A tectonic model for Cenozoic igneous activities in the
esternal Indo–Asian collision zone

Jiang-Hai Wang a,b, An Yin b,*, T. Mark Harrison b, Marty Grove b,
Yu-Quan Zhang a, Guang-Hong Xie a

Abstract

Geochronologic dating and compilation of existing age data suggest that Cenozoic activities in the eastern Indo–
Asian collision zone of southeast China and Indochina occurred in two episodes, each with distinctive geochemical
signatures, at 42–24 Myr and 16–0 Myr. The older rocks are localized along major strike–slip faults such as the Red
River fault system and erupted synchronously with transpression. The younger rocks are widely distributed in rift
basins and are coeval with east–west extension of Tibet and eastern Asia. Geochemical data suggest that the early
igneous phase was generated by continental subduction while the late episode was caused by decompression melting of a
metasomatically altered, depleted mantle. The magmatic gap between the two magmatic sequences represents an
important geodynamic transition in the evolution of the eastern Indo–Asian collision zone, from processes controlled
mainly by crustal deformation to that largely dominated by mantle tectonics. © 2001 Elsevier Science B.V. All rights
reserved.

Keywords: Indian Plate; plate collision; continental subduction; transpression; extension; Xizang China

1. Introduction

Cenozoic activities in northern Tibet have been
variably attributed to continental subduction [1],
convective removal of the mantle lithosphere [2],
extension along strike–slip faults [3], and slab
break-off [4]. In part, this lack of consensus re-

E-mail: wangjh@gig.ac.cn
* Corresponding author. Fax: +1-310-825-2779;
E-mail: yin@ess.ucla.edu

0012-821X/01/$ – see front matter © 2001 Elsevier Science B.V. All rights reserved.
PII: S 0 0 1 2 - 8 2 1 X (0 1) 0 0 3 1 5 - 6
This region is characterized by high topographic relief and is bound by a series of north- and northwest-striking Cenozoic faults: to the west by the Gaoligong and Batang–Lijiang strike-slip systems, to the east by the Longmen Shan thrust belt and the Xiaojiang fault, and to the south by the Red River fault [11] (Fig. 1). South of the Red River fault, the Indochina block is highly deformed in the north but behaves approximately like a rigid block in the south. Both Cenozoic igneous rocks and a series of early-middle Cenozoic basins are localized in eastern Tibet [13] along a narrow belt following the Nangqian thrust belt, the Batang–Lijiang fault system, and the Red River Shear Zone (RRSZ) (Fig. 1). In contrast, Cenozoic igneous rocks are widespread in Indochina (Fig. 1).

The Cenozoic deformational history of the eastern Indo–Asian collision zone may be divided into three stages: (1) Eocene–Oligocene (~40–24 Myr) transpression in eastern Tibet, (2) early-middle Miocene (24–17 Myr) transtension in eastern Tibet, and (3) late Neogene–Quaternary east–west extension widespread in eastern Tibet and Indochina. The currently right-slip Red River fault previously accommodated left-slip shear between ~30 and 17 Myr [10,14,15]. While several authors [16,17] suggest that the southeastern RRSZ experienced regional extension between 34 and 25 Myr, the early mid-Tertiary development of the Lanping–Simao fold belt directly south of the RRSZ (Fig. 1) and associated development of late Eocene–late Oligocene compressional basins indicate that the region was undergoing contraction [13]. The proposed kinematic link between the development of the Lanping–Simao fold belt and left-slip ductile shearing along the RRSZ [18] implies that transpressional tectonics in the Red River region may have started as early as ~42 Ma. Similarly, the northern extension of the RRSZ along the Batang–Lijiang fault system also underwent east–west contraction during the Paleogene [19]. The east–west contraction in the north and transpression in the south along north- and northwest-striking strike-slip fault systems along the eastern margin of Tibet gave way to transtension in the latest Oligocene. This transition is well documented along the RRSZ between 24 and 17 Myr [20] from thermochronology. Transtension was replaced by east–west and northwest–southeast extension in the late Neogene. The extension is manifested by north-striking active normal faults and associated extensional basins north and south of the active right-slip Red River fault in eastern Tibet [10,18,21] and Indochina [21,22]. Similar to the relationship in central Tibet, north-striking normal faults in the Red River area and Indochina are kinematically linked with right-slip faults (for example, the relationship between active normal faults near Dali and the right-slip Red River fault, Fig. 1).

2. Geochronology and geochemistry

While the tectonic history of eastern Tibet is relatively well established, the relationship between deformational processes and the widespread occurrence of Cenozoic igneous activities has not previously been studied. Most previously determined ages of Cenozoic igneous rocks in the eastern Indo–Asian collision zone were determined by the K–Ar method [13,23,24] and are of variable quality or difficult to interpret. 40Ar/39Ar ages are in general more reliable as they permit direct tests of the underlying assumptions in the K–Ar dating method [25]. New 40Ar/39Ar ages and isotopic analyses of Cenozoic igneous rocks provide clues as to a causal relationship (see appendices 1–7 in the EPSL Online Background Dataset1 for analytical methods and complete geochronological and geochemical data). Coupled with previously published results [17,26–28], our geochronological data reveal two distinctive magmatic episodes in eastern Tibet and Indochina: one between 42 and 24 Myr, and another since 16 Myr (Fig. 1). The older volcanic rocks and minor intrusions are distributed along the entire length of the RRSZ and its northern extension, the Batang–Lijiang fault system and the Nangqian thrust belt (Fig. 1). In contrast, the younger age group is distributed along the

Fig. 1. Cenozoic tectonic map of eastern Tibet and Indochina [17,19,27,46,47].
southern segment of the active Red River fault and in the Indochina block to the south (Fig. 1). Systematic dating of Neogene–Quaternary intraplate activities in the Indochina block [17] reveals essentially continuous basaltic eruptions since \(\sim 16 \) Myr, coinciding with cessation of sea-floor spreading in the South China Sea [29] and termination of transtension along the RRSZ at \(\sim 17 \) Myr [20].

Rocks of the earlier igneous activity (42–24 Ma) in the eastern Indo–Asian collision zone include syenite, trachyte, shoshonitic lamprophyre and basaltic trachy andesite [23,24,30,31], which entrained the xenoliths of garnet- and clinopyroxene-bearing amphibolite, granulite and pyroxenite. A preliminary calculation of \(P-T \) conditions for the xenoliths at Liuhe and Madeng (Fig. 1) suggests that the equilibrated pressure and temperature of coexisting minerals range from 0.6 to 1.0 GPa and from 780 to 830°C, respectively. This result indicates that the xenoliths came from a depth of greater than 23–37 km and provides an upper bound for the depth of melt segregation. The full discussion of the composition data and

![Graph A](image1.png)

![Graph B](image2.png)

Fig. 2. Multi-element plots for Cenozoic igneous rocks in eastern Tibet. (A) Trace element data normalized to the primitive mantle for representative analyses of the earlier-phase high-potassic magmatic activities. (B) Trace element data normalized to the primitive mantle for representative analyses of the younger-phase high-potassic volcanic activities.
calculation procedures will be presented separately. We also calculated the P–T conditions for melt segregation by comparing the Mg-15 normalized compositions of the earlier-phase igneous rocks with high contents of MgO ($>7.5\%$) with parameterized hydrous experimental melt compositions [22]. The result shows that the conditions for melt segregation occurred at pressures of 1.0–1.2 GPa ($\sim 35–43$ km deep) and 960–1050$^\circ$C. Combining the P–T conditions from the xenoliths and chemical compositions of the earlier-phase magmatic rocks, we consider that the depth of melt segregation ranges from 23 to 43 km.

Compositionally, the earlier-phase high-potassic igneous rocks are characterized by relatively low TiO$_2$ ($<1.0\%$), P$_2$O$_5$ ($<0.6\%$) and FeO* ($<9\%$), and high Na$_2$O (1.3–5.1%) and K$_2$O (3.4–5.2%), coupled with high contents of incompatible trace elements. They are ultra-potassic or shoshonitic, and generally similar to Neogene high-potassic igneous rocks in northern Tibet [1,23]. The chondrite-normalized REE patterns of the early magmatic phase show negative Eu anomalies [2,4], suggesting that plagioclase is a major phase involved in fractional crystallization. This is consistent with the petrographical observation that plagioclase is one of the phenocrysts. The patterns of normalized trace elements exhibit pronounced negative anomalies in Nb, Ta, Ti and P (Fig. 2A), whereas the content of SiO$_2$ varies widely in the range of 52.8–69.2%. This indicates the involvement of a subduction-related component in the earlier magmatic phase [4]. The Sr and Nd isotopes of the earlier phase show a relatively broad range of 87Sr/86Sr with more restricted 143Nd/144Nd ratios (Fig. 3). In northern and eastern Tibet, high-potassic igneous rocks have high 87Sr/86Sr (0.705–0.710), 206Pb/204Pb (18.52–19.17), 207Pb/204Pb (15.78–15.60) and 208Pb/204Pb (38.56–39.98) ratios, but low 143Nd/144Nd (0.5120–0.5126) ratios [23–24]. Their Nd and Sr isotopic compositions lie in the enriched extension of the mantle array but fall far outside the fields of MORB and Hawaiian basalts (Fig. 3). The similarity in Nd and Sr isotopic compositions between the earlier igneous rocks and volcanic rocks in west Yunnan [30] indicates that they were derived from the same magmatic source. The Sr–Pb and Nd–Pb isotopic data also plot outside the field of oceanic basalts (Fig. 4A,B). The above signatures of Pb, Sr and Nd isotopes argue against exclusively asthenospheric or mantle plume sources. No correlation between 207Pb/204Pb and Ce/Pb or between 143Nd/144Nd and Ta/Nd or Ba/Nb ratios also argues against the mixing of asthenospheric and highly enriched lithospheric sources. In 87Sr/86Sr vs. 206Pb/204Pb and 143Nd/144Nd vs. 206Pb/204Pb diagrams (Fig. 4A,B, cf. Fig. 3), the data mainly plot in or near the EM2 field. This indicates that the earlier magmatic phase may be derived from an EM2 mantle. However, some data deviate from the EM2 field, suggesting an input of continental materials with low 206Pb/204Pb and 143Nd/144Nd ratios and high 87Sr/86Sr ratios into mantle-derived melts (Fig. 4A,B). The high 87Sr/86Sr and low 143Nd/144Nd isotope signatures of the earlier phase (Fig. 3) require mantle sources with a time-integrated history of enrichment in LREE and Rb. The most plausible explanation is to as-
cribe these combined trace-elemental and isotopic observations to a metasomatized subcontinental lithospheric mantle source before the onset of partial melting that led to the formation of early high-potassic igneous rocks [2,31]. The elemental enrichment results in an increase in U/Pb, Rb/Sr and Th/U ratios and a decrease in Sm/Nd ratios relative to the depleted mantle. The enrichment process also led to the stabilization of phlogopite-bearing mineral assemblage [2].

The younger-phase activity (16–0 Ma) in the eastern Indo–Asian collisional zone produced alkali basalt, basanite, trachy basalt and basaltic trachy andesite. Xenoliths of spinel-lherzolite and harzburgite were found in the volcanic rocks near Maguan (shown in locality (8) of Fig. 1). The occurrence of mantle xenoliths suggests that the mantle-derived high-potassic melts ascended rapidly avoiding significant interaction with crust and large-scale fractional crystallization. The estimated pressures and temperatures for the spinel-facies lherzolite at Maguan are 1.7–2.0 GPa (∼59–66 km deep) and 980–1000°C, respectively [32]. In the above calculation, we assumed that the crustal thickness is 40 km, which is the average value for the current crust in the Yunnan region [33]. The P–T conditions for melt segregation were also estimated by comparing the Mg-15 normalized compositions of the younger-phase volcanic rocks with parameterized hydrous experimental melt compositions [22]. The result suggests that the conditions for melt segregation occurred at pressures of 1.6–2.3 GPa (∼55–76 km deep) and 1250–1400°C. When combining the estimates from the xenoliths and melt chemistry, we conclude that the younger-phase high-potassic melts segregated at depths of 55–76 km.

The geochemistry of the younger-phase igneous activity is characterized by high-potassic calc-alkalic or shoshonitic compositions. They are high in TiO₂ (>,2%), P₂O₅ (>,0.6%), FeO* (>,9%), Na₂O (2.4–4.0%), K₂O (2–5%) and incompatible trace elements. The positive anomalies in Nb and Ta (Fig. 2B, cf. Fig. 2A), high Ce/Pb (10.44–23.88) and Nb/U (36.07–65.82), and low La/Nb (0.38–0.53) indicate a similarity to oceanic island basalts [2]. They have low ⁸⁷Sr/⁸⁶Sr (0.703–0.705), ²⁰⁶Pb/²⁰⁴Pb (18.17–18.39), ²⁰⁷Pb/²⁰⁴Pb (15.51–15.57) and ²⁰⁸Pb/²⁰⁴Pb (38.03–38.69), but high ¹⁴³Nd/¹⁴⁴Nd (0.5127–0.5131). Nd and Sr isotopic compositions of these rocks plot in or near the MORB quadrant (Fig. 3). The striking resemblance in Nd and Sr isotopic compositions between the younger-phase volcanic rocks in the eastern Indo–Asian collision zone and Hawaiian basalts strongly argues against significant crustal contamination (Fig. 3). Thus, we consider that the geochemistry of the younger phase nearly reflects its original source compositions without significant continental contamination or fractional crystallization during magma ascent. If the magmatic
melts were derived from an enriched Precambrian mantle, these volcanic rocks would have been characterized not only by high contents of K2O and incompatible elements, but also by relatively high 87Sr/86Sr and low 143Nd/144Nd ratios. However, the apparent decoupling between isotopic and elemental compositions indicates that the younger magmatic activity was derived from a depleted mantle source enriched by recent mantle metasomatism. The Sr–Pb and Nd–Pb isotopic compositions of the younger-phase igneous activity (Fig. 4A, B) clearly reflect a hybrid of 206Pb/204Pb-poor EM1 and MORB mantle sources. The Neogene–Quaternary basalts in Vietnam are a noticeable exception. These rocks erupted during the younger-phase igneous activity in the eastern Indo–Asian collision zone. However, this phase of volcanism in Vietnam may be further divided into two episodes by their individual geochemical signatures. In the early episode, the rocks are high-Si, low-Fe quartz and olivine tholeiites trapping a relatively refractory, lithospheric mantle-type source [22,34,35]. In the later episode, the rocks are low-Si, high-Fe olivine tholeiites, alkali basalts and basanites, trapping a fertile, asthenospheric source [22,34,35]. We interpret both episodes of volcanism in Vietnam as a result of a continuous lithospheric extension driven by the asthenospheric flow.

3. Tectonic model

To explain the episodic activities (Fig. 5), its geochemical characteristics (Figs. 2–4), and its spatial and temporal relationships to the major structures (Fig. 1) in the eastern Indo–Asian collision zone, we propose a new tectonic model. First, contraction along the Batang–Lijiang fault system and development of the Lanping–Simao fold belt in the early Tertiary caused local continental subduction along the RRSZ [18] leading to fluid infiltration into the overlying mantle wedge and subsequent melting (Fig. 6a). We interpret the narrow belt of late Paleocene to early Miocene basins in eastern Tibet, from the Nangqian thrust belt to the Lanping–Simao fold belt (Fig. 1), as representing foreland basins formed by transpression (Fig. 1). This proposal is similar to Meyer et al.’s [36] model for northern Tibet. The interpretation of Cenozoic strata in eastern Tibet as contraction-related deposits appears plausible for the Nangqian thrust belt to the north and the Lanping–Simao fold belt to the south where Cenozoic strata are clearly associated with thrusting and folding [13,18] (Fig. 1). While it has recently been suggested [27] that the Paleogene igneous activity in eastern Tibet is due to convective removal of the lower lithosphere beginning at ~40 Myr, this mechanism has been shown to be not only physically implausible [37] but also inconsistent with the geologic observation that the igneous activities were spatially and temporally associated with Paleogene contractional or transpressional deformation as discussed in this paper.

The 24–16 Myr magmatic gap coincides with an interval of transtension along the RRSZ [26] between 24 and 17 Myr. In addition to halting the flux of volatiles into the underlying mantle wedge, the transition to transtension may have also thinned or removed the crustal root created during the earlier phase of transpression (Fig. 6b), substantially restricting the conditions appropriate for generating partial melting.

The younger-phase igneous activity is temporally associated with widely distributed east–west extension in eastern Tibet and Indochina since the
late Miocene [21] (Fig. 6c). Along the Red River fault, this is manifested by the development of several north-striking normal faults that merge with the coeval right-slip Red River fault (Fig. 1) [11]. This relationship between north-south-striking normal faults and west-northwest-striking right-slip faults is similar to that observed in southern Tibet (Fig. 1) [38]. This newly established tectonic regime is not restricted to the eastern Indo-Asian collision zone, but is widespread throughout eastern Asia, including the main part of the Tibetan plateau directly north of the indenting Indian continent (Fig. 6d). In Tibet, significant east-west extension began at about 8–4 Myr [39], although localized extension may have occurred earlier [40]. Although morphology of rift shoulders in Tibet implies that active east-west extension is restricted to the upper crust [41], normal-faulting earthquakes at mantle depths [42] and wide spacing of major Tibetan rifts [43] all indicate that Tibetan extension involves the mantle lithosphere. In North China, the north-south trending Shanxi graben began to develop at about 6 Myr [44]. In southeastern Siberia, the Baikal rift initiated since 10 Myr and was most active between 8–4 Myr [45]. Most of these eastern Asian rifts are associated with basaltic eruptions and mantle earthquakes, implying that extension is related to asthenospheric flow [22,34,42]. Thus, the new tectonic setting for the occurrence of the late Neogene–present igneous activity in eastern Tibet and Indochina may represent a fundamental change in geodynamic setting of the eastern Indo-Asian collision zone.

Fig. 6. Tectonic model for the occurrence of the three tectono-magmatic phases in eastern Tibet and southeastern Asia. (a) Subduction magmatism during transpression along the Ailao Shan–RRSZ. (b) A magmatic hiatus during transtension along the Ailao Shan–RRSZ. (c) Partial melting in the asthenosphere in the Red River region and southeast Asia which caused the younger phase of volcanism, and (d) the younger-phase volcanism in eastern Indo-Asian collision zone may be a result of decompression-induced melting during distributed east-west extension in eastern Asia including the Tibetan plateau.
4. Conclusions

Cenozoic activities in the eastern Indo-Asian collision zone of southeast China and Indochina occurred in two episodes, each with distinctive geochemical signatures, at 42-24 Myr and 16-0 Myr. The older rocks are localized along major strike-slip faults such as the Red River fault system and erupted synchronously with transpression. The younger rocks are widely distributed in rift basins and are coeval with east-west extension in Tibet and entire eastern Asia. Geochemical data suggest that the earlier igneous phase was generated by continental subduction, while the younger episode was caused by decompression-induced melting of a metasomatically altered, depleted mantle. The magmatic gap between the two magmatic sequences represents an important geodynamic transition in the evolution of the eastern Indo-Asian collision zone, from deformation controlled by crustal processes to that largely dominated by mantle processes.

Acknowledgements

J.H.W. thanks the Chinese Academy of Sciences (CAS) and US NSF for supporting his visit to UCLA and X.Y. Chang and J.Y. Bao for help in the field. A.Y. and T.M.H.’s Tibetan research was supported by the US NSF. J.H.W.’s research in eastern Tibet has been supported by the Chinese NSF (49972026), Chinese National Key Project for Basic Research (G1998040800-3), the Chinese Climbing Project (95-Y-25), and the CAS Key Projects (KZXC2-101 and KZ952-J1-408). We are grateful for insightful reviews by Martin Flower and Brad Hacker. Martin Flower raised several important questions regarding the implications of our proposed model, which helped us clarify the manuscript.[RV]

References

