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Dynamic Nonlinear Effect on Lasing in a Random Medium
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We have studied both experimentally and numerically the dynamic effect of nonlinearity on lasing in
disordered medium. The third-order nonlinearity not only changes the frequency and size of lasing
modes, but also modifies the laser emission intensity and laser pulse width. When the nonlinear
response time is longer than the lifetime of the lasing mode, the nonlinearity changes the laser output
through modifying the size of the lasing mode. When the nonlinear response is faster than the buildup
of the lasing mode, positive nonlinearity always extracts more laser emission from the random medium
due to the enhancement of single particle scattering.
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FIG. 1. Time-integrated spectra of laser emission from a
PMMA sheet with dye and microparticles. The incident
pump intensities are 2:0� 1012 W=m2 (a), and 4:0�
1012 W=m2 (b). The top spectrum is shifted vertically for
closely packed ZnO nanoparticles with average diameter clarity.
Over the past decade, there has been considerable
interest in nonlinear optical processes in disordered me-
dia [1]. It has been shown that optical nonlinearity can
modify light transport in disordered medium [2,3]. The
coherent backscattering peak exhibits additional features
in the presence of third-order nonlinearity [4]. Temporal
fluctuation of scattered waves in nonlinear disordered
medium leads to instability of the speckle pattern [5].
In those studies, to avoid absorption, the probe light
frequency is far away from any resonant frequency of
the nonlinear material. The nonresonant nonlinearity can
be assumed to be of instantaneous response. We intend to
understand the nonlinear effect in active random media.
The emitted light (at the resonant frequency) experiences
resonant nonlinearity, which is much stronger than non-
resonant nonlinearity. Moreover, the nonlinear response
time becomes finite.

Recent studies illustrate that adding gain to a disor-
dered medium leads to lasing in the long-lived eigen-
modes [6,7]. Despite the modes with long lifetime
preferably being amplified, their wavefunctions are not
modified by the presence of gain. However, nonlinearity
can change the eigenmodes of a disordered system. In
random lasers nonlinear effect is significant because spa-
tial confinement of lasing modes results in high laser
intensity.

In this Letter, we study the effect of nonlinearity on
lasing in a disordered medium. The experimental evi-
dence of the change of lasing modes is presented first. It
is followed by numerical simulation of a model system
with third-order nonlinearity. Our results demonstrate
that nonlinearity not only modifies the frequency and
size of the eigenmodes of a disordered system, but also
changes laser emission intensity and laser pulse width of a
random laser. The nonlinear response time plays a crucial
role in the dynamic nonlinear effect on random lasing.

We used two types of random media in our experi-
ments. One is poly(methyl methacrylate) (PMMA) sheets
containing rhodamine 640 (Rh640) perchlorate dye and
titanium dioxide (TiO2) microparticles, the other is
0031-9007=03=91(6)=063903(4)$20.00 
100 nm. The dye concentration in PMMA is 10 mM.
The TiO2 particles have an average diameter of 0:4 �m.
The density of TiO2 particles is �1:4� 1012 cm�3. The
PMMA sheet is optically excited by the second harmon-
ics of a mode-locked Nd:YAG laser. The spectrum of
emission from the sample is measured by a 0.5-meter
spectrometer with a charge-coupled device array detec-
tor. When pump intensity exceeds the lasing threshold,
discrete lasing modes emerge in the emission spectrum.
As the pump intensity increases, the gain spectrum of
dye molecules shifts towards longer wavelength. This
redshift is caused by excited state absorption [8], and
has been confirmed experimentally in neat dye solution
[9]. As shown in Fig. 1, additional lasing modes appear
on the long wavelength side, while some lasing modes
on the short wavelength side disappear. However, indi-
vidual lasing modes shift towards shorter wavelength,
as marked in Fig. 1. Typically optical gain pulls the
frequencies of lasing modes towards the peak of gain
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spectrum (frequency pulling effect). In our experiment,
the lasing modes move in the opposite direction as the
gain spectrum. This suggests the spectral shift of lasing
modes is caused by nonlinearity. Nonlinear Kerr effect
has been observed in a Rh640 solution containing TiO2

particles [10]. The refractive index n changes linearly
with light intensity I: n � n0 � n2I, where n0 is the
linear refractive index, n2 is the nonlinear Kerr coeffi-
cient. The nonlinearity is contributed mainly by dye
molecules. The value of n2 in our samples is in the range
�10�14 to �10�15 m2=W. Above the lasing threshold,
the excitation intensity is on the order of 1011 W=m2.
Thus the change of refractive index 
n ranges from
�10�3 to �10�4. The negative sign of n2 explains the de-
crease of lasing wavelengths as the pump intensity in-
creases. The wavelength shift is in the range 0.1–1.0 nm,
which is on the same order of the experimental shift.

In addition to time-integrated spectra, we measured
time-resolved lasing spectra to track the spectral shift of
lasing modes in time. Figure 2 shows a spectral-temporal
image of laser emission from closely packed ZnO powder.
The ZnO powder is optically excited by 20 ps pulses from
a frequency-tripled Nd:YAG laser. Laser emission from
ZnO powder is dispersed by a 0.3-meter spectrometer,
then directed into a Hamamatsu streak camera. The las-
ing modes at a shorter wavelength are redshifted with
time, while the lasing modes at a longer wavelength are
blueshifted with time. The modes in the center do not
shift in wavelength. For example, the mode labeled A
shifts from 387.76 nm at t � 40 ps to 387.96 nm at t �
130 ps. The mode labeled B shifts from 390.69 nm at t �
40 ps to 390.58 nm at t � 105 ps. The wavelength of
mode C remains nearly constant in time.

The temporal shift of lasing frequencies must result
from dynamic change of the refractive index of ZnO. It is
known that ZnO has a large third-order nonlinearity near
its band edge [11]. The values of its third-order nonlinear
FIG. 2. A spectral-temporal image of laser emission from
ZnO powder.
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coefficient 
�3� range from 10�16 to 10�14 m2=V2 at room
temperature. The nonlinear response of ZnO is also fast:
its nonlinear response time is measured to be 160 fs near
band edge [12].

To understand the nonlinear effect on random lasing,
we performed numerical simulation based on the finite-
difference time-domain (FDTD) solution of Maxwell
equations and rate equations for electronic populations
[13,14]. The model system is one-dimensional simplifica-
tion of the real experiment. The binary layers are made of
dielectric materials with dielectric constants of �1 � �0
and �2 � 9�0, respectively. The thickness of the first
layer, which simulates the gain medium, is a random
variable: a � a0�1� wa��, where a0 � 400 nm, wa de-
scribes the strength of randomness, and � is the random
value in the range ��0:5; 0:5	. The thickness of the second
layer, which simulates the nonlinear medium, is b �
b0�1� wb ��, where b0 � 100 nm, wb is the strength of
randomness, and � is random value in the range
��0:5; 0:5	. For simplicity, the gain component and the
nonlinear component are separated in our model. The
dynamics of electronic populations in the gain layers is
described by four-level rate equations, with parameters
similar to those in Ref. [14]. In the nonlinear layers, the
third-order nonlinearity is described by the nonlinear
polarization [15] PNL�x; t� � �0


�3�E�x; t�
R
1
�1 g�t� �� �

jE�x;��j2d�, where 
�3� is the third-order suscepti-
bility and E is the electric field. The casual response
function g�t� �� � �1=�0� exp���t� ��=�0	 for t � �,
and g�t� �� � 0 for t < �, where �0 is the nonlinear
response time. To incorporate the nonlinearity with fi-
nite response time into the FDTD algorithm, we intro-
duce a new function G�x; t� 


R
1
�1 g�t� ��jE�x;��j2d��

�1=�0�
R
t
0 e

��t���=�0 jE�x;��j2d�. The differential equation
for G�x; t� can be derived as

dG�x; t�
dt

� �
G�x; t�
�0

�
jE�x; t�j2

�0
: (1)

The electric field E is related to the electric dis-
placement D by accounting for the linear polariza-
tion PL and the nonlinear polarization PNL: E�x; t� �
�D�x; t� � PL�x; t� � PNL�x; t�	=�0�1. Since PL �
�0


�1�E and PNL � �0

�3�EG, the effective dielectric

constant ��x; t� � �1 � 
�1� � 
�3�G�x; t�, where 
�1� is
the linear susceptibility. When light frequency is far
from any resonant frequency, �0 ! 0, the nonlinearity
becomes instantaneous. g�t� �� � ��t� ��, and
G�x; t� � jE�x; t�j2. The nonlinear dielectric constant � �
�L � 
�3�jEj2, where �L � �1 � 
�1� is the linear dielec-
tric constant.

To simulate pulsed pumping, the external pumping
term in the rate equations represents a Gaussian pulse
of width 20 ps: Pr�t� � 2� 108e�ln2 �t�t0�2=t20 1=s, where
t0 � 10 ps. We first turn off the nonlinearity by setting

�3� � 0 to simulate lasing in linear random medium. The
random structure consists of 50 layers with wa � wb �
0:9. The radiative transition of the four-level system is
063903-2
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centered at  a � 389 nm with 7 nm spectral width.
We choose the pumping rate so that only one mode lases.
The frequency of the lasing mode does not exhibit any
noticeable change during the lasing process. Next we
include the nonlinearity. We choose the value of 
�3� to
be 1:2� 10�16 m2=V2, close to the measured value for
ZnO at room temperature [12]. Figure 3 plots temporal
evolution of lasing spectra obtained by Fourier trans-
form of the electric field in 2.6 ps intervals. For nega-
tive (positive) nonlinearity 
�3� < 0 (
�3� > 0), the
lasing mode first shifts towards shorter (longer) wave-
length as the laser intensity increases, then shifts to
longer (shorter) wavelength as the laser intensity de-
creases. These results can explain qualitatively the ex-
perimental observation of lasing frequency shift with
time. As shown in Fig. 2, the laser pulses in ZnO powder
rise quickly then decay slowly. The rising edge of the laser
pulses is too short to detect a temporal shift of the lasing
frequency. However, the falling edge of the laser pulses is
long enough to observe noticeable shift of lasing fre-
quency with time. In the presence of population inversion,

�3� is positive (negative) for photon frequency below
(above) the band gap. For the lasing modes whose fre-
quencies are below (above) the ZnO band edge, since

�3� > 0 (
�3� < 0), they shift towards shorter (longer)
wavelength in the falling edge as in Fig. 3(b) (Fig. 3(a)).
For the lasing modes at the band edge, 
�3� � 0; thus their
frequencies remain nearly constant with time. The wave-
length shift in our calculation is �1–2 �A, close to the
experimental value.

The spatial size of lasing modes also changes in the
presence of third-order nonlinearity. When only one
mode lases, the size of the lasing mode can be char-
acterized by the inverse partition ratio r�t� �
�
R
jE�x; t�j2dx�2=

R
jE�x; t�j4dx. Figure 4 plots r�t� of one

lasing mode (the same one as in Fig. 3) in both linear and
nonlinear cases. For this mode, when 
�3� > 0 (
�3� < 0),
r�t� increases (decreases) during the lasing period. We
repeat the calculation for lasing modes in many random
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FIG. 3. Temporal evolution of lasing spectra calculated for
(a) 
�3� � �1:2� 10�16 m2=V2, (b) 
�3� � 1:2� 10�16 m2=V2.
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configurations. However, we do not find any definite rela-
tion between the sign of the nonlinearity and the size
change of the lasing modes. This is understandable be-
cause the eigenmodes of a disordered medium are cha-
otic; i.e., a small change of the medium at one point in
space already leads to a large unpredictable change of the
eigenmode structure [16].

Optical nonlinearity not only changes the frequency
and size of lasing modes, but also modifies the intensity
and duration of laser pulses. The change of laser output is
sensitive to the nonlinear response time �0. We calculate
the laser pulses by fixing the value of 
�3� and varying �0.
Figure 5 plots the total laser emission energy U�t� �
�1=2�

R
�0�jE�x; t�j2dx for 
�3� � �1:2� 10�16 m2=V2.

We first set �0 equal to the experimentally measured value
(160 fs) of passive ZnO near its band edge [12]. For
positive (negative) 
�3�, the laser pulse becomes weaker
(stronger) than that in the linear case. Next we repeat the
calculation with smaller �0 since the nonlinear response
time is shortened in the presence of stimulated emission.
As shown in Fig. 5, when �0 � 6:5 fs, the behavior of the
laser pulse becomes totally different. For positive (nega-
tive) 
�3�, the laser pulse becomes stronger (weaker) and
longer (shorter) than that in the linear case.

From the calculation of many random lasing modes,
we conclude that the effect of nonlinearity on laser
pulse intensity and width depends on the relative magni-
tude of two time scales. One is the nonlinear response
time �0, and the other is the lifetime �c of the lasing
mode in the passive medium. �c can be obtained by
launching a pulse at the frequency of the lasing mode in
the passive medium and observing the temporal decay of
the electric field [6].When �0 is longer than �c, the change
of laser pulse intensity and width is related to the size
change of the lasing mode. If the size of the lasing mode
decreases (increases) in the presence of nonlinearity, light
confinement gets better (worse). The decrease (increase)
of light leakage is equivalent to an increase (decrease) of
20 25 30 35 40 45

872

876

880

884

r(
t)

  (
nm

)

t  (ps)

FIG. 4. Spatial size of the lasing mode r�t� calculated for

�3� � 0 (solid line), 
�3� � �1:2� 10�16 m2=V2 (dotted
line), and 
�3� � 1:2� 10�16 m2=V2 (dashed line).
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FIG. 5. Laser emission energy U�t� calculated for (from top
to bottom) 
�3� � 1:2� 10�16 m2=V2 and �0 � 6:5 fs; 
�3� �
�1:2� 10�16 m2=V2 and �0 � 160 fs; 
�3� � 0; 
�3� � 1:2�
10�16 m2=V2 and �0 � 160 fs; 
�3� � �1:2� 10�16 m2=V2

and �0 � 6:5 fs.
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the quality factor of the random cavity. Hence, lasing
lasts longer (shorter), and laser emission is stronger
(weaker). When �0 is shorter than �c, the change of laser
output depends only on the sign of 
�3�; i.e., positive
(negative) nonlinearity always extracts more (less) laser
emission from the random medium at the same pumping
rate. This is because when the nonlinear response is faster
than the buildup of the lasing mode, the lasing mode
cannot respond fast enough to the nonlinear refractive
index change. The phase of scattered light changes
quickly due to rapid change of refractive index with
intensity. The absence of constant phase relations among
light waves scattered by different particles undermines
the interference effect. Hence, the effect of single particle
scattering becomes dominant over the collective effect of
many particle scattering. For 
�3� > 0 (
�3� < 0), the
refractive index contrast of the binary layers increases
(decreases) as the laser intensity increases. Light scatter-
ing of a single particle becomes stronger (weaker). The
increase (decrease) of scattering strength results in more
(less) efficient lasing, i.e., higher (lower) laser intensity
and longer (shorter) lasing period.

In conclusion, we demonstrate that nonlinear refrac-
tion not only changes the frequency and size of random
lasing modes, but also modifies the laser emission inten-
sity and laser pulse duration. The nonlinear effects in
random lasers are quite similar to those in conventional
lasers and amplifiers [17,18]. However, the nonlinear re-
sponse time plays a crucial role in random lasers: it
determines how nonlinearity affects the lasing process,
either through single particle scattering or collective
scattering of many particles.
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