Open Mappings of Universal Dendrites

by

Janusz J. CHARATONIK

Presented by K. BORSUK on September 12, 1979

Summary. Let D_n be the standard universal dendrite of order n, where $n = 2, 3, 4, \ldots$, (i.e. such a dendrite that all its ramification points are exactly of order n and that they lie densely on each of its arcs). It is proved that all open images of D_n are homeomorphic if and only if $n = 2, 3$ or ω.

All mappings considered in this paper are continuous and all spaces are assumed to be metric. We use the notion of order of a point in a continuum in the sense of Menger–Urysohn (see e.g. [8], §51, I, p. 274). A dendrite means a locally connected continuum containing no simple closed curve. It is known that every image of a dendrite under an open mapping is again a dendrite (see [18], Chapter VIII, (7.7), p. 148 and Chapter X, a statement just before Theorem (1.5) on p. 185). A dendrite is said to be universal if it contains a homeomorphic image of any other dendrite (see [16], Chapter K, p. 137, and [10], Chapter X, §6, p. 318). Observe that if a dendrite X contains a universal dendrite Y, then X is universal itself. To avoid any confusion with other universal dendrites, we accept the following definition.

By Ważewski's dendrite we mean the standard universal dendrite, i.e., a dendrite D_ω such that

1. every ramification point of D_ω if of order ω,

and

2. for every arc A contained in D_ω the set of all ramification points of D_ω which belong to A is a dense subset of A.

It is proved in [16], Chapter H, §16, p. 123 and 124, and §17, p. 124 (cf. (1) and (2) above with condition 1°) and 2°) of §17, p. 124) that

3. any two dendrites satisfying (1) and (2) are homeomorphic.

Lemma. If $f: X \to f(X)$ is an open mapping of a dendrite X and a point $p \in X$ is of order ω in X, then $f(p)$ is of order ω in $f(X)$.

Proof. We already know that $f(X)$ is a dendrite. Since every dendrite is regular in the sense of the theory of order (see [8], §51, I, p. 275, and VI, theorem 4, p. 389).
p. 301; cf. [18], Chapter V, §5, p. 99) the point \(f(p) \) can be either of a finite order or of order \(\omega \). Suppose on the contrary that \(f(p) \) is of a finite order \(n \). Since \(f \) is continuous, there is \(\delta > 0 \) such that if points \(p \) and \(x \) are of distance less than \(\delta \), then their images under \(f \) are of distance less than \(\varepsilon \). Since \(p \) is of order \(\omega \), there is a component \(C \) of \(X \setminus \{p\} \) whose diameter is less than \(\varepsilon \). The component \(C \) is obviously an open subset of \(X \), thus its image \(f(C) \) is an open subset of \(f(X) \setminus \{f(p)\} \). By the continuity of \(f \) we have \(\text{diam} f(C) < \varepsilon \), thus \(f(C) \) is a proper subset of a component \(K \) of \(f(X) \setminus \{f(p)\} \). So let \(y' \in K \setminus f(C) \). Hence there is a point \(y' \) of the arc \(f(p) \) lying in the boundary \(\text{Bd} \ (f(C)) = (f(C) \setminus f(C)) \) of \(f(C) \) and which is different from \(f(p) \). Take \(C = C \cup \{p\} \) and consider \(f(C) = f(C) = f(C \cup \{p\}) = f(C) \cup \{f(p)\} \). It follows that \(\text{Bd} \ (f(C)) \) consists of exactly one point \(f(p) \), a contradiction, since \(y' \in \text{Bd} \ (f(C)) \setminus \{f(p)\} \).

Theorem 1. Every two open images of Ważewski's dendrite are homeomorphic.

Proof. By (3) it is sufficient to prove that any open image of \(D_\omega \) satisfies (1) and (2). Let a mapping \(f: D_\omega \to f(D_\omega) \) be open. Thus \(f(D_\omega) \) is a dendrite. Let \(q \) be a ramification point of \(f(D_\omega) \). Since the order of a point in \(D_\omega \) is never increased when \(D_\omega \) undergoes an open mapping (see [18], Chapter VIII, corollary (7.31), p. 147), there is a ramification point \(p \) in \(D_\omega \) with \(f(p) = q \). But all ramification points of \(D_\omega \) are of order \(\omega \) by (1), thus by virtue of the Lemma the point \(q \) is of order \(\omega \), and so (1) holds for \(f(D_\omega) \).

Now let \(B \) be an arc in \(f(D_\omega) \). Let \(C \) be a component of \(f^{-1}(B) \). Then we have \(f(C) = B \) by [18], Chapter VIII, §7, theorem (7.5), p. 148. Since the set \(R \) of ramification points of \(D_\omega \) is dense on every arc \(A \subset D_\omega \), the set \(R \cap C \) is dense in \(C \), and therefore its image \(f(R \cap C) \) is dense in \(B \). Thus (2) follows from the Lemma, and the proof is complete.

By a universal dendrite of order at most \(n \), where \(n \geq 3 \), we mean a dendrite \(D \) with the property that every ramification point of \(D \) is of order at most \(n \) and that for any dendrite \(D' \) having this property the dendrite \(D \) contains a homeomorphic image of \(D' \). It is known (see [10], Chapter X, §6, p. 322) that a dendrite \(X \) is a universal one of order at most \(n \) if and only if every point of \(X \) is of order less than or equal to \(n \) and \(X \) contains a subdendrite \(D \) such that for every arc \(A \) in \(D \) the set of ramification points of order \(n \) lying in \(A \) is a dense subset of \(A \). Let us accept the following definition. By the standard universal dendrite of order \(n \) we mean a dendrite \(D_n \) such that

(4) every ramification point of \(D_n \) is of order \(n \),
and

(5) for every arc \(A \) contained in \(D_n \) the set of all ramification points of \(D_n \) which belong to \(A \) is a dense subset of \(A \).

It is known (the argumentation is exactly the same as for \(D_\omega \)) that

(6) any two standard universal dendrites \(D_n \) (for the same natural \(n \geq 3 \)) are homeomorphic.
To show some further results concerning open mappings of standard universal dendrites D_n we need a special description of these continua. Namely we describe D_n (for $n \geq 3$) as the inverse limit space of an inverse system $\{X_i, f_{i+1}^i, i=1, 2, \ldots\}$ of finite dendrites X_i (i.e. of dendrites having only a finite number of end points) with monotone onto bonding mappings $f_{i+1}^i: X_{i+1} \to X_i$. The procedure for obtaining D_n is quite similar to that employed by Anderson and Choquet in [1]. To begin with, we recall that an n-od means a continuum homeomorphic to the union of n distinct straight line segments of unit length emanating from the origin. The common point of the segments is called the vertex of the n-od. Let T_n^i denote an n-od composed of n straight line segments of length 4^{-j} each. To define X_i and $f_{i+1}^i: X_{i+1} \to X_i$ for $i=1, 2, 3, \ldots$ we shall proceed by induction. Define X_1 as the unit straight line segment. Let x be the mid-point of X_1 and define X_2 as the union of X_1 and T_1^{n-2} such that the intersection of X_1 and T_1^{n-2} is just x, which is the vertex of T_1^{n-2}. So X_2 is the union of n straight line segments disjoint out of their end-points. Let $f_2^1: X_2 \to X_1$ be the mapping which shrinks T_1^{n-2} to the point x, i.e. such that all the point inverses are degenerate except the one of x which is T_1^{n-2}. Assume now that a dendrite X_i has been defined as the union of n_i-1 straight line segments disjoint out of their end-points, i.e., such that the end points of these straight line segments are either end-points or ramification points of X_i, while each interior point of each of them is a point of order 2 in X_i. Given such a straight line segment, let x denote its mid-point. To each point x such defined we associate in a one-to-one way a set T_2^{n-2}. We take each mid-point x as the vertex of the associated set T_1^{n-2} in such a manner that X_i has only the point x in common with the added copy of T_1^{n-2} and that different copies of T_1^{n-2} are disjoint. All this can clearly be done so carefully that the resulting set X_{i+1} which is by the definition equal to the union of X_i and of n_i-1 copies of T_1^{n-2}, is a finite dendrite, namely a dendrite which is the union of n_i segments. We define $f_{i+1}^i: X_{i+1} \to X_i$ as the mapping which shrinks each T_1^{n-2} (added to X_i to get X_{i+1}) to its vertex, i.e., f_{i+1}^i is the mapping which has degenerate point-inverses for all points of X_i except the mid-points x of the n_i-1 straight line segments, the set X_i is composed of. Thus f_{i+1}^i is continuous and monotone (moreover, it is even an A^*-mapping, i.e., an atomic mapping with only a finite number of nondegenerate point-inverses, see [1], footnote (3) on p. 347). Let X denote the inverse limit set of the inverse system $\{X_i, f_{i+1}^i, i=1, 2, \ldots\}$. Since every X_i is a dendrite and since the bonding mappings f_{i+1}^i are monotone, the inverse limit set X is a dendrite (see [13], theorem 4 (part 3.), p. 229; cf. [12], theorem 4, p. 413). By theorem I of [1], p. 348, the dendrite X is homeomorphic to $\bigcap_{i=1}^{n} \bigcup_{k=1}^{\infty} X_i$, which is obviously equal to $\bigcup_{i=1}^{\infty} X_i$. Thus it can be verified in a routine way that X satisfies both conditions (5) and (6) and therefore is homeomorphic to the standard universal dendrite D_n of order n.

Now we are going to show that Theorem 1 on open mappings of D_n cannot be extended to a similar result on open mappings of D_n for $n \geq 4$. Namely we have the following
THEOREM 2. Given two natural numbers \(n \) and \(m \) with \(n > m \geq 3 \), there exists an open mapping of \(D_n \) onto \(D_m \).

Proof. Let \(D_n \) and \(D_m \) be the inverse limit spaces \(X \) and \(Y \) of the inverse systems \(\{ X_i, f_i^{i+1}, i = 1, 2, \ldots \} \) and \(\{ Y_i, g_i^{i+1}, i = 1, 2, \ldots \} \) respectively, where—as above—all \(X_i \) and \(Y_i \) are unit segments, \(X_i \) and \(Y_i \) are finite dendrites for \(i = 2, 3, \ldots \) obtained in the procedure described above from their predecessors \(X_{i-1} \) and \(Y_{i-1} \) respectively by adding to them in the proper way \(n^{i-2} \) and \(m^{i-2} \) sets \(T_i^{n-2} \) and \(T_i^{m-2} \) correspondingly. For every \(i = 1, 2, \ldots \) we define an open surjection \(\varphi_i: X_i \rightarrow Y_i \).

To this end let \(A_1, A_2, \ldots, A_m, A_{m+1}, \ldots, A_{n-2} \) be the straight line segments which form the \((n-2)\)-od \(T_i^{n-2} \), i.e. \(T_i^{n-2} = \bigcup_{j=1}^{n-2} A_j \), and let \(x \) denote the vertex of \(T_i^{n-2} \).

Let \(\gamma_i: T_i^{n-2} \rightarrow T_i^{m-2} \) be a mapping which is the identity on every of \(A_1, A_2, \ldots, A_m \) and which maps every of \(A_{m+1}, \ldots, A_{n-2} \) isometrically onto a fixed segment of \(T_i^{m-1} \), say \(A_1 \). Thus in particular \(x \) is a fixed point under \(\gamma_i \). It is evident that \(\gamma_i \) is an open surjection. Now we are ready to proceed by induction. Let \(\varphi_1: X_1 \rightarrow Y_1 \) be the identity mapping. We define \(\varphi_2: X_2 \rightarrow Y_2 \) putting \(\varphi_2 = \varphi_1 \) and \(\varphi_2|T_2^{n-2} = \gamma_1 \) (recall that \(X_2 = X_1 \cup T_1^{n-2} \)). Assume that an open mapping \(\varphi_i: X_i \rightarrow Y_i \) is defined in such a way that it is an isometry on each of straight line segments which form the dendrite \(X_i \).

We define \(\varphi_{i+1} \) as the composite of two open mappings \(\alpha \) and \(\beta \) such that \(\alpha: X_{i+1} \rightarrow \alpha(X_{i+1}) \subseteq X_{i+1} \) and \(\beta: \alpha(X_{i+1}) \rightarrow Y_{i+1} \). Recall that every \(X_{i+1} \) is the union of \(X_i \) and of \(n^{i-1} \) copies of \((n-2)\)-od \(T_i^{n-2} \). We admit \(\alpha| X_1 \) to be the identity, and \(\alpha| T_i^{n-2} = \gamma_i \) for every copy of \(T_i^{n-2} \). Thus \(\alpha(X_{i+1}) \) is the union of \(X_i \) and of \(n^{i-1} \) copies of \((m-2)\)-od \(T_i^{m-2} \). Further, we let \(\beta| X_i = \varphi_i \) and for every \(T_i^{m-2} \) which is associated with a straight line segment \(A \) contained in \(X_i \) (i.e. such that the vertex \(x \) of \(T_i^{m-2} \) is the mid-point of \(A \)) the partial mapping \(\beta|T_i^{m-2} \) is defined as a homeomorphism taking \(T_i^{m-2} \) onto the \((m-2)\)-od which is associated with the straight line segment \(\beta(A) \). It is evident from the above definition that \(\varphi_{i+1} \) is an open surjection. Furthermore, it is a routine procedure to verify that the mapping \(\varphi_{i+1} \) is defined in such a way that the diagram

\[
\begin{array}{ccc}
X_i & \xrightarrow{f_i^{i+1}} & X_{i+1} \\
\downarrow \varphi_i & & \downarrow \varphi_{i+1} \\
Y_i & \xleftarrow{g_i^{i+1}} & Y_{i+1}
\end{array}
\]

is exact for every \(i = 1, 2, \ldots \) (it means that the diagram is commutative and \(\varphi_i(x_i) = \varphi_{i+1}(y_{i+1}) \) implies \((f_i^{i+1})^{-1}(x_i) \cap \varphi_{i+1}^{-1}(y_{i+1}) \neq \emptyset \), see [7], §3, IV, p. 19). Therefore it follows that the inverse limit mapping \(\varphi: X \rightarrow Y \) is continuous ([5], Chapter VIII, theorem 3.13, p. 218), surjective (since for every \(i = 1, 2, \ldots \) all four mappings in diagram (7) are surjective) and open ([6], theorem 3, p. 58; see also [14], Theorem 4, p. 61). The conclusion of the Theorem follows from (6).

Although the result discussed in Theorem 1 for \(D_o \) cannot be extended by Theorem 2 to other universal dendrites \(D_n \) where \(n \geq 4 \), it can be proved for the dendrite \(D_3 \).
THEOREM 3. Every two open images of the standard universal dendrite D_3 of order 3 are homeomorphic.

Indeed, let a mapping $f: D_3 \rightarrow f(D_3)$ be open. Thus $f(D_3)$ is a dendrite. Let q be a ramification point of $f(D_3)$. By the same argument as in the corresponding part of the proof of Theorem 1 we see that there is a ramification point p in D_3 with $f(p) = q$. Since all ramification points of D_3 are of order 3 by (4), and since the order of a point does not increase under an open mapping ([18], (7.31), p. 147), we see that the point q is of order 3, and thus (4) holds for $f(D_3)$. Further, the same argument implies that the image of an end point in D_3 is an end point in $f(D_3)$. But in a dendrite the set of all ramification points is dense if and only if the set of all end points is dense. Hence the set of end points of D_3 is dense, and thereby $f(D_3)$ also has a dense set of end points. Thus the set R of ramification points of $f(D_3)$ is dense, and since all of them are of order 3, the intersection $R \cap B$ must be a dense subset of B for every arc B in $f(D_3)$. Thus (5) holds for $f(D_3)$ and the Theorem follows by (6).

It is natural to consider the unit straight line segment $[0, 1]$ as the standard universal dendrite D_2 of order 2. Since every open image of an arc is an arc (see [17], theorem (3.3), p. 375 and [18], theorem (1.3), p. 184; cf. [9], §4, (a), (iii), p. 190, and [11], theorem 2, p. 818) we see that $D_2=[0, 1]$ has the same property as D_3 and D_3 that any two of its open images are homeomorphic. Thus the following corollary is a consequence of Theorems 1, 2 and 3.

COROLLARY. Among all standard universal dendrites $D_2, D_3, ..., D_n, ..., D_\omega$ only D_2, D_3 and D_ω are homeomorphic with all their open images.

We describe now another dendrite having this property. Let F be the union of countably many straight line segments $A_1, A_2, ...$ of lengths $2^{-1}, 2^{-2}, ...$ respectively, emanating from a fixed point p. In other words F is a fan of order ω with the vertex p. It is easy to note that F is the universal dendrite in the class of all dendrites having exactly one ramification point (i.e. in the class of locally connected fans). Similarly to D_2, D_3 and D_ω, also F has the discussed property. In fact, if a mapping $f: F \rightarrow f(F)$ is open, then $f(F)$ is a dendrite, and since the order of a point does not increase under f, the dendrite $f(F)$ has at most one ramification point and the end-points of F are mapped to end-points of $f(F)$. Thus $f(F)$ is either an arc or a (locally connected) fan (compare [3], Theorem 12, p. 32, and [4], Corollary I.2, p. 410, where this statement is established for a wider class of mappings, namely for confluent ones, [2], p. 213 and 214). Since the vertex p of F is the only accumulation point of the set of end-points of F and since every end-point of F is mapped to an end-point of $f(F)$, hence $f(F)$ cannot be an arc. Further, the same argument shows that $f(F)$ cannot be a finite fan (i.e., an n-od for some natural n). Thus it must be an infinite locally connected fan, but every such fan is obviously homeomorphic to F.

In the light of the above results the following problem seems to be interesting.

PROBLEM. Characterize all dendrites X which have the property that

(*) every open image of X is homeomorphic to X.
This is a particular case of a more general problem concerning a characterization of all continua X having property (\ast). Recall that the pseudo-arc in such a continuum ([15], theorem 1.3, p. 260).

REFERENCES

