An example of a monostratiform \(\lambda \)-dendroid

by

J. J. Charatonik (Lexington, Ky.)

A metric compact continuum is said to be a \textit{dendroid} if it is hereditarily unicoherent and arcwise connected. It follows that it is hereditarily decomposable (see [2], (47), p. 239). A hereditarily unicoherent and hereditarily decomposable continuum is called a \textit{\(\lambda \)-dendroid}. Note that every subcontinuum of a \(\lambda \)-dendroid is also a \(\lambda \)-dendroid.

It is proved in [3], Corollary 2, p. 29, that for every \(\lambda \)-dendroid \(X \) there exists a unique decomposition \(D \) of \(X \) (called the \textit{canonical decomposition}):

\[
X = \bigcup \{S_d : d \in \Lambda(X)\}
\]

such that

(i) \(D \) is upper semicontinuous,

(ii) the elements \(S_d \) of \(D \) are continua,

(iii) the hyperspace \(\Lambda(X) \) of \(D \) is a dendroid,

(iv) \(D \) is the finest possible decomposition among all decompositions satisfying (i), (ii) and (iii).

The elements \(S_d \) of \(D \) are called \textit{strata} of \(X \). The question arises whether there exists a \(\lambda \)-dendroid \(X \) with trivial canonical decomposition, i.e. such that \(X \) has only one stratum.

The purpose of this paper is to give the affirmative answer to the above question.

Call a \(\lambda \)-dendroid to be \textit{monostratiform} if it consists of only one stratum. Thus the hyperspace of the canonical decomposition of a monostratiform \(\lambda \)-dendroid is a point. It follows from [3], Theorem 7, p. 29 that:

(1) A \(\lambda \)-dendroid \(X \) is monostratiform if and only if every monotone mapping onto a dendroid is trivial, i.e. the whole \(X \) goes onto a point.

(See also [4], Corollaries 1 and 2, p. 933).

Construction. The description of the example is based upon the description of Lelek's example of a dendroid with 1-dimensional set of end points (see [9], § 9, p. 314).
To describe the monostratiform λ-dendroid X which we are going to construct, the following geometrical procedure is needed:

By an oriented triangle T we mean a triangle (i.e. a 2-cell) in which an ordering \prec of vertices is distinguished. If a, b, c are vertices of T and this ordering is just $a \prec b \prec c$, then we write $T = T(abc)$.

Let $T(abc)$ be a fixed oriented triangle lying in an Euclidean plane with the ordinary metric ρ, and let a_i, where $i = 1, 2, \ldots$, be points such that for all $k = 1, 2, \ldots$

\begin{align*}
(2) \quad & a_{2k-1} \in ac \quad \text{and} \quad a_{2k} \in bc \\
(3) \quad & \rho(a, a_{2k-1}) = \rho(a, c)/2k \quad \text{and} \quad \rho(b, a_{2k}) = \rho(b, c)/2k.
\end{align*}

Denote the centre of the straight segment $a_i a_{i+1}$ by b_i, where $i = 1, 2, \ldots$ and let for every $k = 1, 2, \ldots$ points $d_1^k, d_2^k, d_3^k, d_4^k$ be centres of straight segments $a_{2k-1} b_{2k-1}, b_{2k-1} a_{2k}, a_{2k} b_{2k}$ and $b_{2k} a_{2k+1}$ correspondingly. Thus, for every natural k, points d_1^k and d_2^k lie in the side $a_{2k-1} a_{2k}$ as well as points d_3^k and d_4^k lie in the side $a_{2k} a_{2k+1}$ of the triangle with vertices a_{2k-1}, a_{2k} and a_{2k+1}. Divide each of two straight segments $d_1^k d_4^k$ and $d_2^k d_3^k$ into three equal parts and define points $c_{4k-3}, c_{4k-2}, c_{4k-1}, c_{4k}$ of this division as follows:

\begin{align*}
(4) \quad & c_{4k-3} \in d_1^k d_4^k \quad \text{and} \quad \rho(c_{4k-3}, d_1^k) = \rho(d_1^k, d_4^k)/3, \\
& c_{4k-2} \in d_2^k d_3^k \quad \text{and} \quad \rho(c_{4k-2}, d_2^k) = \rho(d_2^k, d_3^k)/3, \\
& c_{4k-1} \in d_3^k d_4^k \quad \text{and} \quad \rho(c_{4k-1}, d_3^k) = \rho(d_3^k, d_4^k)/3, \\
& c_{4k} \in d_1^k d_2^k \quad \text{and} \quad \rho(c_{4k}, d_1^k) = \rho(d_1^k, d_2^k)/3.
\end{align*}

Now, for every $k = 1, 2, \ldots$, take four oriented triangles

\begin{align*}
T_{4k-3} &= T(a_{2k-1} b_{2k-1} c_{4k-3}), \\
T_{4k-2} &= T(a_{2k} b_{2k-1} c_{4k-2}), \\
T_{4k-1} &= T(a_{2k} b_{2k} c_{4k-1}), \\
T_{4k} &= T(a_{2k+1} b_{2k} c_{4k})
\end{align*}

lying inside the triangle with vertices a_{2k-1}, a_{2k} and a_{2k+1}.

We denote by $\mathcal{C}(abc)$ the sequence $\{T_i\}_{i=1,2,\ldots}$ of oriented triangles defined above (see Fig. 1). Therefore for any two triangles $T_i, T_j \in \mathcal{C}(abc)$ we have

\begin{align*}
(5) \quad & T_{2i-1} \cap T_{2i} = b_i \quad \text{and} \quad T_{2i} \cap T_{2i+1} = a_{i+1} \quad \text{for} \quad i = 1, 2, \ldots \\
(6) \quad & T_i \cap T_j = \emptyset \quad \text{for} \quad |i-j| > 1.
\end{align*}

Let $\delta(S)$ denote the diameter of a set S. Now we shall prove that

\begin{align*}
(7) \quad & \delta(T_i) \leq \frac{3}{2} \delta(T(abc)) \quad \text{for} \quad i = 1, 2, \ldots
\end{align*}
An example of a monostatiform \(\lambda \)-dendroid

Fig. 1

With this in view let us denote by \(q \) the centre of the segment \(ab \) and consider two trapezia: \(A \) with vertices \(a, a_1, b_1, q \) and \(B \) with vertices \(b, a_2, b_1, q \). The diameter of \(A \) is the maximum of the six numbers: four of them are lengths of the sides of \(A \), the other two are lengths of its diagonals. Put

\[
\delta(T(abc)) = \delta_0. \tag{8}
\]

To estimate \(\delta(A) \) let us observe that we have following inequalities for the sides of \(A \).

\[
\varrho(a, a_1) = \frac{1}{2} \varrho(a, c) \leq \frac{1}{2} \delta_0,
\]

\[
\varrho(a_1, b_1) = \frac{1}{2} \varrho(a_1, a_2) = \frac{1}{2} \varrho(a, b) \leq \frac{1}{2} \delta_0,
\]

\[
\varrho(b_1, q) = \varrho(b_1, c) = \frac{1}{2} \varrho(c, q) \leq \frac{1}{2} \delta_0,
\]

\[
\varrho(q, a) = \frac{1}{2} \varrho(a, b) \leq \frac{1}{2} \delta_0.
\]

For the diagonals of \(A \) we obtain

\[
\varrho(a_1, q) = \frac{1}{2} \varrho(b, c) \leq \frac{1}{2} \delta_0,
\]

\[
\varrho(a, b_1) \leq \varrho(a, a_1) + \varrho(a_1, b_1) \leq \frac{1}{2} \delta_0 + \frac{1}{2} \delta_0 = \frac{3}{2} \delta_0.
\]
Therefore \(\delta(A) \leq \frac{3}{4} \delta_0 \). In the same manner we can prove that \(\delta(B) \leq \frac{3}{4} \delta_0 \). Further, note by construction that for \(i = 1, 2, \ldots \) we have either \(T_i \subseteq A \) or \(T_i \subseteq B \), which leads to \(\delta(T_i) \leq \frac{3}{4} \delta_0 \), and (7) is proved by (8).

If \(A \) is a family of sets, let \(A^* \) denote the union of all members of \(A \).

So we see that
\[
\mathcal{C}^*(abc) = \bigcup_{i=1}^{\infty} T_i ,
\]
which is a connected set by (5). By construction
\[
(9) \quad \mathcal{L}_T T_i = ab = \overline{\mathcal{C}^*(abc)} \setminus \mathcal{C}^*(abc) ,
\]
whence we conclude that
\[
(10) \quad ab \cup \mathcal{C}^*(abc) \text{ is a continuum.}
\]

A point \(p \) of a connected set \(A \) is said to be a separating point of \(A \) if \(A \setminus \{p\} \) is not connected. So we see by (5) and (6) that
\[
(11) \quad \text{every point } a_i \text{ for } i > 1 \text{ as well as every point } b_i \text{ is a separating point of the continuum } ab \cup \mathcal{C}^*(abc).\]

Now we shall define for every \(n = 1, 2, \ldots \) a countable family \(\mathcal{S}_n \) of straight line segments and a countable family \(\mathcal{C}_n \) of oriented triangles.

Namely we put
\[
(12) \quad \mathcal{S}_1 = \{ab\}, \quad \mathcal{C}_1 = \mathcal{C}(abc)
\]
and
\[
(13) \quad \mathcal{S}_{n+1} = \mathcal{S}_n \cup \{a'b'|T(a'b'c') \in \mathcal{C}_n\},
\]
\[
(14) \quad \mathcal{C}_{n+1} = \bigcup \{\mathcal{C}(a'b'c')|T(a'b'c') \in \mathcal{C}_n\}.
\]

We also agree that \(\mathcal{C}_0 = \{T(abc)\} \).

Observe that for an arbitrary sequence of oriented triangles \(T^n \in \mathcal{C}_n \) we have by (7) and (14)
\[
(15) \quad \text{if } T^n \in \mathcal{C}_n, \text{ then } \lim_{n \to \infty} \delta(T^n) = 0.\]

The following properties of the above families \(\mathcal{S}_n \) and \(\mathcal{C}_n \) are readily seen:
\[
(16) \quad \mathcal{S}^*_n \text{ is a continuum},
\]
\[
(17) \quad \mathcal{S}^*_n \cup \mathcal{C}^*_n \text{ is a continuum},
\]
\[
(18) \quad \mathcal{S}^*_{n+1} \cup \mathcal{C}^*_{n+1} \subseteq \mathcal{S}^*_n \cup \mathcal{C}^*_n.
\]

The \(\lambda \)-dendroid \(X \) is defined by the formula
\[
(19) \quad X = \bigcap_{n=1}^{\infty} (\mathcal{S}^*_n \cup \mathcal{C}^*_n) .
\]
It is a continuum as the common part of the decreasing sequence of continua by (17) and (18).

Properties. It follows from (19) by construction that every triangle $T \in \mathcal{C}_n$ for any natural n contains a homeomorphic image of X:

(20) if $T \in \mathcal{C}_n$ for some n, then $X \cap T$ is homeomorphic to X.

Further, we see—also by construction—that

(21) for every point x of X and for every neighbourhood U of x there is a natural n, sufficiently great, such that U contains some triangle $T \in \mathcal{C}_n$.

Note that if a continuum K is the common part of a decreasing sequence of continua K_n, then every separating point of any K_n is a separating point of K. Since the common vertex of every two successive triangles $T_i, T_{i+1} \in \mathcal{C}_i$ is a separating point of the continuum $S_i^* \cup \mathcal{C}_i = ab \cup \mathcal{C}(abc)$ by (11), hence it is a separating point of X. Thus (20) implies that

(22) if a point s is a common vertex of two triangles $T', T'' \in \mathcal{C}_n$ ($n = 1, 2, \ldots$), then s is a separating point of X.

Let S denote the set of all such points s. This means that s is in S if and only if s is a common vertex of some two triangles T' and T'' belonging to \mathcal{C}_n for any natural n. Hence

(23) every point of S is a separating point of X

by (22), and we conclude from (20) and (21) that S is dense in X:

(24) $\overline{S} = X$.

The families \mathcal{C}_n being countable for each n, the set S is countable. We shall show below that no point of $X \setminus S$ separates X, i.e. that S consists of all separating points of X.

It follows from definitions (12)-(14) of the families S_n and \mathcal{C}_n and from (19) that $S_n^* \subseteq X$ for every n. Thereby

(25) $\bigcup_{n=1}^{\infty} S_n^* \subseteq X$.

According to (12) and (13) the union $\bigcup_{n=1}^{\infty} S_n^*$ consists of the side ab of $T(abc)$ and of the sides $a'b'$ of oriented triangles $T(a'b'c') \in \mathcal{C}_n$, $n = 1, 2, \ldots$. Since a common vertex of any two oriented triangles $T'' = T(a'b'c')$ and $T''' = T(a''b''c'')$ both belonging to the same \mathcal{C}_n is
just the common end point of the sides \(a'b'\) and \(a''b''\) of these triangles, hence, by definition of \(S\), we have

\[\mathcal{S} \subseteq \bigcup_{n=1}^{\infty} S_n \tag{26} \]

which implies by (24) and (25) that

\[X = \bigcup_{n=1}^{\infty} S_n^* \tag{27} \]

Note that in every triangle \(T(a'b'c') \in \mathcal{T}_n\) its side \(a'b'\) is a continuum of convergence of the sequence of sides \(a''b''\) of triangles \(T(a''b''c'') \in \mathcal{T}_{n+1}\) by (9) and (20). So, no interior point of the side \(a'b'\) separates \(X\). Thus

\[\text{if a separating point of } X \text{ is in } \bigcup_{n=1}^{\infty} S_n^*, \text{ it is in } S. \tag{28} \]

Now put

\[E = \bigcup_{n=1}^{\infty} S_n^* \setminus \bigcup_{n=1}^{\infty} S_n^* \tag{29} \]

i.e. by (27)

\[E = X \setminus \bigcup_{n=1}^{\infty} S_n^*. \tag{30} \]

Let \(t\) be a point of \(E\). Thus \(t\) is a common point of some decreasing sequence of triangles \(T^n\) such that \(T^n \in \mathcal{T}_n\) and \(t \in \text{Int } T^n\) for every \(n\):

\[t = \bigcap_{n=1}^{\infty} T^n. \tag{31} \]

Now let \(x \neq t\) be a point of \(X\), and let \(\varepsilon\) be a positive number, less than the distance from \(x\) to \(t\). Therefore by (15) there is a natural \(m\) such that \(t \in \text{Int } T^m, x \in X \setminus T^m\) and \(\delta(T^m) < \varepsilon\). The sequence of triangles \(T^n\) to which \(t\) belongs being decreasing, we have \(t \in T^{m+1} \subseteq T^m\) and \(T^{m+1} \in \mathcal{T}_{m+1}\). So \(T^{m+1}\) must be a term of the sequence \(\mathcal{T}(a'b'c')\) of triangles, where \(T^m = T(a'b'c')\). Let \(T_i^{m+1}\) \((i = 1, 2, \ldots)\) denote the \(i\)th term of this sequence, where indices \(i\) are placed in the same manner like it was done by (4) for the sequence \(\mathcal{T}(abc)\). If \(j\) denote the index of \(T^{m+1}\) in the sequence \(\mathcal{T}(a'b'c')\), i.e. if

\[T_i^{m+1} = T_j^{m+1}, \]

then the common vertex \(s\) of \(T_j^{m+1}\) and \(T_{j-1}^{m+1}\) is a separating point of \(X\) according to (22) because both these triangles belong to \(\mathcal{T}_{m+1}\). We see that \(s\) separates \(X\) into two sets \(M\) and \(N\) such that \(x \in M\) and \(t \in N\):

\[X \setminus \{s\} = M \cup N. \]
But $N \cup (s) \subset \bigcup_{i=1}^{j} T_{i}^{m+1} \subset T^{m}$, whence $\delta(N) < \varepsilon$. It shows that t is an end point of X in the sense of Menger-Urysohn, i.e. that

$$\text{ord}_t X = 1$$

(see e.g. [8], § 46, I, p. 200), whence we conclude that

(32) X is locally connected at t

by [8], § 46, IV, 1, p. 209. Obviously X is not locally connected at any point of the union $\bigcup_{n=1}^{\infty} S_{n}^{*}$, whence

(33) E is the set of all points at which X is locally connected.

Further, it is readily seen that no point of $X \setminus E$ is an end point of X. So by (32) we have

(34) E is the set of all end points of X, whence

(35) E is the set of all end points of X, whence

$$\text{dim} E = 0$$

by [8], § 46, V, 2, p. 217.

It is immediately seen by (20) that every triangle $T \in C_{n}$ for some n contains a point of E. Thus (21) implies that E is dense in X.

Remark that (30) gives

$$E = \bigcap_{n=1}^{\infty} (X \setminus S_{n}^{*}) ,$$

whence we see by (16) that E is a G_{δ}-set.

Let us come back now to separating points of X. Since no end point of a continuum is a separating point (see [8], § 46, V, 1, p. 217), hence the set of all separating points of X and the set E are disjoint by (35).

It implies by (30) that all separating points of X are in the union $\bigcup_{n=1}^{\infty} S_{n}^{*}$, therefore by (23) and (28) the set of all separating points of X is just S.

So we have the following statement concerning separating points of X:

(37) The set of all separating points of X is dense and countable. It consists of common vertices of any two triangles T', T'', both being in the same C_{n}, where $n = 1, 2, ...$

To prove the hereditary decomposability of X consider two different points x and y of X. Since they are different, hence the sequence of triangles

$$T(abc) = T^{0} \cup T^{1} \cup T^{2} \cup ... \cup T^{m} \cup ...$$
such that x and y are both in each T^n and $T^n \in \mathcal{C}_n$ for $n = 1, 2, ...$ has the last element, say T^m. Observe that there is no irreducible continuum from x to y which intersects the complementary of T^m: every such a continuum must lie entirely in T^m. The set $X \cap T^m$ being homeomorphic to X by (20), we may assume without loss of generality that $m = 0$, i.e. that no triangle of the sequence $\mathcal{C}(abc)$ contains both x and y.

If x and y are both in ab, then the unique irreducible continuum from x to y is an arc.

If x is in ab and y is not, then y belongs to some triangle $T_k \in \mathcal{C}(abc)$ and we have countably many points, common vertices of every two successive triangles T_i, T_{i+1} of $\mathcal{C}(abc)$ for $i > k$, which separate x from y. Thus an irreducible continuum joining x and y is separated by these points.

Finally if neither x nor y is in ab, then they are in different triangles of $\mathcal{C}(abc)$. Let $x \in T_i$, $y \in T_k$ where $T_i, T_k \in \mathcal{C}(abc)$. We may assume $j < k$ (the opposite case, $j > k$, is quite similar). Thus every common vertex of two successive triangles T_i and T_{i+1}, where $i = j, j+1, ..., k-1$, is a separating point of X and separates x from y, whence an irreducible continuum from x to y must be separated by such a point.

Therefore we conclude that every irreducible subcontinuum of X is separated by a point, whence the hereditary decomposability of X follows (see [8], § 43, V, 1, p. 145).

Before proving the hereditary unicoherence of X, firstly we recall some known notions and a theorem concerning continua lying in the plane E^2, and secondly, we observe some properties of the construction in $T(abc)$.

A continuum $C \subset E^2$ is said to cut (or to be a cutting of) E^2 between points a and b provided that $a, b \in E^2 \setminus C$ and every continuum which contains a and b intersects C. It is called an irreducible cutting of E^2 between a and b provided that it is a cutting of E^2 between a and b and no proper its subcontinuum cuts E^2 between these points. A continuum $C \subset E^2$ is said to cut (or to be a cutting of) E^2 if there exist two points such that C cuts E^2 between them.

The following theorem is known:

(38) A hereditarily decomposable plane continuum is hereditarily unicoherent if and only if it does not cut the plane.

Indeed, every cutting of E^2 between two points contains an irreducible cutting between these points (a theorem due to S. Mazurkiewicz; see [7], Theorem I, p. 133). So if we suppose that a hereditarily decomposable and hereditarily unicoherent continuum K cuts E^2 between a and b, then we conclude that K must contain an irreducible cutting L of E^2 between a and b which is decomposable and unicoherent. Therefore for
An example of a monostratiform λ-dendroid

83

an arbitrary decomposition of \(L \) into two its proper subcontinua \(L_1 \) and \(L_2 \) we see that neither \(L_1 \) nor \(L_2 \) cuts \(E^2 \) between \(a \) and \(b \), and that \(L_1 \cap L_2 \) is a continuum; hence the union \(L_1 \cup L_2 = L \) cannot cut \(E^2 \) between \(a \) and \(b \) according to a theorem due to Z. Janiszewski ([6], Theorem A, p. 48; see also [7], (ii), p. 136), and we get a contradiction.

Invertedly, if a hereditarily decomposable plane continuum \(K \) is not hereditarily unicoherent, then it contains a subcontinuum \(M \) that can be decomposed into two subcontinua \(M_1 \) and \(M_2 \) the intersection of which is not a continuum. Thus \(M_1 \cup M_2 = M \) is a cutting of \(E^2 \) (see [6], Theorem B, p. 55; also [7], (iii), p. 136), and so is \(K \) because \(K \) is 1-dimensional.

Observe now the following two properties of the construction in the triangle \(T(abc) \).

(39) For every point \(x_0 \in T(abc) \setminus \overline{G}(abc) \) there exists an arc \(x_0 p_0 \) such that \(p_0 \in ac \cup bc \) and \(x_0 p_0 \subset T(abc) \setminus \overline{G}(abc) \).

In fact, if \(x_0 \in T(a_{j-1}a_ja_{j+1}) \subset T(abc) \), then we take as \(p_0 \) an arbitrary point of \(a_{j-1}a_ja_{j+1} \setminus (a_{j-1}) \setminus (a_{j+1}) \) (see the figure) and we see that such an arc \(x_0 p_0 \) does exist.

Similarly, if \(T(a'b'c') \in \gamma(abc) \), then

(40) For every point \(p_1 \in (a'c' \cup b'c') \setminus \overline{\gamma}(abc) \) there exists an arc \(p_1 p_0 \) such that \(p_0 \in ac \cup bc \) and \(p_1 p_0 \subset T(abc) \setminus \overline{G}(abc) \).

Indeed, if \(p_1 \in a'c' \cup b'c' \subset T(a'b'c') \subset T(a_{j-1}a_ja_{j+1}) \), then we take as \(p_0 \) an arbitrary point of \(a_{j-1}a_ja_{j+1} \setminus (a_{j-1}) \setminus (a_{j+1}) \) and we can easy find such an arc \(p_1 p_0 \) lying entirely in \(T(a_{j-1}a_ja_{j+1}) \).

Now, in order to prove the hereditary unicoherence of the continuum \(X \), it is sufficient to prove, according to (38), that \(X \) does not cut the plane, i.e. that for any two points \(x_1 \) and \(x_2 \) in \(E^2 \setminus X \) there is a continuum joining \(x_1 \) and \(x_2 \) and having no common point with \(X \). Let \(y \) be a point of \(E^2 \setminus T(abc) \). Observe that if \(K_1 \) and \(K_2 \) are continua such that \(x_i \in K_i \), \(y \in K_i \) and \(K_i \cap X = \emptyset \) for \(i = 1 \) and 2, then their union \(K_1 \cup K_2 \) is a continuum \(K \) with properties \(x_1, x_2 \in K \) and \(K \cap X = \emptyset \). Therefore it is enough to show that a point \(x \in E^2 \setminus X \) can be joined with \(y \) by a continuum which does not intersect \(X \). The existence of such a continuum is obvious if \(x \in E^2 \setminus T(abc) \). In the opposite case, if \(x \in T(abc) \setminus X \), we see that \(x \) is not in \(\bigcup_{n=1}^{\infty} S_n \) by (25), whence, the sequence of sets \(\gamma_n \) being decreasing by (14), we conclude by (19) that there exists a natural \(m \) with property

(41) \(x \in \gamma_m \setminus \gamma_{m+1} \).

Consider the finite sequence of triangles \(T^n \in \gamma_n \) such that

(42) \(x \in T_m \subset T_m-1 \subset \ldots \subset T_1 \subset T^0 = T(abc) \).
Putting \(T^m = T(\text{uvw}) \) we have \(\mathcal{C}(\text{uvw}) \subseteq \mathcal{C}_{m+1} \), whence \(\mathcal{C}^*(\text{uvw}) \subseteq \mathcal{C}_{m+1}^* \). Thus

\[
(43) \quad x \in T(\text{uvw}) \setminus \mathcal{C}^*(\text{uvw})
\]

by (42) and (41). The intersection \(X \cap T^m \) being homeomorphic to \(X \) by (20), we have similarly to (9)

\[
(44) \quad uv = \overline{\mathcal{C}^*(\text{uvw})} \setminus \mathcal{C}^*(\text{uvw}) .
\]

Since \(T^m \in \mathcal{C}_m \), hence we conclude from (13) that \(uv \subseteq \mathcal{S}_{m+1}^* \), thus \(uv \subseteq X \) by (25). But the point \(x \) is not in \(X \), so it is not in \(ur \), thereby (43) and (44) give

\[
x \in T(\text{uvw}) \setminus \overline{\mathcal{C}^*(\text{uvw})} .
\]

Applying (39) to the triangle \(T(\text{uvw}) \) in place of \(T(abc) \), which is possible by virtue of (20), we deduce that there exists an arc \(\text{xp}_m \) such that \(\text{p}_m \) lies in the boundary of \(T^m \) and \(\text{xp}_m \cap X = \emptyset \). Using (20) and applying (40) to triangles \(T^{m-1}, T^{m-2}, \ldots, T^0 \) we infer that there is a finite sequence of arcs \(\text{p}_m \text{p}_{m-1} \cap \text{p}_{m-1} \text{p}_{m-2}, \ldots, \text{p}_1 \text{p}_0 \) every of which is disjoint with \(X \) and such that \(\text{p}_i \) belongs to the boundary of \(T^i \) for \(i = 0, 1, \ldots, m-1 \). So the union \(\text{xp}_m \cap \text{p}_m \text{p}_{m-1} \cap \cdots \cap \text{p}_1 \text{p}_0 \) is a continuum which lies in \(T(\text{abc}) \setminus X \) and which joins the point \(x \) with the point \(\text{p}_0 \in ac \cap bc \). Thus if we join \(\text{p}_0 \) with \(y \) by an arc \(\text{p}_0 \text{y} \) such that \(\text{p}_0 \text{y} \cap T(\text{abc}) = (\text{p}_0) \), we obtain a continuum

\[
\text{xp}_m \cup \text{p}_m \text{p}_{m-1} \cup \cdots \cup \text{p}_1 \text{p}_0 \cup \text{p}_0 \text{y} \subseteq E^2 \setminus X,
\]

and therefore the proof of the hereditary unicoherence of \(X \) is finished.

Being hereditarily decomposable and hereditarily unicoherent, \(X \) is a \(\lambda \)-dendroid.

Now we shall prove the main property of the \(\lambda \)-dendroid \(X \), that \(X \) is monostratiform. Let

\[
\phi: X \to \Delta(X)
\]

be the canonical mapping of \(X \) onto the dendroid \(\Delta(X) \), i.e. such a mapping that

\[
\phi^{-1}(d) = S_d \quad \text{for} \quad d \in \Delta(X) ,
\]

where \(S_d \) are the elements of the canonical decomposition \(\mathcal{D} \) (see [3], p. 25). We shall show that \(\Delta(X) \) reduces to a point. To establish this it is sufficient to verify that \(S_n^* \) goes to a point under \(\phi \) for each \(n = 1, 2, \ldots \). In fact, if it is so, each \(S_n^* \) must go onto the same point, because the sequence of continua \(S_n^* \), \(n = 1, 2, \ldots \), is increasing by (13). It implies that the union \(\bigcup_{n=1}^{\infty} S_n^* \) is mapped onto the point, thus \(X \) is by (27).
So, we should demonstrate that

\[(45) \quad \phi(S_n^*) \text{ is a point for each } n = 1, 2, \ldots \]

Recall that if a continuum \(C \) is a tranche (in the sense of Kuratowski, see [8], § 43, IV, p. 139) of an irreducible subcontinuum of an arbitrary \(\lambda \)-dendroid and if \(f \) is a monotone mapping of this \(\lambda \)-dendroid onto a dendroid, then \(f(C) \) is a point (see [3], Theorem 5, p. 26).

Firstly, observe that \(S_1^* = ab \) is a tranche of the irreducible continuum \(S_1^* \). Thus \(\phi(S_1^*) \) is a point by the above reason. Denote this point by \(d \):

\[\phi(S_1^*) = d. \]

Secondly, assume that

\[(46) \quad \phi(S_n^*) = d \]

for some fixed \(n \). The family \(\mathcal{C}_{n-1} \) of oriented triangles being obviously countable, let

\[T^1, T^2, \ldots, T^k, \ldots, \text{ where } T^k \in \mathcal{C}_{n-1} \]

be an arbitrary sequence of all its elements. Thus

\[(47) \quad \mathcal{C}_n = \bigcup_{k=1}^{\infty} \mathcal{C}(T^k) \]

by (14) with \(n \) instead of \(n+1 \), where \(\mathcal{C}(T^k) \) means the same as \(\mathcal{C}(pqr) \) if \(T^k = T(pqr) \). Denote by \(\mathcal{R}_k \) the family of all straight segments \(a'b' \) such that \(T(a'b'c') \in \mathcal{C}(T^k) \). Therefore (47) implies that

\[\{a'b' \mid T(a'b'c') \in \mathcal{C}_n\} = \bigcup_{k=1}^{\infty} \mathcal{R}_k. \]

whence

\[(48) \quad S_{n+1}^* = S_n^* \cup \bigcup_{k=1}^{\infty} \mathcal{R}_k \]

by (13). Consider now oriented triangles \(T_i^k \), terms of the sequence \(\mathcal{C}(T^k) \), where indices \(i \) are defined in the same way as is was done by (4) for triangles \(T_i \) of the sequence \(\mathcal{C}(abc) \). Let \(A_i \) denote the side \(a''b'' \) of the oriented triangle \(T_i^k = T(a''b''c'') \). Hence by definition of \(\mathcal{R}_k \) we have

\[(49) \quad \mathcal{R}_k^* = \bigcup_{i=1} A_i. \]

Applying (5) to the sequence \(\mathcal{C}(T^k) \) we see that

\[(50) \quad A_i \text{ and } A_{i+1} \text{ have an end point in common.} \]

Observe that every segment \(A_i \) is a tranche of an irreducible continuum. Namely the set

\[A_i \cup \bigcup \{uv \mid T(uvw) \in \mathcal{C}(T_i^k)\} \subset S_{n+2}^* \]
is an irreducible continuum, homeomorphic to the closure of the graph of the function \(y = \sin(1/x) \) for \(0 < x \leq 1 \), and it has \(A_0 \) as the only tranche different from a point. By the above argument \(\phi(A_i) \) is a point. Call it \(d'_i \):

\[
\phi(A_i) = d'_i .
\]

If \(\phi(A_{i+1}) = d'_{i+1} \), then \(d'_i = d'_{i+1} \) by (50), and we may omit the indices \(i \) and write

\[
\phi(A_i) = d' \quad \text{for } i = 1, 2, \ldots
\]

Thus by (49)

\[
\phi(\mathcal{R}_k^*) = d' .
\]

But \(\mathcal{R}_k^* \) is a continuum as well as \(S_n^* \) is, and we have

\[
S_n^* \cap \mathcal{R}_k^* = pq ,
\]

where \(T(pqr) = T^k \), which implies by (46) that \(d \) and \(d' \) coincide. So we conclude that

\[
\phi(S_{n+1}^*) = d
\]

by (48). Therefore (45) is established.

Remarks. Some modifications of the above construction lead to various kinds of monostratiform \(\lambda \)-dendroids, e.g. to an example of a monostratiform \(\lambda \)-dendroid without separating points. Since \(X \) is a plane continuum no subcontinuum of which separates the plane, it is tree-like (see [1], the definition on p. 653 and Theorem 6, p. 656). But H. Cook has recently proved, [5], that every \(\lambda \)-dendroid, not necessarily embeddable in the plane, is tree-like. It can be seen from Corollary 1 in [11], p. 379, that \(X \) has the fixed point property. It is not known if all \(\lambda \)-dendroids have this property. For a partial solution see, e.g., [4], where a list of references is given.

References