclicity is an essential assumption in this result, but moreover that for every natural number n there exists a local homeomorphism of degree n of a graph onto a circle (this characterizes a simple closed curve among graphs, see [1]). We generalize the last statement from a circle to arbitrary graphs containing a simple closed curve. Namely we have
THEOREM. For each cyclic (planar) graph \(Y \) and for each natural number \(n = 1, 2, 3, \ldots \) there exist a cyclic (planar) graph \(X \) and a local homeomorphism of degree \(n \) from \(X \) onto \(Y \).

Proof. Let a cyclic graph \(Y \) be given, and consider a simple closed curve in \(Y \) as the union of a free arc \(A \) with end points \(a \) and \(b \) and of the other arc \(B \), i.e. such that \(A \cap B = \{ a, b \} \). Further take \(p, c, d \in A \setminus \{ a, b \} \) such that \(c \in ap \) and \(d \in bp \), where \(ap \cup pb = A \). Let \(ac, \ \text{and} \ \ bd \) denote the corresponding subarcs in \(A \), and put \(Y' = (X \setminus A) \cup ac \cup bd = X \setminus cd \). Thus \(Y' \) is a graph contained in \(Y \). Now let a mapping \(g: Y' \to Y \) be defined from \(Y' \) onto \(Y \) in such a way that \(g(X \setminus A) \) is the identity, while \(g|ac: ac \to ap \) and \(g|bd: bd \to bp \) are homeomorphisms with \(g(a) = a \), \(g(b) = b \) and \(g(c) = g(d) = p \). Thus \(g \) is continuous by its definition, each point of \(Y \setminus \{ p \} \) has a one-point inverse, while the inverse image of \(p \) is the two-point set \(\{ c, d \} \). Fix an arbitrary natural number \(n \) and consider \(n \) copies \(X_1, X_2, \ldots, X_n \) of the graph \(Y' \) in which a point \(x_i \in X_i \) denotes the copy of a point \(x \in Y' \) for every \(i \in \{ 1, 2, \ldots, n \} \). Form the union \(X = \bigcup \{ X_i: i = 1, 2, \ldots, n \} \) such that, if \(n = 2 \), then \(X_1 \cap X_2 = \{ c_1, d_2 \} = \{ c_2, d_1 \} \), and if \(n > 2 \), then \(X_i \cap X_{i+1} = \{ d_i \} = \{ c_{i+1} \} \) for every \(i = 1, 2, \ldots, n-1 \), and \(X_1 \cap X_n = \{ d_n \} = \{ c_1 \} \), and \(X_i \cap X_j = \emptyset \) for all other pairs of different indices \(i, j \). Therefore the set \(X \) is a graph. For every \(i = 1, 2, \ldots, n \) denote by \(c_i, d_i \) the arc from \(c_i \) to \(d_i \) in \(X_i \) being the \(i \)-th copy of the arc \(ca \cup B \cup bd = A \cup B \cup cd \) from \(c \) to \(d \) in \(Y \). Then the union \(c_1 d_1 \cup c_2 d_2 \cup \ldots \cup c_n d_n \) (where \(d_1 = c_2, d_2 = c_3, \ldots, d_{n-1} = c_n, d_n = c_1 \)) is a simple closed curve contained in \(X \), so the graph \(X \) is cyclic. It is evident that, in case of \(Y \) is planar, the whole construction can be made in such a way that the resulting space \(X \) is contained in a plane, too.

Define \(f: X \to Y \) putting \(f|X_i = g \) for every \(i = 1, 2, \ldots, n \). This definition is correct because every \(X_i \) is a copy of \(Y' \), so we can assume that \(g \) maps \(X_i \) onto \(Y \). It is obvious that, for each point \(y \in Y \) its inverse image \(f^{-1}(y) \) consists of \(n \) points exactly. Namely \(f^{-1}(p) = \{ d_1, d_2, \ldots, d_n \} = \{ c_2, c_3, \ldots, c_n, c_1 \} \), while \(f^{-1}(y) \) for \(y \neq p \) consists of some \(n \) points \(x^{(1)}, x^{(2)}, \ldots, x^{(n)} \) with \(x^{(i)} \in X_i \) for \(i = 1, 2, \ldots, n \). So \(f \) is of degree \(n \). Further, it is quite easy to observe that each point of \(X \) has a small open neighborhood whose image under \(f \) is an open subset of \(Y \), and moreover such that \(f \) restricted to this neighborhood is a homeomorphism. Hence \(f \) is a local homeomorphism, and the proof is finished.

Consider a class of all graphs \(Y \) having the property that \((*) \) for every natural number \(n \) there exist a graph \(X_n \) and a local homeomorphism \(f_n: X_n \to Y \) of degree \(n \) from \(X_n \) onto \(Y \).

The theorem above and the mentioned result of Whyburn ([2], Corollary, p. 199) imply

COROLLARY 1. A graph \(Y \) is cyclic if and only if \(Y \) has property \((*) \).
Corollary 2. A graph Y has the property that each local homeomorphism from a continuum onto Y is a homeomorphism if and only if Y is acyclic.

A method has been shown in the proof of the theorem of constructing a graph X which can be mapped onto a given graph Y under a local homeomorphism of a prescribed degree n. The structure of X depends on the choice of a free arc A in Y. Taking an arc $A' \neq A$ under consideration in place of A it is possible to get, under some circumstances, another (i.e. topologically different) graph X, even if the same method of construction has been applied. So we have

Problem 1. Given a graph Y and a natural number n, what is the cardinality of the largest class of topologically different graphs X such that Y is an image of X under a local homeomorphism of degree n?

Whyburn has defined in [2], Example, p. 189, a planar graph X and a local homeomorphism of degree 3 from X onto one of the two well-known non-planar graphs of Kuratowski. In connection with this we have

Problem 2. For which non-planar graphs Y and for which natural numbers n there exist a planar graph X and a local homeomorphism of degree n from X onto Y?

REFERENCES

Я. Е. Харатоник, С. Миклос, Характеризация циклических графов

Доказывается, что граф Y является циклическим тогда и только тогда, когда для всякого натурального числа n найдутся: граф X_n и локальный гомеоморфизм степени n с X_n на Y.