OPENNESS AND MONOTONEITY OF INDUCED MAPPINGS

WLODZIMIERZ J. CHARATONIK

(Communicated by Alan Dow)

Abstract. It is shown that for locally connected continuum X if the induced mapping $C(f) : C(X) \to C(Y)$ is open, then f is monotone. As a corollary it follows that if the continuum X is hereditarily locally connected and $C(f)$ is open, then f is a homeomorphism. An example is given to show that local connectedness is essential in the result.

All spaces considered in this paper are assumed to be metric. A mapping means a continuous function. We denote by \mathbb{N} the set of all positive integers, and by \mathbb{C} the complex plane. Given a space S, a point $c \in S$ and a number $\varepsilon > 0$, we denote by $B_S(c, \varepsilon)$ the open ball in S with center c and radius ε.

A continuum means a compact connected space. Given a continuum X with a metric d, we let 2^X denote the hyperspace of all nonempty closed subsets of X equipped with the Hausdorff metric H defined by

$$H(A, B) = \max\{\sup\{d(a, B) : a \in A\}, \sup\{d(b, A) : b \in B\}\}$$

(see, e.g., [5, (0.1), p. 1 and (0.12), p. 10]). Further, we denote by $C(X)$ the hyperspace of all subcontinua of X, i.e., of all connected elements of 2^X, and by $F_1(X)$ the hyperspace of singletons. The reader is referred to Nadler’s book [5] for needed information on the structure of hyperspaces.

Given a mapping $f : X \to Y$ between continua X and Y, we consider mappings (called the induced ones)

$$2^f : 2^X \to 2^Y \text{ and } C(f) : C(X) \to C(Y)$$

defined by

$$2^f(A) = f(A) \text{ for every } A \in 2^X \text{ and } C(f)(A) = f(A) \text{ for every } A \in C(X).$$

A mapping between continua is said to be:

— open provided the image of an open subset of the domain is open in the range;
— monotone provided the point-inverses are connected;
— light provided the point-inverses are zero-dimensional.

The following theorem is the main result of this paper.

1. Theorem. Let a continuum X be locally connected, and a mapping $f : X \to Y$ be such that the induced mapping $C(f) : C(X) \to C(Y)$ is open. Then f is monotone.
Proof. Assume \(f \) satisfies the assumptions of the theorem and that it is not monotone. Let \(p \) and \(q \) be two points of \(X \) such that \(f(p) = f(q) \) that belong to different components of \(f^{-1}(f(p)) \). By continuity of \(f \) there is a positive \(\varepsilon \) such that for every continuum \(L \subset Y \) such that \(f(p) \in L \) and \(H(L, \{f(p)\}) < \varepsilon \) the components of \(f^{-1}(L) \) containing \(p \) and \(q \) respectively are distinct. By local connectedness of \(Y \) there is a continuum \(V \) such that \(f(p) \in \text{int} V \) and \(H(V, \{f(p)\}) < \varepsilon \), i.e., \(V \subset B_Y(f(p), \varepsilon) \). Let \(U_p \) and \(U_q \) be components of \(f^{-1}(V) \) containing \(p \) and \(q \) respectively. Since in locally connected continua components of open sets are open \([4, \S 49, \text{II}, \text{Theorem} 4, \text{p.} 230]\), we conclude that \(p \in \text{int} U_p \) and \(q \in \text{int} U_q \). Let \(\delta > 0 \) be such that \(B_X(p, \delta) \subset U_p \) and \(B_X(q, \delta) \subset U_q \).

Let \(\mathcal{B} \) be an order arc in \(C(Y) \) from \(\{f(p)\} \) to \(Y \) through \(V \). Define \(\mathcal{A} \) as a subset of \(\mathcal{B} \) composed of all elements \(L \in \mathcal{B} \) such that the component of \(f^{-1}(L) \) containing \(p \) is distinct from the component of \(f^{-1}(L) \) containing \(q \). Note that \(V \in \mathcal{A} \) and that if \(L, L' \in \mathcal{B}, L \in \mathcal{A} \) and \(L' \subset L \), then \(L' \in \mathcal{A} \). Thus \(\mathcal{A} \) is a connected subset of \(\mathcal{B} \) containing \(\{f(p)\} \) and \(V \). Since \(\mathcal{B} \setminus \mathcal{A} \) is closed, we see that \(\mathcal{A} \) is an open subset of \(\mathcal{B} \). Let \(Q = \sup \mathcal{A} = \inf(\mathcal{B} \setminus \mathcal{A}) \). Then \(Q \in \text{cl} \mathcal{A} \setminus \mathcal{A} \). Denote by \(P \) the component of \(f^{-1}(Q) \) containing both \(p \) and \(q \). Openness of \(C(f) \) implies that \(f \) is open (see \([3, \text{Theorem} 4.3, \text{p.} 243]\); compare also \([2, \text{Theorem} 3.2]\)), so \(f(P) = Q \) \([6, (7.5), \text{p.} 148]\). We will show that \(C(f)(B_{C(X)}(P, \delta)) \) is not open in \(C(Y) \). So, assume the contrary. Then there is a continuum \(K \in B_{C(X)}(P, \delta) \) with \(f(K) \in \mathcal{A} \). Since \(p,q \in P \) and \(H(P,K) < \delta \), we have \(K \cap U_p \neq \emptyset \neq K \cap U_q \). Then \(U_p \cup K \cup U_q \) is a continuum containing both \(p \) and \(q \), whose image \(f(U_p \cup K \cup U_q) = f(K) \) is in \(\mathcal{A} \), contrary to the definition of \(\mathcal{A} \). The proof is finished. \(\square \)

2. Corollary. Let a continuum \(X \) be hereditarily locally connected, and a mapping \(f : X \to Y \) be such that the induced mapping \(C(f) : C(X) \to C(Y) \) is open. Then \(f \) is a homeomorphism.

Proof. It is enough to show that monotone open mappings on hereditarily locally connected continua are homeomorphisms. Assume the contrary, and let \(y \in Y \) be such that \(f^{-1}(y) \) is a nondegenerate continuum in \(X \). Let \(\{y_n\} \) be an arbitrary sequence converging to \(y \). Then continua \(f^{-1}(y_n) \) tend to \(f^{-1}(y) \), so \(f^{-1}(y) \) is a nondegenerate continuum of convergence, contrary to hereditary local connectedness of \(X \). \(\square \)

3. Example. There are a continuum \(X \) and a mapping \(f : X \to X \) such that \(C(f) : C(X) \to C(X) \) is light and open, but not monotone.

Proof. Let \(S = \{z \in \mathbb{C} : |z| = 1\} \) be the unit circle. For \(n \in \mathbb{N} \), put \(X_n = S \), and let \(\varphi_n : X_{n+1} \to X_n \) be defined by \(\varphi_n(z) = z^3 \). Then \(X = \lim(X_n, \varphi_n) \) is the triadic solenoid. Define \(f : X \to X \) by \(f(\{z_1, z_2, \ldots\}) = \{z_1^2, z_2^2, \ldots\} \), and note that \(f \) is well-defined. It has been proved in \([1, \text{Example} 4.5]\) that the restriction \(C(f)(C(X) \setminus \{X\}) \) is two-to-one and \(C(f)^{-1}(X) \) is a singleton. Thus \(C(f) \) is light and it is not a homeomorphism. We will prove that \(C(f) \) is open. To this aim it is enough to show that the mapping is interior at each point of its domain \([6, \text{p.} 149]\), i.e., that for each \(P \in C(X) \) and for each open neighborhood \(U \) of \(P \) in \(C(X) \) we have \(C(f)(P) \in \text{int} C(f)(U) \). For each \(n \in \mathbb{N} \) let \(f_n : X_n \to X_n \) be defined by \(f_n(z) = z^2 \) (and thus \(f = \lim f_n) \), and let \(\pi_n : X \to X_n \) be the projection. Let \(P \in C(X) \) be a proper subcontinuum of \(X \). Then there exists an index \(n \in \mathbb{N} \) such that \(\pi_{n-1}(P) \) is a proper subcontinuum of \(X_{n-1} \), so \(\pi_n(P) \) is an arc of length less than \(2\pi/3 \). Let \(U_n \) be an open arc in \(X_n \) containing \(\pi_n(P) \) and having its length still less
than $2\pi/3$. Then the set $V = \{ A \in C(X) : \pi_n(A) \in U_n \}$ is an open neighborhood of P in X such that the restriction $C(f)|V : V \to C(f)(V)$ is a homeomorphism onto the open set $C(f)(U) = \{ A \in C(X) : \pi_n(A) \in f_{n_i}(U_n) \}$ containing $C(f)(P)$. So interiority of $C(f)$ at P is shown in the case $P \neq X$. To prove that $C(f)$ is interior at X consider, for $n \in \mathbb{N}$, the sets $V_n = \{ A \in C(X) : \pi_n(A) = X_n \}$ and note that the family $\{ V_n : n \in \mathbb{N} \}$ is a local base of (closed) neighborhoods of X on $C(X)$. So, it is enough to prove that $C(f)(V_n) \supset V_n+1$. To this end take $A \in V_n+1$, and let $B \in X$ be such that $f(B) = A$. Since $f_{n+1}(\pi_{n+1}(B)) = \pi_{n+1}(f(B)) = \pi_{n+1}(A) = X_{n+1}$, we see that $\pi_{n+1}(B)$ is an arc in X_{n+1} of length at least π. Thus $\pi_n(B) = \varphi_n(\pi_{n+1}(B)) = X_n$, i.e., $B \in V_n$, whence it follows that $A = f(B) \in C(f)(V_n)$. The proof is then complete.

In connection with Theorem 1 and Example 3 it would be interesting to know if a stronger result is true, namely whether or not the conclusion of Theorem 1 can be deduced from local connectedness of Y only (without assuming local connectedness of X). In other words we have the following question.

4. **Question.** Can the assumption of local connectedness of the domain continuum X be relaxed to that of the range continuum Y in Theorem 1?

References

Mathematical Institute, University of Wrocław, PL. Grunwaldzki 2/4, 50-384 Wrocław, Poland
E-mail address: wjcharat@hera.math.uni.wroc.pl

Departamento de Matemáticas, Facultad de Ciencias, Universidad Nacional Autónoma de México, Circuito Exterior, Ciudad Universitaria, 04510 México, D. F., México
E-mail address: wjcharat@lya.fcienicas.unam.mx